Human Babesiosis Caused by *Babesia odocoilei*: A Confirmed Zoonosis

John Donald Scott

Tick Research, Upper Grand Tick Research Centre, Canada

Article history Received: 13-11-2024 Revised: 20-11-2024 Accepted: 23-11-2024

Email: jkscott@bserv.com

Abstract: Babesia odocoilei has been gaining attention as a novel agent of tick-borne disease. Researchers allege that the American dog tick is a vector of *B. odocoilei*, but supportive evidence for this contention is absent. Likewise, *B. odocoilei* was allegedly found in two European patients, but supportive evidence for this postulate is lacking and it appears that the patients were infected with a close member of a sister group, *Babesia venatorum*. In contrast, a study by Scott *et al.* in two Canadian patients provides molecular evidence for the first-ever confirmed cases of human babesiosis caused by *B. odocoilei* anywhere in the world.

Keywords: Babesia odocoilei, Babesiosis, Ticks, Canada, Ixodes

Maggi *et al.* (2024) claim that *Babesia microti* is the predominant Babesia species in central and eastern North America, but this assumption is incorrect. Creditable scientific findings show that the intraerythrocytic piroplasmid *Babesia odocoilei* is the predominant *Babesia* species in Canada. Tick researchers found that the ratio of *B. odocoilei* to *B. microti* is 60-1 (Scott *et al.*, 2024) and *B. odocoilei* is the predominant *Babesia* species in *Ixodes scapularis* ticks nationwide. Maggi *et al.* (2024) state that *B. odocoilei* has been reported in Canada but incorrectly cited Herwaldt *et al.* (2003). In reality, Scott *et al.*, discovered the *B. odocoilei* archetype in Canadian ticks (Scott *et al.*, 2022).

Although Maggi *et al.* (2024) claim that the American dog tick, *Dermacentor variabilis*, is a primary vector of *B. odocoilei*, none of the references cited in their study substantiate *D. variabilis* as a vector of *B. odocoilei*. This single-celled, red blood cell parasite causes malaria-like, febrile symptoms in humans who have been bitten by *B. odocoilei*-infected *Ixodes* ticks. After a comprehensive review of the scientific literature, there are no peer-reviewed references that show transstadial passage (larva to nymph and/or nymph to adult) of *B. odocoilei* in *D. variabilis*. In reality, it appears that the western black-legged tick, *Ixodes pacificus* and the black-legged tick, *Ixodes scapularis*, are the primary vectors of *B. odocoilei* in North America.

Maggi *et al.* (2024) intimated that two male patients in Austria and Italy were the first patients to be infected with *B. odocoilei.* However, the babesial strains that were recovered from the two patients clustered with a related sister *Babesia* group, EU-1 (*Babesia venatorum*), and the amplicons from the two patients failed to meet the current molecular criteria for *B. odocoilei*. Maggi *et al.* (2024) mistakenly alluded to the supposition that *B. odocoilei* amplicons from Europe mimicked those from people in Canada and the United States, but the researchers mistakenly used a reference out of context and netted a miscitation. The archetypical reference for human infection with *B. odocoilei* is Scott *et al.* (2021).

Based on molecular characterization and patient symptomology, Scott *et al.* (2021) are the first research team to confirm that *B. odocoilei* causes human babesiosis. *Babesia* amplicons from these Canadian patients had 99.77 and 99.55% similarity with *B. odocoilei* type strains in GenBank. Phylogenetically, the amplicons from the two Canadian study participants are well within the accepted molecular range of a valid *B. odocoilei* species. These convincing findings verify that Scott *et al.* (2021) have described the first-ever confirmed cases of human babesiosis caused by *B. odocoilei*.

Conflicts of Interest

The author has no competing interests.

References

Herwaldt, B. L., Cacciò, S., Gherlinzoni, F., Aspöck, H., Slemenda, S. B., Piccaluga, P., Martinelli, G., Edelhofer, R., Hollenstein, U., Poletti, G., Pampiglione, S., Löschenberger, K., Tura, S., & Pieniazek, N. J. (2003). Molecular Characterization of a Non-*Babesia divergens* Organism Causing Zoonotic Babesiosis in Europe. *Emerging Infectious Diseases*, 9(8), 942–955. https://doi.org/10.3201/eid0908.020748

- Maggi, R. G., Calchi, A. C., Moore, C. O., Kingston, E., & Breitschwerdt, E. B. (2024). Human *Babesia* odocoilei and Bartonella spp. co-infections in the Americas. *Parasites & Vectors*, 17(1), 302. https://doi.org/10.1186/s13071-024-06385-4
- Scott, J. D., Sajid, M. S., Pascoe, E. L., & Foley, J. E. (2021). Detection of *Babesia odocoilei* in Humans with Babesiosis Symptoms. *Diagnostics*, *11*(6), 947.

https://doi.org/10.3390/diagnostics11060947

- Scott, J. D., McGoey, E., & Pesapane, R. R. (2022). Tick-Borne Pathogens Anaplasma phagocytophilum, Babesia odocoilei, and Borrelia burgdorferi Sensu Lato in Blacklegged Ticks Widespread across Eastern Canada. J Biomed Res Environ Sci, 3(10), 1249–1256. https://doi.org/10.37871/jbres1586
- Scott J. D., & Scott C. M. (2024) Human Babesiosis Caused by *Babesia odocoilei*: An Emerging Zoonosis. *Am J Biomed Sci & Res.* 24(6): 667-668. https://doi.org/10.34297/AJBSR.2024.24.003261