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Abstract: Clinical reasoning involves coordinated thinking strategies targeted 

at gathering and analyzing relevant information to arrive at a high-quality 

clinical solution to patients’ medical problems. The correctness and proper 

choice of clinical reasoning approach chosen by a clinician or machine affect 

the accuracy and acceptability of the diagnosis; moreover, another challenge 

that usually surfaces during clinical reasoning is the burden of reasoning out 

what is known as missing data. This implies that failure to measure-up to the 

requirement of an acceptable clinical reasoning procedure and inability to 

gather enough data will have adverse impact on patient’s health. A major 

motivating factor necessitating research of models for automation and 

formalization of in clinical reasoning is due to its sensitivity and complexity. 

Although different formalism now exists, such as approximate reasoning and 

use of models or logical inferences, to curtail the issue of incompleteness of 

data and as well attain a high-quality clinical problem solving. However most 

of these formalisms have the drawback associated with their underlying 

methods of approximation of reasoning structures that usually mar the 

procedure and result of clinical problem solving process. The Select and Test 

(ST) algorithm offers close solution to the problems earlier stated. This paper 

presents an improved model of ST algorithm for clinical diagnosis and 

monitoring. This paper is focused on redesign of the ST model and the 

formalization of the approximate clinical reasoning. The redesigned ST model 

incorporates a monitoring module and mechanism for interacting with an 

ontology-based knowledge store. Specifically, the ST algorithm was modified 

to accommodate these additions to the ST model. Data was sourced through a 

retrospective study on breast cancer patients’ records and through the 

administration of questionnaire at the Ahmadu Bello University Teaching 

Hospital (ABUTH) Zaria, Nigeria. In addition, Wisconsin datasets were used to 

test the resulting formalism. Empirical analysis of breast cancer diagnosis using 

the proposed model revealed that the accuracy of 88.72% was achieved. 

Similarly, a sensitivity of 1.0, specificity of 0.51 and an ROC point of (0.49, 1) 

was also attained. This paper presents an inference model and its approximate 

reasoning representation to diagnose and monitor the presence of a disease. 
 

Keywords: Clinical Reasoning, Model, Select and Test Algorithm (ST), 

Intelligent Agent, Medical Diagnosis, Monitoring Agent, Ontology, Rule 

Sets, Breast Cancer, Clinical Decision Support Systems, Diagnosis 

Decision Support System 

 

Introduction 

Clinical reasoning which is often associated with 
machine reasoning is also considered a branch of 
artificial intelligence (Kishan et al., 2012). Human aided 

clinical reasoning is a routine and delicate task that 
requires clinicians to reason out likely diagnosis base on 
some facts provided by patient and/or other sources. 
Usually, while the older clinicians rely on experience 
built over years to deal with the challenge of clinical 
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reasoning, the younger ones are constrained to the large 
medical literature and theory taught in medical school. In 
fact, clinical teachers are often unfamiliar with the 
complex body of literature; and they tend to rely mainly 
on their practical knowledge as clinicians (Audétat, 
2011). While a blend of experience and medical 
literature or theory may help to sustain medical 
diagnoses based on human reasoning, the need for 
supportive roles of machines through machine reasoning 
is becoming glaring. Aiding clinical diagnosis through 
machine reasoning is characterized by unavailability of 
optimal and accurate reasoning models and formalism 
for approximate reasoning techniques. To tackle the 
problem of inaccurate models, designing models that can 
bridge the gap between theory and the reality of clinical 
practice will help clinicians to gain a better 
understanding of problems (Coiera, 2003). Application 
of such models is known as Clinical Decision Support 
Systems (CDSS), whose roles include: Information 
management, diagnoses and patient-specific consultation 
(Kawamoto et al., 2005), have improved clinical practice 
by 69% of trials (Shortliffe, 1987). Though these models 
can be categorized into fuzzy logic, statistical, data-
driven, mathematical, rule-base, inference model, case-
based, knowledge-based problem-solving models, 
structural (symbolic) model, probabilistic, statistical 
pattern classifier, production model and prognostic 
models (Abu-Hanna and Lucas, 2001). This paper is an 
improvement on an inference model known Select and 
Test (ST) (Fernando and Henskens, 2013; Fernando and 
Henskens, 2016a; Ramoni and Stefanelli, 1992), similar 
to clinical diagnostic reasoning models are characterized 
by dual processing (Monteiro and Norman, 2013). 

Approximate clinical reasoning is necessitated by the 
presence of uncertainty and missing data which usually 
characterizes medical reasoning, clinical data and 
diagnosis procedure. Different techniques such as 
probability theory and multivalued logic have been used 
for approximate reasoning. These techniques are further 
classified into formalism such as fuzzy logic or 
argumentation systems, probabilistic reasoning, belief 
functions (Dempster-Shafer theory), possibility theory, 
certainty factor and Cohence inductive probabilities and 
Bayes theorem. (Fernando et al., 2013). Most of these 
techniques are limited by their different approaches of 
approximate reasoning. Fuzzy logic is limited by its 
implication operators which does not sufficiently model 
medical diagnoses procedure; belief functions 
(Dempster-Shafer theory) and Cohence inductive 
probabilities are limited by their inability to capture the 
positive and negative relationship exists between 
manifesting symptoms on a diagnosis; though Certainty 
factor tackles this limitation, it is however, unable to 
deeply describe clinical diagnoses procedure; though 
Bayesian networks are a powerful and sound formalism 
that allows reasoning under uncertainty (Bayesian 
networks), however, such models are limited by their 

probabilistic disposition (assumption of conditional 
dependence and approximation of probabilities to one). 

The focus of this paper is to bridge the gap between 

clinical reasoning solutions designed from the 
perspective of approximate reasoning and those which 
adopted design of reasoning models. The approach 
adopted in this paper is first to design an inference model 
which illustrates the flow of the proposed clinical 
reasoning procedure. Secondly, algorithms were written 

to further describe the applicability to the proposed 
inference model. Thirdly, our proposed inference model 
was further described using mathematical notations to 
present the relevance and possibility of achieving 
approximate reasoning based on the constraint associated 
with clinical reasoning. Meanwhile, this paper also 

included a monitoring module and an opening to relating 
the proposed model with an ontology knowledge base. 
The remaining part of the paper is organized as follows: 
Review of related literature was carried out and the 
limitations of such literature highlighted; this was 
followed by the improved ST inference model and the 

approximate clinical reasoning formalism; Furthermore, 
sections on the monitoring module and the proposed 
improve ST algorithm were presented; this was followed 
by the implementation section; and finally the result and 
evaluation cum discussion sections were outlined. We 
concluded the paper by restating its aim and our results. 

Relate Work 

The use of multiple models or process, as proposed in 
this paper, for managing clinical reasoning process is 
already gaining research interests. The research in 
(Hosseinzadeh and Hosseini, 2017) identified six models of 
clinical reasoning which included hypothetic-deductive 
model, pattern recognition, a dual process diagnostic 
reasoning model, pathway for clinical reasoning, an 
integrative model of clinical reasoning and model of 
diagnostic reasoning strategies in primary care. They 
observed that only one model had specifically focused on 
general practitioners reasoning and then suggested that 
there is need for model of clinical reasoning that included 
specific features for scaling difficulties of clinical 
reasoning. However, going by the models they reviewed, 
one model may not be sufficient to meet this need, hence 
the necessity for intelligent hybridization of models. CDR 
(2018), the authors presented a dual-process model system 
and aimed at curtailing the limitation of one-process model 
discovered in (Hosseinzadeh and Hosseini, 2017). The 
dual-process model consists of Type 1 (Intuitive) processes 
are fast – used by experts most of the time. Type 2 
(Rational) processes are slower, deliberate and more 
reliable and focus more on a hypothesis and deductive 
clinical reasoning (Hypothetical- Deductive Reasoning). 
They further stated that repetitive operation of Type 2 
leads to Type 1. Type 2 processing can override Type 1 
and Type 1 processing can override Type 2. This was 
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further reinforced by (Croskerry, 2009) when it stated that 
dual-process theory had emerged as the predominant 
approach, positing two systems of decision making, System 
1 (heuristic, intuitive) and System 2 (systematic, analytical). 
The author proposes a schematic model that uses the theory 
to develop a universal approach toward clinical decision 
making. Properties of the model explain many of the 
observed characteristics of physicians' performance.  

A similar argument was made in (Babette et al., 2013) 
when the authors opined that system medicine as a 
specialized aspect of systems biology combines in an 
interdisciplinary approach all expertise necessary to 
decipher the human body in all its complexity. The new 
initiative aims for the integration of molecular data, 
anatomical, physiological, environmental and lifestyle data 
in a predictive model approach called the ‘virtual patient’. 
The benefit of this multiple process model is that it will 
allow the clinician to predict and anticipate the optimal 
treatment for the individual patient. Application of the 
virtual patient model will allow truly personalized 
medicine. In a separate study, Daniel et al. (2016) 
hybridized models to form a cognitive engineering 
technique known as work domain analysis which was 
implemented to provide a framework for uncovering the 
relationship between diagnosis, complex health systems and 
theories of cognition and reasoning. The resulting model of 
diagnosis provides a comprehensive, novel perspective of 
the diagnostic process that offers a new foundation to 
formulate empirical inquiries about diagnosis and provides 
new avenues for the design and development of health 
information technologies, assessment strategies and 
diagnosis-centered simulation paradigms.  

Stausberg and Person (1999), the paper presented a 
model-based approach to diagnostic reasoning in medicine. 
A process model is defined on the levels of static elements, 
dynamic elements and reasoning control. Static elements, 
facts, hypotheses and different types of disease knowledge, 
are identified and variations relevant for hypotheses 
generation are described. Dynamic elements correspond to 
actions, which in turn modify static elements, but are also 
controlled and started by the expressions of the static 
elements. The presented model could serve as a basis for an 
implementation in a model-based and process-oriented 
decision-support system. While the work in (Stausberg and 
Person, 1999) might demonstrate a form of multiple-
process model, we observed that it is not. Hence, this paper 
is focused on improving the multi-inference (model) 
clinical diagnostic model in (Fernando and Henskens, 2013) 
named Select and Test (ST). 

Building medical reasoning algorithms also requires a 

supportive knowledge base to aid the reasoning process. 

Formalizing such knowledge base in structured and 

machine meaningful ontology formalisms (Simple 

Knowledge Organization System [SKOS]) remains a 

research interest in artificial intelligence. Oftentimes, 

information that may aid reasoning may be silo in 

different databases in an unstructured format. One 

relevant knowledge silo is the social media which users 

(and even patients) openly discuss relevant issues. 

Practical approaches like (Mike et al., 2017; 2018) have 

used Patient Authored Text, statistical and linguistics 

methods to build a French Consumer Health Vocabulary 

on breast cancer to aid medical diagnostic reasoning. 

Similarly, authors in (Alsane et al., 2018) formulated an 

approach for mining and further representation of 

medical knowledge from existing studies into formalism 

that will assist Clinical Decision Support System 

(CDSS) usage in-flight medical emergency management. 

The fuzzy nature of reasoning and knowledge 
representation in medicine has raised the need for more 
research in development of approximate reasoning 
algorithms. For example, Rakus-Andersson (2009) argued 

that if the biological index of a patient has risen to risked-
level, there may be no need for surgery. Hence, the authors 
proposed a means for evaluating such biological index 
through the incorporation of fuzzy set in the approximate 
algorithms. This, they argued, will detect patient’s clinical 
symptom levels, pathologically heightened levels that 

indicate the presence of a disease possible to recover by 
surgery. Similarly, fuzzy-like approximate medical 
reasoning algorithm which was based on the logical 
inferences of (Ramoni and Stefanelli, 1992), was presented 
by Fernando et al. (2013). The approximate reasoning 
algorithm used the abduction, deduction and induction 

logical inferences in creating an inference model. Though 
the inference model was argued to achieve a desirable 
accuracy in clinical reasoning, it is however, limited by its 
approach to approximate reasoning and knowledge 
representation. This paper therefore seeks to improve on 
inference model proposed by Fernando et al. (2013).  

The Improved Select and Test (ST) 

Inference Model  

In this section, the improved ST model, based on 

models of (Fernando and Henskens, 2013; Oyelade et al., 

2017a) and the supportive models of the intelligent 

personal agents with that of the monitoring agents are 

discussed. Meanwhile, a model typical to the application 

of the resulting improved ST model is also discussed in 

this section. Fernando and Henskens (2016b), the 

authors designed the ST model which consists of three 

inferences (abduction, deduction and induction) and 

input collection sub-module (abstraction). In this paper, 

we build on the model by enhancing its reasoning 

process through semantic web inference making tools 

and models. Furthermore, a monitoring agent was built 

into the modified model, with the redesigned model 

enabled for portability of knowledge representation in 

ontology forms. This model is illustrated in Fig. 1 and 

consists of five major components. These are the 

abstraction, Abduction, deduction, induction, monitoring 

agent and the ontology knowledge base.  
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Fig. 1: Modified ST model 

 

The following are further explanation of each 

component of Figure 1. 

Abstraction 

This sub-module is an input model that interfaces 

between the patient/user and the system. Whatever we 

can classify as symptoms, patient profile and 

manifestations are elicited, abstracted and stored as input 

source. The output of this module serves as input to the 

abduction module. 

Abduction 

The overall aim of this logical inference making is 

to get all the diagnosis related to some given 

symptoms. It involves determining all likely diagnoses 

related to the reported symptoms. These differential 

diagnoses are generated by finding all related diagnosis 

with respect to each symptom in a set of symptoms 

found. The output of this module is becomes the input 

to the deduction sub-module. 

Deduction 

For each likely diagnosis from the previous stage, all 

the expected symptoms of such diagnosis are drawn out 

based on the result of a logical inference process. The 

output of this module is sent as input to the abduction 

module, while receiving more inputs from the 

abstraction module. 

Induction 

Abduction-deduction-abstraction forms a cyclic 

pattern which performs the process of clinical findings 

– it carries out differential diagnoses. The result of the 

cyclic refinement of likely diagnoses is stored. The aim 

of inference by induction involves matching the 

acceptable criteria of each diagnosis already elicited for 

consideration, with their corresponding criteria 

according to standards or clinical protocols. This will 

enable the reasoning process isolate diagnoses with 

most likelihood of existence in patient, based on 

manifestations and symptoms presented – a process 

called clinical decision making. Meanwhile, it is at the 

induction sub-module that data gathered by the 

monitoring module is used to aid the process of clinical 

decision making.  

Monitoring Agent 

The monitoring module is encased within the ST 

model. It monitors some activities/events in the patient 

and logs information gathered to support the task of the 

induction sub-module. 

Diagnoses and Symptoms Mapping 

While the knowledge base of (Fernando and 

Henskens, 2016b) was modeled in tabular form, that of 

(Oyelade et al., 2017b) was modeled as bipartite graph. 

This paper promotes enrichment of inference making in 

during the clinical reasoning process. Hence, an 

ontology approach for knowledge representation was 

crafted into the model in Fig. 1 that is improvement on 

the original model presented in (Fernando and Henskens, 

2016b). Similarly, in Fig. 2 is a block diagram 

representing Fig. 1 and it demonstrates an outlined 

description and flow of the prosed ST model. 

1. Abstraction 

2. Abduction 

3. Deduction 
Diagnoses and symptoms 

ontology 

Thematic 

Spatio  temporal 

4. Induction 

XML 

parser 
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Fig. 2: Modified ST model 
 

Formalism for Clinical Reasoning for the 

Improved ST Algorithm 

In this section, we present the formalism for 

approximation of the clinical reasoning process of the 

improved Select and Test (ST) algorithm. Our approach 

for approximate reasoning improves on that presented by 

(Fernando et al., 2013). Note that relation differs from 

functional relations by their mapping strategy. While the 

later maps elements of one set (D) onto exactly one element 

in the other (S), the later permits multiple mapping onto the 

other set (B). Contrary to (Fernando et al., 2013) which 

simply model functional relationship, we introduced 

relation of sets D and S which denotes sets of Diagnosis 

and Symptoms respectively. Meanwhile, let’s assume we 

have a set of diagnosis D = {d1,…dn} and set of 

symptoms S = {s1,…sm}. The clinical relationship that 

usually exists between set of D and S is that of 

dependent entities in D relating with independent entities 

in S respectively. Recall that the element of S may also 

relate with another di even though it relate with some dk. 

Hence, we termed the each element of D as dependent 

variables while the elements in S are independent 

variables. Note that only a composition of some sx will 

confirm the existence/occurrence of a particular dy. 

Furthermore, we introduce another set A which describes 

the likely attributes of each sx in S, that relates to a 

particular dy in D. Consider a dy (breast cancer) and an 

attribute sx (nipple discharge). The likely attributes of sx 

relating to dy are frequency of nipple discharge, duration 

of nipple discharge, associated manifestation of nipple 

discharge, commencement of nipple discharge. Figure 3a 

presents the illustration between sets D, S and Fig. 3b 

captures the mapping of elements in S to A. Considering 

the forgoing, there exist a relation between D and S 

which we simply call a relation rather than functional 

relationship as claimed in (Fernando et al., 2013). The 

justification for this renaming follows from definition 

of the two concepts as it applies to clinical reasoning. 

Functional relationship is considered to hold between D 

and S if dy maps/relates with only one sx, while a 

relation will require that dy may map unto some sx. 

Clinically speaking, if we have a set of all known 

symptoms and diagnosis, we will not obtain a 

functional relationship between D and S, but simply a 

relation. However, conjugations of all known 

symptoms, say KS, with respect to a diagnosis in D will 

result into a functional relationship between D and KS. 

Figures 3c and 3d illustrates the total relation D ↦ S and 

partial function D ⇸ KS. 

Patient input: Sential form  

- Pain around breast 

- Nipple discharge 

- Feels lump in breast 

Raw text tokenizer Token-lexicon 

matcher 

Acceptable 

medical token 

Pain, around, breast, 

Nipple, discharge, 

feel, lump 

Pain, breast, Nipple, 

discharge, lump 

Pain, breast, 

Nipple-discharge, 

lump 

Abstraction 

Abduction 

P(dx|Sy) {[s1, s2, s3,…. sn} 

Abduction KB 

{[s1…sn]->d1, [s1…st]-> 

d2,… [s1…sm]->dk} 

Deduction 

{[d1, d2, d3,…. dk} 

P(Sy|dx) 
{d1->[s1…sn], d2-> 

[s1…st],…dk->[s1…sm]} 

Deduction KB 

Induction 

D
if

fe
re

n
ti

al
 d

ia
g

n
o

si
s 

M
o
n
it

o
ri

n
g
 m

o
d
u

le
 

Diagnosis-Criteria-

Based diagnosis 

elimination 

Hill’s criteria-based 

diagnosis elimination 

Filtered diagnosis and 

associated symptoms Diagnosis 

Data collected during patient monitoring 
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 (a) (b) 

 

 
 (c) (d) 

 
Fig. 3: (a) Mapping diagnosis to symptoms; (b) Mapping symptoms to attributes of symptoms; (c) Illustrating D↦S; (d) Illustrating 

D ⇸ KS 

 

The last paragraph described the set comprehension 

of elements that constitutes sets D, S and A. However, it 

is clinically established that D, S and A can be described 

in a sense of degree of occurrence or manifestation. For 

example, consider any arbitrary dx in D, say dx is breast 

cancer. Such dx can be described as an ailment that has 

advanced to a particular critically (just as the 

advancement of breast cancer is usually described in 

stages, e.g., Stage1, Stage2a and so on). Similarly, it is 

necessary to quantify any symptom sy observed to have 

been an effect to the cause dx. Hence, we shall describe 

the specification of degree/quantity of dx and sy by Q(dx) 

and Q(sy) respectively. Furthermore, we describe the 

possible relationship that could exist between the 

quantity of Q(sy) required to result into quantity of Q(dx) 

to be Q(dx|sy). Also the attributes of sy may be described 

by some quantification that may be denoted by Q(sy | [a1 

… an]). The outcome of Q with respect to any of its 

argument is bounded from 0 to 1, i.e., [0, 1]: 

 

      1Q | ^ Q | Qx y y n xd s s a a d


  (1) 

 

The absence of any sy, that is if Q(sy) = 0, then there 

cannot be Q(dx|sy) and Q(sy|[a1…an]). This then 

necessitates equation 2 which establishes the presence of 

sy for the confirmation of the diagnosis of dx to be 

reinforced. So, dx can be ruled out or confirm by: 

 

    1P | 0,1x md s s   (2) 

 

If Equation 2 evaluates to 0, then dx is completely 

ruled out while its evaluation to 1 confirms the 

diagnosis. We observe that even if some sy can evaluate 

P(…) into 1, Equation 3 must be established: 

 

     1 1| 0.4&& | 1.0x m x mQ d s s Q d s s     (9) 

 

Equation 3 approximates the clinical reasoning for 

confirming dx. We define a relation diagR: D↦S or a 

functional relation diagF: D⇸KS, where a ksy in KS is an 

element which is a conjugation/agglomeration of some sy 

that relates with a dx in D. In equation 4, we present a 

mathematical function based diagF given some observed 

symptoms s1…sn conjugated in S: 

 

 diagF S dx  (4) 

d1 

. 

. 

. 

dn 

s1 

. 

. 

. 

sn 

s 1
, 

s 2
, 

s n
 

a 1
, 

a 2
, 

a n
 

d1 

. 

. 

. 

dn 

s1 

 

s2 

 

sn 

d1 

. 

. 

. 

dn 

s1 

 

s2 

 

sn 
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But each sy in S must first be computed using Q(sy) 

which is interpretable in equation 5: 

 

  .y yQ sy w c  (5) 

 

Note that wy denote the weight of sy in dx, while cy 

denotes the observed severity of sy. While severity cy 

may be defined/quantified by a clinically acceptable 

scaling system in the range [0, 1], weight wy is given by 

Equation 6, where BI(dx) is the biological impact of sy 

with respect dx. In addition, BI(dx) may be defined as 

the degree of biological impact of sy in aiding the 

existence or spread of dx: 

 

   y xw s BI d  (6) 

 

Considering Equations 1-6 and some definitions 

made in this section, the function diagF(S) can further be 

defined by Equation 7: 

 

   
0

m

y

y

diagF S Q s


  (7) 

 

The three (3) logical inferences earlier listed shall 

now be employed to describe the procedure for arriving 

at diagF(S): 

 

i. Abduction: The aim of this logical inference is to 

generate all possible diagnosis dx which may be 

clinically related with the sy in S. The generated 

diagnoses are stored in D: 

 

   

        

  
1 2

1

, : • , •

^ . ^

|

y x

m x

m x

y x y y m and s S x x n and d D

if P s P s P s P d then

P s s d

      





≌ rule 1 

 

ii. Deduction: contrary to the aim of abduction, the 

logical inference of deduction generates the lists 

of all possible symptoms that relates with each dx 

in list D: 

 

   

        

  
1 2

1

, : • , •

^ . ^

|

y x

m x

x m

y x y y m and s S x x n and d D

if P s P s P s P d then

P d s s

      





rule 2 

 

iii. Induction: Here, some criteria are used to narrow 

out unlikely diagnosis. Consider that Q(dx) can be 

calibrated along 0.0-1.0 such that the following 

thresholds of dx T(dx) holds: 

 

Min(T(dx)) = 0.4  Mild (early stage) 

Avg(T(dx) ) = 0.6 Manageable (acute/non-

aggressive stage) 

Max(T(dx) ) = 1.0 Severe (chronic/advance stage) 

 

We can then eliminate unlikely diagnosis in D 

through the rule: 

 

    
0

m

y x x

y

if Q s Min T d then d


 
  

 
  rule 3 

 

In conclusion, observe that it is not every sy in S 

that may have a positive functional relationship with 

the dx concluded in rule 3. Such sy with negative 

functional relationship with dx are implicitly excluded 

while those with positive functional relationship are 

absorbed in rule 3. 

Patient Monitoring module 

Recall that the aim of this paper is to improve the 

ST model through the redesign of the model and 

addition of personalized diagnosis and monitoring. 

Therefore, this section presents two critical 

components for monitoring patients and gathering of 

information to aid the personalization of diagnoses 

process of the application of the expert system to the 

patient. First, we present the monitoring model, 

targeted for capturing relevant events related to 

patients’ lifestyle, in Fig. 4 which has the knowledge 

representation schema to the right and the monitoring 

process to the left. Monitoring in this context means a 

procedure for making findings which could augment 

the plausibility of the diagnoses process of ST model. 

Basically, four sub-processes which includes event 

monitoring, event selector, data gathering and data 

formalizer, all controls the monitoring process 

proposed in this paper. Furthermore, the output 

data/knowledge of the four sub-process represented in 

Spatial-Temporal-Thematic (STT) format in ontology 

file. The event monitor receives information from the 

intelligent personal agent (discussed later) and then 

sends it to the event selector which appropriately 

identifies some characteristics of information desired. 

The data gathering and reasoning faculty 

conceptualizes the required data base on the event 

being captured. The last component then formalizes 

the data in a STT representation.  
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Fig. 4: Monitoring model 
 

ONCODIAG ST Algorithms  

In this section, an improved version of algorithm in 

(Oyelade et al., 2018) is presented. Algorithm 1 contains 

the demonstration of the models in Fig. 4; algorithm of 

the proposed model is captured in algorithms 2 through 

5. The ONCObc-ST algorithm in Algorithm 6 combines 

the five algorithms described in Algorithms 2-5 and also 

lists the expected input and output of the algorithm. 

Within the body of the algorithm are sets initially 

declared as empty. Meanwhile, before the call to the 

Abduction(), Deduction() and Abstraction() sub-modules, 

the SymptomsAlreadyElicited and the SymptomsFound 

sets are populated by the PresentingSymptoms set which 

itself derives its elements through the input model in 

(Bayesian networks). 

 

Algorithm 1: Monitoring algorithm  

IPA_monitoring() { 

      KB ← read IPA knowledge base 

      Q ←Ø 

 BodyFeelingstoMonitor ←questions to aid in 

gathering symptoms/feelings 

      lifeStyleToCheck ← lifestyles related to disease 

considered 

 while user is in session 

 for lifeStyleToCheck  as lifestyle{ 

     inquiry ← make inquiry from patient 

base on lifestyle  

     reason on inquiry with respect to KB 

     if reasoning is suggestive of disease 

then 

   data1 ← ask(Q) write to 

monitoring module KB 

          } 

      end-while 

      for each qi in BodyFeelingstoMonitor{ 

            add qi to Q 
      } 

      data2 ← ask(Q) 

 data ← eventSelector(data1,  data2) 

P ← Ø 

P ← conceptualizeData(data) 

STT  ← formalizeData(P) // encode data as 

spatial-temporal-thematic  

Store STT in ontology 

} 

 

Ask(Q){ 

   R ← Ø 

   for each q in Q 

       r ← response to q 

  add r to R 

   return R 

} 

 

Algorithm 2: Modified abstraction module of ST algorithm  

Abstract(){ 

PatientProfile ← SymtomsFound 

For each s   SymptomsTobeElicited { 

      if s   ꞓ  PatientProfile, add s to SymptomsFound. 

      remove s from SymptomsToBeElicited 

       Add s to SymptomsAlreadyElicited 

 

     } 

} 

 

Algorithm 3: Modified abduction module of ST algorithm  

Abduct(){ 

ar ← AbductionRuleSet 

akb ← AbductionKB 

diagnoses ← Ø 
for each s  ꞓ P(s|d) in akb{ 

Events selector  

Event 

monitor/trigger 

Thematic [what] 

Spatial [where] Temporal [when] 

Data gathering 

and reasoner 
STT data 

modelling 

Spatio-Temporal Thematic (STT) ontology 

Location in body Time 

Pain 

Store STT 
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   isCasual   ← diagnosticReasoner(d, ar, s) 
  if isCadual 
      diagnoses  ← d 
} 
 for each di in diagnoses 
       where p (di | S) ≥ tD  { 
   if di E DiagnosesBeElicited AND  
          di E DiagnosesAlreadyElicited, 
 add di to DiagnosesToBeElicited 
 
     } 
 
  } 
 
} 
 
diagnosticReasoner(d, ar, s){ 
          for each rulr in ar 
   diagnoses   ← invoke rule using s ad parameter 
 if d in diagnoses 
        return true 
else 
     return false 
 
} 
 
Algorithm 4: Modified deduction module of ST algorithm 

Deduct () { 

 for each d ϵ DiagnosesToBeElicited { 

  dr ←  DeductionRuleSet 
  dbk ←DeductionKB 
  symptom ← Ø  
 if deductionReasoneer(d, dr, dkb) { 
  symptoms ← get all 

symptoms from dkb relting to d 

  for each sj symptoms where 

(sj|d) > tD { 

  if sj E 

symtomsFound AND sj E 

 SymptomsAreadyElicited 

  Add sj to 

symptomsToBeElicited. 

 } 

  Remove d from 

DiagnosesToBeElicited 

  Add D to 

DiagmosesAlreadyElicited 

 } 

 } 

} 

deductionReasoner(d, dr, dkb){ 

 load reasoner pellet 

 reason over dkb  

 if inferred instance in dkb 

  return true 

 return false 

} 

Algorithm 5: Modified induction module of ST algorithm  

Induct() { 

 for each d ϵ DiagnoseAlreadyElicited{ 

  criteria ← computeHillsCriteria(d)  

  SymptomsFoundWeight ←Ø 

  SymptomsWeight ← Ø 

  Weight←     

  Symptoms_standard_weight  

  Add pair(s1, weight) to 

symptomsFoundWeight 

Add pair(s1, 

symptom_standard_weight) to 

symptomsWeight 

If weight <= 

symptoms_standrdd_weight 

 Criticalityd ←weight/n 

If criteria 

 Add d to DiagnosesIncluded 

and save Criticilatyd  

Else 

 Add d and criticalityd  to 

DiasnosesExclulded 

} 

computeHillsCriterias(d){ 

       ir ← InductionRuleSet 

    ikb ← InductionKB 

     temporalCriteria ← prompt user if exposure precedes 

the diseases 

   bioPlausibleCriteria ← does disease cause relate to lab 

findings  

  coherenceCriteria ← does ikb relate to lab findings 

 consistencyCriteria  ← does ikb relate to lab findings 

 if temporalCriteria AND bioPlausibleCriteria 

                                 AND coherenceCriteria AND 

consistencyCriteria 

      return true 

return false 

} 
 
Algorithm 6: Combined ST Algorithm 

Inputs: 

A special graph of ontologies P (sj|sj) and P (d1|sj): 

AbductionKB 

A special graph of ontologies P (sj|sj) and P (d1|sj): 

AbductionKB 

A special graph of ontologies P (sj|sj) and P (d1|sj): 

AbductionKB 

A presenting symptoms set PresentingSymptoms 

Profile of the patient PatientProfile 

Threshold for symptoms ts 

Threshold for diagnoses tc 

A set of rules for reasoning at abduction: 

AbductionRuleSet  

A set of rules for reasoning at deduction: 

DeductionRuleSet  
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A set of rules for reasoning at induction: 

InductionRuleSet  
 
Output: 

Set of likely diagnoses DiagnosesIncluded 

Set of diagnoses excluded, DiagnosesExcluded 

Set of symptoms that were found in patient 

SymptomsFound 

Set of symptoms that were not found in patient 

SymptomsNotFound 

 

Begin 

SymptomsFound = Ф 

SymptomsToBeElicited = Ф 

SymptomsAlreadyElicited = Ф 

DiagnosesToBeElicited = Ф 

DiagnosesAlreadyElicited = Ф 

 

For each s ϵ PresentingSymptoms { 

 Add s to SymptomsAlreadyElicited; 

 Add s to SymptomsFound; 

 For each d1 where P (d1|s) ≥ tD OR C (d1) ≥ tc { 

  Add d1 to DiagnosesToBeElicited; 

 } 

} 

While (DiagnosesToBeElicited ≠ Ф AND 

SymptomsToBeElicited ≠ Ф) { 

  Abduct(); 

  Deduct(); 

  Abstract(); 

} 

Induct(); 
End  

 

Implementation of the Inference Model for 

Clinical Reasoning 

In this section, we used the breast cancer knowledge 

base developed in (Oyelade et al., 2017b; 2018) in the 

implementation of the algorithms described in section 

6. In the meantime, we first present the criteria for 

deciding the criticality (diseases staging) of the 

diagnosis (breast cancer) base on Fig. 2 (induction 

section) and algorithm 5. This criterion is computed 

using equation 8 and described by Table 1 which lists 

the values of likelihood ratio (LR) for each basic 

parameter considered during diagnosis elimination stage 

at the induction logical inference: 
 

 

      

       


LR parameter

Probability of parameter manifesting in stage N

Probability of parameter not manifesting in stage N

 (8) 

 

Note that stage N ranges from breast cancer stages 0, 

1A, 1B, 2A, 2B, 3A, 3B, 3C and 4. The probability of an 

event is given by equation 9: 

 

 

 

.       

 .     


  

Probabilty

No of favorable outcome parameter manifesting in stage N

Total No of possible outcomes parameter risk factors category

 (9) 

 
Table 1: Parameters likelihood ratio  

Parameters Stage 0 Stage 1A Stage 1B Stage 2A Stage 2B Stage 3A Stage 3B Stage 3C Stage 4 

Risk Factors 

Older 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

Genetic Mutations 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

Dense Breasts 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

Hormone Therapy 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

Family History 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

Drinking Alcohol 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

Symptoms and Signs 

Hardening 0.43 0.43 0.43 0.67 0.67 1.5 1.5 4.0 4.0 

Invisible Lump 0.43 0.43 0.43 0.67 0.67 1.5 1.5 4.0 4.0 

Skin Erosion 0.43 0.43 1.0 1.0 1.0 1.0 4.0 4.0 4.0 

Fluid Discharge 0.25 0.25 0.67 0.67 0.67 4.0 4.0 4.0 4.0 

Redness 0.11 0.11 0.67 0.67 0.67 0.67 0.67 1.0 1.0 

Growing Vein 0.11 0.11 0.43 0.43 0.67 0.67 1.5 1.5 1.5 

Nipple Retraction 0.43 0.43 0.43 1.0 1.0 1.0 2.3 2.3 2.3 

New Asymmetry 0.11 0.11 0.11 0.25 1.0 1.0 2.3 2.3 2.3 

Orange Peel Skin 0.11 0.43 0.43 0.43 1.5 1.5 1.5 1.5 1.5 

Breast Pain 0.11 0.25 0.25 1.0 1.0 1.0 4.0 4.0 4.0 

Laboratory Test 

Biopsy 0.19 1.0 1.0 1.0 2.0 5.0 5.0 5.0 5.0 

Mammogram 0.19 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Ultrasound 0.19 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Size of Tumor 0.19 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Lymph Node 0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Metastasized 0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 
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Fig. 5: Code snippet from implementation of Algorithm 6 
 

 
 

Fig. 6: Enhanced ST application diagnosing breast cancer 
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For each of the parameter in Table 1, the patient is 

expected to enter the likelihood value or Symptom 

Weight: to describe approximation of each parameter as 

felt by the patient. Algorithm 6 then compares the 

summed Symptom Weight of patient with that of the 

summed Symptom Weight for each stage on Table 1 and 

computes the Criticality or staging of diagnosis using the 

summed Symptom Weight collected. Java programming 

language was used for the implementation of the 

Algorithm 6 as shown by a code snippet in Fig. 5 and the 

application interface in Fig. 6. 

Results and Discussion 

This research considered it appropriate to employ 

the medical diagnostic metrics state by Šimundić 

(2008). The author stated that diagnostic accuracy of 

any diagnosis test gives us an answer to the following 

question: How well this test discriminates between 

certain two conditions of interest (health and disease)? 

It is this discriminative ability that this paper 

measures by measuring diagnostic accuracy: True 

Positive (TP), True Negative (TN), False Negative 

(FN), False Positive (FP), Receiver Operating 

Characteristics (ROC), True Positive Rate (TPR) and 

False Positive Rate (FPR). Equations 10 through 16 

are expressions for computing some metrics chosen 

for the presentation of our results in this section: 

 

 

TP
Sensitivity

TP FN



 (10) 

 

 

TN
Specificity

TN FP



 (11) 

 

 

 

TN TP
Accuracy

TN TP FN FP




  
 (12) 

 

 

TP
TPR

TP FN



 (13) 

 

FP
FPR

FP TN



 (14) 

 

 1

sensitivity
LR

specificity
 


 (15) 

 

 1 sensitivity
LR

specificity


   (16) 

 

The area under the ROC curve (AUC): By both 

FPF and TPR yields a coordinate (x, y), where TPR = 

TP/(TP+FN) and FPR = FP/(FP+TN). Hence ROC 

point is given by (FPF, TPR). Consider two 

tests/diagnosis X and Y with false positive rates 

(FPR) 0.95 and 0.88 respectively. If the region that is 

clinically relevant in the AUC is at low FPRs, then 

diagnosis Y is preferable to diagnosis Y even though 

the ROC area of X is greater than Y.  

Sensitivity, specificity and accuracy are described 

in term of number of true positive assessment (TP), 

Number of true negative assessment (TN), Number of 

all false negative assessment (FN) and Number of all 

False Positive assessment (FP). A good diagnostic test 

has LR+ > 10 and LR-< 0.1. By the standard of 

accessing the values of AUC with respect to 

diagnostic accuracy, values ranging between 0.9-1.0 

are judged to excellent, 0.8-0.9 is very good, 0.7-0.8 

is good, 0.6-0.7 is sufficient, 0.5-0.6 is bad and 

anything less than 0.5 is considered a diagnosis that is 

not useful. Data collected from the Ahmadu Bello 

University Teaching Hospital (ABUTH) as shown in 

Table 5, was used to draw a comparison between the 

improved ST algorithm (ONCODIAG) with that of 

(Fernando and Henskens, 2013; Fernando et al., 2013) 

to obtain the result in Table 2. Similarly, in Table 3, 

the performance of our proposed algorithm is 

compared with the Wisconsin Breast Cancer Database 

(WBCD) and Wisconsin Diagnostic Breast Cancer 

(WDBC) datasets. 

 
Table 2: Breakdown of results of ST and improved ST models 

Parameters  ST model implementation  Enhanced ST model implementation 

Result of Diagnoses Breast Cancer Breast Cancer 

Accuracy of Diagnoses:  59.45% 67.36% 

Precision of Diagnoses: 0.031 0.5 

Time of Execution:  187ms 2101ms 

Criticality:  Not applicable Stage 1B 

Treatment Plan:  Not applicable Chemotherapy and Radiotherapy 

Symptom Weight:  Not applicable 0.54347 

Sensitivity 0.42 1.0 

Specificity 1.0 0.5125 

AUC (0, 0.42) 0.49, 1.0 
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Table 3: The comparison of the results of WBCD and the improved ST algorithm 

 WBCD  ONCODIAG-ST 
 ------------------------------------------- ---------------------------------------------------------- 
No. Instances Benign Malignant Not-Breast Cancer Breast Cancer 

100 56 44 67 33 
200 116 84 139 61 
300 163 137 191 109 
400 229 171 266 134 
500 303 197 343 157 
600 380 220 424 176 
699 458 241 513 186 
 
Table 4: The comparison of sensitivity, specificity and accuracy of WBCS and the improved ST algorithm 

Metrics ONCODIAG-ST WBCS 

Sensitivity 0.81 1.0 
Specificity 0.89 1.0 
Accuracy 86% 100% 
 
Table 5: Sample patient data from Ahmadu Bello University Teaching Hospital (ABUTH) Shika-Zaria Nigeria. 

Age Parity Breast examination and patient supplied information Investigation Staging Treatment 

42 6+0 Left breast was removed, Post surgery, nipple inverted, Axillary lymph Stage IV  Surgery, chemotherapy, 
  measured 2.5 by 1 cm solid masses. Lump in breast, node present  radiotherapy 

  Painful, Metastasis from beginning  
42 No data Painful RB Lump, Axillary and supraclavicular, edema CT, Spinal Metastasis Stage IV Chemotherapy and  

  lymph node, needle biopsy. right breast, Metastasis   radiotherapy for spine 

  from beginning  
44 4+0 Symmetry, upward nipple deviation, scar on upper   Stage IV Chemotherapy and  

  part of axillary, Menarche at 15, age at 1stchild 25,    radiotherapy for spine 

  last child 11yrs b4 presentation    
35 6+0 Surgery, scar, right axillary lymph node measured 2 by Right Breast Stage III Chemotherapy and 

  2 cm. Last menses Aug 26   Radiotherapy  

45 0+3 Surgery, noodle reoccurring. Size of tumor 6.8 by Left Breast lump, no Stage III Chemotherapy and 
  6.5 cm, pain, no discharge  Radiotherapy 

38 0+1 Diagnosed 7 month, surgical scar Right Breast, Right Breast, No Pain Stage III Surgery, Chemotherapy, 

  Axillary node, lymph node    Radiation 
36 4+0 Mastectomy scar, huge lump, Age at first pregnancy 26 Right Breast Stage III Surgery, Chemotherapy, 

     Radiation 

35 1+0 Lump, mobile lump, 5 by 4cm, no lymph nodes, Lump 5 by 4 cm, Painful, Stage III Surgery, Chemotherapy, 
  Right Breast involved no Nipple Discharge  Radiation 

41 7+1 Surgery, locally advanced, First child at 27, last at 38,  Stage IV Surgery, Chemotherapy, 

     Radiation 
49 5+2 Surgery. Age at first 28 Stage III Surgery, Chemotherapy, 

     Radiation 

 

 
 

Fig. 7: ROC of the improved algorithm when tested on ABUTH, WBCD and WDBC datasets 
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The Area Under Curve (AUC) in Figure 7 shows 

that the point falls close to the top-leftmost section of 

the curve, which is an indication that the performance 

of the algorithm is good. Also, the sensitivity and 

specificity values of 1 and 0.54 are indications of how the 

improved ST model demonstrates the ability to detect 

presence of disease (breast cancer) and to rule out the 

presence of disease (breast cancer). Base on Table 4, the 

WBCD datasets has 699 instances and our algorithm 

achieved an accuracy of 86%, sensitivity and specificity of 

0.81 and 0.89 respectively.  

Evaluation of the Proposed Algorithm and 

Discussion 

In this section, we present an evaluation and its 

discussion in comparison of similar literatures of the 

result shown in the last section. The evaluation is 

focused on the accuracy measure of the related systems. 

We have chosen to compare this system (proposed in 

this paper) with machine learning, machine reasoning 

and knowledge representation techniques. Our 

comparison in this section is done base on the result of 

the comparison in Table 3 using Wisconsin repository. 

In Table 6, eight (8) related works were compared 

with the proposed algorithm (ONCObc-ST). Mike et al. 

(2017; 2018; Alsane et al., 2018) works which were 

focused on formalization of knowledge base for medical 

diagnoses and were not based on medical diagnoses, 

accuracy measure was not necessary. Those of (Aloraini, 

2012; Agarap, 2018) which are Machine Learning (ML) 

based techniques have accuracy of 95.6%, 90.0% and 

97.36% respectively. Furthermore, the works of (Alharbi 

and Tchier, 2016) is a fuzzy-genetic based algorithms 

attained accuracy of 97.33%. However, fuzzy-genetic 

algorithms are limited by difficulty of genetic algorithm 

to guarantee optimality and solution weakens with 

increased size of the problem. Similarly ML algorithms 

may suffer the problem of acquisition of relevant 

knowledge or data which usually have impact on the 

performance of ML. This is contrary to MR which 

adapts to more flexible adaptation even in big data 

investigations. We conclude that though our proposed 

algorithm (ONCObc-ST) attained an accuracy of 

88.72%, its technique was rigorously verified and is 

proven to be acceptable. Furthermore, semantic 

reasoning (which is the approach of this paper) permits 

the representation of knowledge in a very deep and 

meaningfully structured form which yields high 

inference power. In addition, semantic reasoning 

approach excels in provability through formal logic 

proofs to explain the result gotten by the system. Lastly, 

in domain like medicine, deep knowledge representation 

with complex rules is required and which semantic 

reasoning appropriately solves. 

 
Table 6: Overall performance measure of breast cancer diagnostic algorithms 

Authors/Year Algorithms used Category of Machine Intelligence Purpose of research Accuracy 

Aloraini (2012) Bayesian Network, Naïve Bayes, Machine learning (ML) Breast cancer detection 95.6% 

 Decision trees J4.8, ADTree 

 and Multi-layer Neural Network  

Sene (2018) Evidence theory and data mining Data mining and Semantic In-flight formalism of medical N/A 

  clarification through ontology  knowledge representation for CDSS 

Tapi Nzali (2018) Linguistic and statistical Data mining  Formalism of breast cancer N/A 

 approaches  knowledge representation 

Tapi Nzali (2017) Classic text mining technique, Data mining  Formalism of breast cancer N/A 

 latent Dirichlet allocation (LDA)  knowledge representation 

Agarap (2018) GRU-SVM, R, MLP, NN, SR Machine learning (ML) Breast cancer detection  >90.0% 

  and SVM  

Seising (2006) Fuzzy logic Machine reasoning Linkage to foundation of Not stated 

   application of fuzzy logic to 

   medical diagnosis 

Rakus-Andersson Approximate reasoning Computational intelligence Evaluation of a risk in the Not stated 

and Jain (2009) algorithm and Fuzzy sets  situation considering patient 

   for surgery 

Alharbi and Tchier Fuzzy-Genetic Algorithm Method Machine reasoning (MR) Breast cancer detection 97.33% 

(2016)  

WBCS Medical experts  Human intelligence  Breast cancer diagnoses 100% 

Fernando et al. Select and Test (ST) algorithm Approximate Reasoning  59.45% 

(2013)  (Abduction, deduction and 

  induction inference) 

This paper Select and Test (ST) algorithm  Ontology learning and Semantic Breast cancer diagnoses and 88.72% 

(ONCObc-ST)  Machine Reasoning (MR) formalism of breast cancer 

   knowledge representation 
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Conclusion 

In conclusion, this paper presents an improved Select 

and Test (ST) model for performing clinical reasoning. 

In addition, a three-fold (abduction, deduction and 

induction) logical inferences based algorithm of the 

improved model was also outlined and discussed. The 

formalism for carrying out approximate clinical 

reasoning was modeled and discussed using 

mathematical concepts such as relations and functions. 

The ST model we designed, which was augmented by a 

block diagram of the formalism for approximate 

reasoning, was meant to serve as an illustration of our 

proposal of using logical inferences in clinical solving 

problems. Furthermore, this paper gave a hint to the 

possibility of the interaction these logical inference 

methods to knowledge base that is modeled as ontology 

file. Moreover, we have argued that the peculiarity of 

clinical data and its reasoning process is characterized by 

some form of uncertainty or missing data, which 

necessitated the need for a formalized approximation 

method of reasoning with data. We addressed this 

challenge through the use of our formalism to prove that 

our logical inference methods are relevant in handling 

such peculiarity of clinical problem solving. Meanwhile, 

we have added a monitoring module into the improved 

model earlier discussed. Finally, the implementation of the 

model and its associated algorithms was done and case-

study to breast cancer diagnoses. Results showed that the 

performance of the improved ST model compared to the 

existing ST model was better. We however note that the 

model presented in this paper is limited by lack of an 

explanation facility – a means for justification of how and 

why clinical reasoning solutions were executed to increase 

confidence for acceptability of result of diagnosis. 
In future, we plan to employ the use of machine 

learning to carry out feature extraction from 

mammograms. The current approach presented in this 

paper depends on Radiologists to study the image and 

pass necessary input. However, we desire to completely 

automated the readership of all images: MRI, 

mammograms tomosyntheses and ultrasounds.  
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