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Abstract: The literature of count regression models covers a large scope 

of studies and applications that implemented simple and standard models 

for count response variables by using Poisson regression models, binomial 

regression models, negative binomial regression models, geometric 

regression models, or generalized Poisson regression models. These 

regression models have received considerable attention in various 

situations. Nevertheless in many fields, the distribution of the count 

response variable may display a feature of excess zeros for which the 

aforementioned regression models may fail to provide an adequate fit. To 

remedy this handicap, a class of distributions known as zero-inflated 

models is considered as the most appropriate approach for dealing properly 

with this issue of excess zeros. In addition to the zero-inflated problem, it 

happens quite often that the sample data sets under investigation are not 

completely observed. This refers to the missing data problem. In this 

study, our primary interest is in reviewing studies that considered 

simultaneously the missing data problem and the zero-inflated feature in 

modeling zero-inflated data. Moreover, we discuss their methodologies 

and results and some potential directions of the future research. 
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Introduction to Zero-Inflated Data 

A regression model fit is generally a statistical 

methodology that helps estimate the strength and 

direction of the relationship between two or more 

variables. It is considered as one of the most powerful 

and popular tools used for making important decisions or 

investigating some assertions in many statistical studies 

and across various domains of science. Similarly, a 

regression approach to count data is one of the most 

important statistical techniques, which plays a big role in 

decision making and investigation. This simple but 

powerful tool may become frustrating even misleading if 

less sufficient attention is paid to some important aspects 

of statistical modeling, such as the assumptions of 

models, the specific features or patterns displayed by the 

data set, or the presence of missing data. Many computer 

software programs have made the implementations of 

estimation of regression models, e.g., for count data, 

easier than before, but there is still a high chance to 

obtain a bad fit, especially when fewer attention is paid 

to the underlining assumptions of models or the 

complexity of the data. For instance, the presence of 

excess zeros in the response count variable requires 

some precautions prior to proceeding with a model fit. 

In this review work two main issues are of great 
concern, including the presence of a Zero-Inflated (ZI) 
feature in response data and the presence of the missing 

response or covariate data. Note that count data cover a 
considerable portion of data in statistical inference and 
they arise from various fields to include the social 
sciences, medicine and industry among others. For 
instance, for the number of new friends added on a user’s 
facebook account a week, the number of customers’ 

mails a day that a business company receives regarding 
goods lost or damaged, or the number of doctor and 
hospital visits occurring throughout the weekday or 
weekend; regular Poisson regression models, negative 
binomial regression models or generalized Poisson 
regression models may be appropriate to fit this kind of 

data. Among these standard regression models, Poisson 
regression models are the most popular tool used to fit 
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count data (Cameron and Trivedi, 2013) because of their 
simplicity in application and interpretation of the results. 
Notwithstanding those advantages, a regular Poisson 
regression model cannot capture the ZI feature because it 

has only one parameter that is its mean. In the presence 
of the ZI feature, fitting a regular Poisson regression 
model has a tendency to overstate the significance level 
or underestimate the standard errors of the estimators of 
the model parameters. Consequently, inference based on 
the regular Poisson regression model fit is misleading 

and not credible in this situation. On the other hand, the 
negative binomial regression models (Cameron and 
Trivedi, 2013) and the generalized Poisson regression 
models (Consul and Famoye, 1992) are mostly seen as 
the backup solutions in case the regular Poisson 
regression model fit is not adequate. Contrary to the 

regular Poisson regression model, the negative binomial 
regression models and the generalized Poisson 
regression models and the generalized Poisson 
regression models have an extra parameter that can 
capture an additional effect, such as the ZI feature. 
Nevertheless, in many analyses of count data with excess 

zeros, these two regressions models may fail to 
adequately fit the data under study. In this case, ZI 
regression models or other mixture regression models 
(Mullahy, 1986) are better options (Allison, 2012). 
Ridout et al. (1998) and Ismail and Jemain (2007) 
provided a comprehensive introduction to the class of the 

ZI regression models. ZI models provide a wide and 
intensive area of research (Tu and Liu, 2016). 
Interestingly, the Scopus search engine developed by 
Elsevier reveals that in the last ten years. ZI models have 
been mentioned over 1,410 times as titles, abstracts or 
keywords among all articles. Compared to standard 

regression models, ZI models are considered to be more 
advanced methods and are required in order to account 
properly for the feature of excess zeros. For instance, 
there are Zero-Inflated Poisson (ZIP) models, Zero-
Inflated Negative Binomial (ZINB) models, Zero-
Inflated Binomial (ZIB) models and Zero-Inflated 

Generalized Poisson (ZIGP) models. Other models 
closely related to ZI models are hurdle models (Mullahy, 
1986) and two-part models (Heilbron, 1994). 

In general, a ZI model can be thought of as a mixture 

distribution of two components, including a count 

distribution, such as Poisson, binomial, negative 

binomial, or geometric and the degenerated distribution 

at zero. These ZI regression models differ from others in 

terms of the nature of the count distribution used for the 

probability mass function as given in expression (1). The 

ZI feature is generated by both sources (processes), 

including the count distribution component (random 

zeros) and the component of excess zeros (structural 

zeros). To the best of our knowledge, among the most 

used ZI models, the ZIP regression models proposed by 

Lambert (1992) are the most used in many applications. 

Besides that, the ZINB regression models (Ridout et al., 

2001), ZIB regression models (Hall, 2000), Zero-Inflated 

Geometric (ZIG) regression models (Nagesh et al., 

2015) and ZIGP regression models (Famoye and Singh, 

2006) have been proposed in some situations to account 

for the feature of excess zeros, where a ZIP regression 

model could not fit the data well. Note that the ZIB 

regression models and the ZIG regression models have 

received very little attention compared to the most used 

ZI models. Besides using expression (1) as a generic 

form, the zero-inflated power series regression models as 

given in Gupta et al. (1995) can be seen as another form 

of presenting the count data with excess zeros (see Section 

3.4). Up to this day, different orientations have been taken 

under the ZI models and many interesting results are 

found in the literature. But most of these works have left 

aside the potential question of missing data. 
Besides the issue of excess zeros in count data, 

another important issue that has been addressed in the ZI 

data analysis literature is the missing data problem. ZI 

data are very active in many statistical studies or 

applications in practice. Therefore, the response count 

variable or some covariates involved in a regression 

model are likely to have missing data. There are many 

reasons behind the missing data appearance. Some 

missings are intentionally created for technical or 

confidential reasons, while others are due to 

happenstance. In these past decades, many researchers 

have proved that missing data were not avoidable in 

statistical studies; see, e.g., Little and Rubin (2002) and 

Schafer and Graham (2002). Consequently, the problem 

of missing response or covariate data attracts great 

attention. Any failures in addressing properly the 

presence of missing data while analyzing a ZI data set 

possibly yield inaccurate estimates. Little (1992) pointed 

out that the missing process and the missing pattern 

needed to be well understood in order to apply 

appropriate methods in response to missing data. 

Therefore, methods summarized in Table 1 are very 

useful in dealing with missing data. Due to the 

importance of these matters, we review only those works 

that simultaneously studied the ZI feature and the 

missing data problem. We introduce briefly the ZI model 

framework and some important concepts related to 

missing data in Section 2. Section 3 presents only the 

most popular ZI models and their related missing data 

treatments. A conclusion is given in Section 

Zero-Inflated Models and Missing Data 

Concepts 

Zero-Inflated Distributions 

Prior to describing some popular ZI models and their 

applications, we first define a generic form for all ZI 

models. Let Y be a count response variable. The 
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probability mass function of a ZI distribution can then be 

expressed as follows: 
 

( )
( ) ( )

( ) ( )
1 ; , , 0,

1 ; , , 0.

p p f y d y
P Y y

p f y d y

η

η

 + − =
= = 

− >
 (1) 

 

Here p ∈ [0, 1] is a mixing weight for the 

accommodation of extra zeros. f(y; η, d) represents a 

regular count distribution; for instance, Poisson 

distribution, binomial distribution, geometric distribution 

and negative binomial distribution. In general, f(y;η, d) 

possesses two parameters η and d, where η and d 

represent its expected value and dispersion parameter, 

respectively. In practice p is linked to a set of covariates 

(χ1) via a logit-linear predictor such that p = H(u) = 

H(βTχ1), where H(u) = [1+exp(−u)]
−1

, whereas η is 

linked to another set of covariates (χ2) via a log-linear 

predictor η = exp(γTχ2) for unbounded count data. In 

many applications, the parameter d is neither modeled as 

a function of χ1 nor χ2. Naturally, χ1 and χ2 do not have 

to be identical. For instance, Lambert (1992) assumed 

that χ1 ≠ χ2, whereas Lukusa et al. (2016) assumed that 

χ1 = χ2 = χ, where χ = (1, X
T
,Z

T
)

T
 for X and Z being 

vectors of categorical or continuous covariates. A special 

case is when p is a constant not depending on covariates 

(Li, 2011). To have a comprehensive review, we define p 

= H(βTχ1) and η = exp(γTχ2). Other appropriate linear 

predictors can be used to model p; for instance, the 

probit-linear predictor given by p = Φ(βTχ1) can be used 

instead of p = H(βTχ1), where Φ is the cumulative 

distribution function of the standard normal distribution. 

One of the most interesting features about the ZI 

models is that they are related to each other based on the 

behaviors of parameters p, d and η in expression (1). For 

instance, when d → ∞, the zero-inflated negative 

binomial distribution reduces to a zero-inflated Poisson 

distribution. When d = 0, the zero-inflated generalized 

Poisson distribution reduces to a zero-inflated Poisson 

distribution. But when p = 0, the zero-inflated negative 

binomial distribution, the zero-inflated generalized 

Poisson distribution and the zero-inflated Poisson 

distribution reduce to the negative binomial distribution, 

the generalized Poisson distribution and the Poisson 

distribution, respectively. Various relations can be 

established for the entire family of ZI distributions. The 

ZI regression models aim at estimating the unknown 

parameter vector θ = (βT
, γT

, d)
T
 by means of different 

optimization techniques, such as Newton-Raphson 

method and expectation-maximization algorithm 

(Dempster et al., 1977). 

Some Important Concepts of Missing Data 

Missing data are described as various codes 

indicating lack of response (Schafer and Graham, 2002). 

Missing data are generally caused by technical 

problems or designs. But in some specific cases, e.g., 

privacy, missing data are deliberately created. The 

missing data should not be overlooked without a 

specific reason. Before applying any appropriate 

methods to deal with missing data, as listed in the 

taxonomy (Little, 1992), a data set needs to be 

described by means of descriptive statistics in order to 

obtain the information related to the missing data. If it 

is revealed that there are missing data, then the first 

important step should be to understand the missing 

patterns and the missing mechanisms. Let n be the 

sample size, Y the non-negative count outcome variable 

and X and Z covariate vectors, where Z is always 

observed. Assume that X is partially observed and W is 

a surrogate variable able to provide enough information 

about the missing variable. To account for missingness, 

an indicator variable, δ = 1 if X is observed and δ = 0 

otherwise, is included. Similarly, the idea of X having 

missing can be extended to a situation where the 

response variable Y is incomplete. For the sake of 

illustration, when X is missing at random, the basic data 

structure is as follows: 
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where nv denotes the number of validation data. 

The data set structure is often arranged in arrays, 

which is allowed to visualize clearly the different 

patterns of missing values. There are three main missing 

patterns (Rubin, 1976), including (i) the univariate 

pattern where missing data occur only on a single item 

(single variable) or group of variables of the same 

nature, while others are completely observed, (ii) the 

monotone pattern where missing values on items can be 

arranged in an increasing proportion from items with 

least missing values to items with more missing values 

and (iii) the general pattern where missing values 

scattered everywhere. Compared with the general 

pattern, the univariate and monotone patterns are not 

hard to handle in practice. 

Let V = (Z,W) and the data set D = D0∪D1, where 

D0 = {(Yi, Vi): δi = 0, i = 1, 2,..., n} and D1 = {(Yi, Xi, 

Vi): δi = 1, i = 1, 2,..., n}. The missing mechanism 

plays an important role in dealing with missing data 

problems. Rubin (1976) distinguished among three 

processes of missing mechanisms, including Missing 

Completely At Random (MCAR), Missing At Random 

(MAR) and Missing Not At Random (MNAR). Under 

the MCAR, the selection probability is expressed as 
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P(δ = 1|Y,X, V) = π. When missing is MAR, the 

selection probability is expressed as P(δ = 1|Y,X, V) = 

π(Y, V). Note that the MCAR and the MAR 

mechanisms are ignorable missing mechanisms. 

Under the MNAR, the selection probability is given 

by P(δ = 1|Y,X, V) = π(Y,X, V). The MNAR 

mechanism is a nonignorable missing mechanism. 

Note that in survey studies, clinical studies or other 

statistical techniques for data collection, it is difficult 

to distinguish between the MAR and MNAR, even if 

the MAR is from the MCAR unless additional 

information is available. Therefore, it is important to 

understand clearly the whole process and 

circumstances during the data collection stage. Due to 

the importance of the missing mechanisms, the 

estimation of the selection probability has been of great 

concern. For instance, Rosenbaum and Rubin (1983) and 

Robins et al. (1994) proposed a parametric estimation 

method, whereas Wang et al. (1997) and Wang and Wang 

(2001) proposed a nonparametric estimation method. 

Many techniques can be applied to estimate the selection 

probability provided that the condition that the estimate 

of selection probability π∈ [0, 1] holds. 

Taxonomy of Techniques for Handling Missing 

Although some methods for dealing with missing 

data are seen as more powerful than others, they all have 

some limitations. This happens when the model 

assumptions in the presence of missing data are not well 

understood or when the proportion of missing increases 

considerably. Based on Little (1992), Pigot (2001) and 

Ibrahim et al. (2012), the most popular methods for 

handling the missing data are summarized in Table 1. 

Note that contents in Table 1 are more technical and 

general than specific. 

The introduction of ZI models and the missing data 

problem help understand various orientations authors 

have taken regarding the zero excess and the missing 

data issues. Table 1 will serve as a guidance of methods 

potential to be applied under the ZI regression models. 

Next, we review the most popular ZI regression models 

and the missing data problem. 

Popular Zero-Inflated Regression Models 

Zero-Inflated Negative Binomial Models 

A ZINB distribution can be seen as a mixture of 

two distributions, including a Negative Binomial (NB) 

distribution and a degenerated distribution at zero 

(Ridout et al., 1998; 2001). Therefore, the ZINB 

distribution can be derived from expression (1) such 

that the function f(y; η, d) is a NB distribution, 

expressed as follows: 

 

( ) ( )
( ) ( )

; , ,
1

y d
y d d

f y d
y d d d

µ
µ

µ µ

Γ +    
=    Γ + Γ + +   

 (2) 

 

where η = µ and p and d are identical to those in 

expression (1). Then, the probability mass function of 

the ZINB distribution is expressed as follows: 
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where Γ(·) is the gamma function. Note that when p = 0, 

the ZINB distribution reduces to a NB distribution and 

when p = 0 and d → ∞, the ZINB distribution reduces to 

a regular Poisson distribution. 

 

Table 1. Taxonomy of popular methods for missing data 

Approach MCAR MAR MNAR References 

Case deletion methods Consistent Not consistent Not consistent Little (1992); 

    Graham (2012) 

Stochastic regression Consistent but Consistent but Not consistent Graham (2012); 

imputation methods inefficient inefficient and inefficient Enders (2010) 

Multiple imputation Consistent Consistent under Consistent under Rubin (1987); 

methods  mild conditions strong conditions Graham (2012) 

Maximum Likelihood Consistent Consistent under Consistent under correct Horton and Liard (1999); 

with EM algorithm  mild conditions missing model specifications Ibrahim et al. (2005) 

Bayesian method Consistent Consistent Consistent under some Mason et al. (2012) 

   conditions  

Weighted methods Consistent Mostly consistent Mostly consistent Zhao and Lipsitz (1992); 

  under some conditions under some conditions Robins et al. (1994) 

Consistent, consistent estimates; inefficient, inefficient estimates 

Case deletion methods: Complete case method and available case method 

Single imputations: Regression imputation, mean or median imputation, etc. 

Weighted methods: Inverse probability weighted method and augmented inverse probability weighting method 
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Let {(yi, Xi, Zi): i = 1,..., n} be the data set and θ = 

(βT
, γT

, d)
T
. The likelihood function of the ZINB 

distribution can then be expressed as follows: 
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 (4) 

 

where I(·) is an indicator function, pi = H(βTχi), µi = 

exp(γTχi) and χi = ( )1, ,
T

T T

i iX Z = 1,..., n. The log-likelihood 

function of the ZINB distribution is then ℓ(β, γ, d) = log 

L(β, γ, d). The likelihood-based method can be used to 

obtain estimates of β, γ and d via the Expectation 

Maximization (EM) algorithm (Dempster et al., 1977). 

The ZINB distribution has been used in some interesting 

studies; for instance, Preisser et al. (2012) provided a 

review of some ZI models for data of dental caries 

indices in epidemiology. There are other interesting 

works; nevertheless, they do not tackle the missing data 

issue. We now turn our attention to the missing data 

problem under the ZINB regression model framework. 

To the best of our knowledge, neither the missing 

response nor the missing covariates has been fully 

explored under the ZINB regression model framework 

except for Chen and Fu (2011) who conducted a model 

selection where the ZINB model was a model candidate 

and Samani et al. (2012) considered the ZINB model as 

a candidate model for model selection under the zero-

inflated power series (ZIPS) model framework. 

Zero-Inflated Generalized Poisson Models 

Extended from the Generalized Poisson (GP) 

regression model developed by Consul and Famoye 

(1992), the ZIGP regression model (Famoye and Singh, 

2006) is a competitor of the ZINB regression model. It 

has the flexibility to handle any inflation or deflation in 

count data. Alike to the ZINB distribution, the ZIGP 

distribution is a mixture of two distributions, including 

the GP distribution that can be represented as f(y, η, d) in 

expression (1), where η = µ and the degenerated 

distribution at zero. In the past decades, the ZIGP 

regression models received significant interest and 

attention due to its flexibility to handle some unusual 

features of count data. Consequently, different variants 

of the ZIGP regression models have been developed and 

applied. The probability mass function of the ZIGP 

distribution is expressed as follows: 
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When d = 0, the ZIGP distribution reduces to the ZIP 

distribution. When p = 0, the ZIGP distribution reduces 

to the GP distribution. For more details about the 

likelihood function for the ZIGP model and its 

optimization, see, e.g., Famoye and Singh (2006) and 

Ismail and Zamani (2013). Among the ZI models, the 

ZIGP model is becoming more attractive to researchers 

and its scope takes various directions. For example, 

Gupta et al. (1995) developed the zero-inflated modified 

power series distributions that cover many distributions, 

e.g., the ZIGP regression model. Famoye and Singh 

(2006) applied the ZIGP regression model under the 

frequentist context to fit domestic violence data with 

excess zeros. They found that it converged in all 

situations when fitting the ZIGP regression model, 

whereas it converged only in some cases when fitting the 

ZINB regression model. That supported the view that for 

this kind of data, the ZINB and ZIP models could not 

provide an adequate fit. Angers and Biswas (2003) 

investigated the fit of ZIGP regression model under a 

Bayesian framework where they discussed the use of 

noninformative priors to obtain the posteriors and to 

compare the performance of the ZIGP model with that of 

the Poisson and ZIP models used for the fetal movement 

data. Regarding the missing data problem, researchers 

have not yet shown much interest in studying the 

missing data problem under the ZIGP model framework, 

despite the indication that there is a growing tendency of 

work related to ZIGP models. Thus, there are no ZIGP 

models with missing data work to study, unlike the ZIP 

model with missing data or the ZINB model with 

missing data that are both illustrated under the ZIPS 

model (Samani et al., 2012). 

Zero-Inflated Poisson Models 

Among the ZI models, the ZIP regression model 

(Lambert, 1992) is the most popular. The ZIP distribution 

can be thought of as a population that includes two latent 

groups of subjects: The non-susceptible group consisting 

of those who are not at risk of an event of interest and the 

susceptible group consisting of those who are at risk of 

the event and may have experienced the event several 

times during a specific time period (Dietz and Böhning, 

1997). From expression (1), the ZIP distribution is a 

mixture distribution that includes the Poisson 

distribution denoted as f(y; λ), where λ = η and the 

degenerated function at zero (Singh, 1963; Johnson et al., 

2005). Alternatively, if d → ∞, then f(y; λ, d) → f(y; λ), 

where f(y; λ) = e
−λ

λ
y
/y! and f(y; λ, d) is a NB 
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distribution function as given in expression (2). The 

probability mass function of the ZIP distribution is then 

expressed as follows: 
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where λ is the Poisson mean. The ZIP distribution 

reduces to a regular Poisson distribution when p = 0. The 

likelihood of the ZIP model can be expressed as follows: 
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Here pi = H(βTχi) and λi = exp(γTχi), i = 1,..., n, so that 

the vector of parameters of interest is θ = (βT
,γT

)
T
. The 

estimate θ̂  can be obtained by maximizing the log-

likelihood ℓ(θ) = log L(θ) = ( )
1

log
n

i

i

L θ
=
∑ = ( )

1

n

i

i

θ
=
∑l via the 

EM algorithm as done by Lambert (1992). The ZIP 

regression models have been further disseminated and 

used successfully by some authors, e.g., Böhning et al. 

(1999), Yau and Lee (2001), Cheung (2002), Lu et al. 

(2004). Hall and Shen (2010) proposed a robust 

expectation-solution estimation method for ZIP 

regression models to overcome the case where the 

Maximum Likelihood Estimator (MLE) is highly 

sensitive to the presence of outliers. In addition, Li 

(2011) proposed a semiparametric ZIP regression model 

that can be used to assess the lack of fit of a postulated 

parametric ZIP model. Jansakul and Hinde (2002) 

proposed a score test for a ZIP model against a Poisson 

model. Li (2012) proposed a score test for a 

semiparametric ZIP regression model versus a 

semiparametric Poisson regression model. Similar to the 

ZINB and ZIGP models, researchers have not yet shown 

enough interest in exploring the missing data problem 

under the missing data framework. To the best of our 

knowledge, little has been done so far. At this level, we 

present the work of Lukusa et al. (2016). 

By assuming that the missing covariates were MAR 

(Rubin, 1976), Lukusa et al. (2016) proposed a 

semiparametric Inverse Probability Weighting (IPW) 

estimator of a ZIP regression model in the spirit of      

Zhao and Lipsitz (1992) and Flander and Greenland 

(1991). The proposed estimating method was a Horvitz 

and Thompson (1952)-type weighted estimating method 

where the selection probability was π(Y, V) = P(δ = 

1|Y,X, V). Following Wang et al. (1997) and Reilly and 

Pepe (1995), Lukusa et al. (2016) expressed the 

nonparametric selection probability estimator of π(y, v) 

as ( )
( )

( )
1

1

,
ˆ ,

,

n

k k kk

n

i ii

I Y y V v
y v

I Y y V v

δ
π =

=

= =
=

= =

∑
∑

, where y = 0, 1, 2,... 

and v∈{v1, v2,..., vm} for v1, v2,..., vm being the distinct 

values of the Vis. In order to improve the precision of 

( )ˆ ,y vπ , an auxiliary variable is included. They 

proposed the semiparametric IPW estimating function 

expressed as follows: 

 

( ) ( ) ( )
1

ˆ, ,
ˆ ,

n
i

i

i i i

U S
Y V

δ
θ π θ

π=

=∑  (9) 

 

where Si(θ) = ∂ℓi(θ)/∂θ and ( )1
ˆ ˆ ˆ,..., nπ π π=  for 

( )ˆ ˆ ,i i iY Vπ π= , i = 1,..., n. By solving ( )ˆ, 0U θ π = , they 

obtained θ̂ , an estimator of θ. Here ( )ˆ ,y vπ  plays a 

crucial role in obtaining the estimate of θ because 

observed data are inversely weighted by ( )ˆ ,y vπ . 

Moreover, they studied the limiting behavior of θ̂  and 

showed that ˆ pθ θ→ and ( ) ( )ˆ 0,d

ws
n Nθ θ− → ∆  as n 

→∞, where ∆ws = ( ) ( ) ( ) ( )( )1 * *, , ,FG J J Cθ θ π θ π θ π−  − −   

( )1

FG θ− , ( ) ( )1

F T

S
G E

θ
θ

θ

 ∂
= −  ∂ 

, ( ) ( ) ( )
( )

1 1

1 1

,
,

TS S
J E

Y V

θ θ
θ π

π

 
 = −
 
 

, ( ) ( ) ( )
( )

* *

1 1*

1 1

,
,

TS S
J E

Y V

θ θ
θ π

π

 
 = −
 
 

, ( ) ( ) ( )( )* * *

1 1, TC E S Sθ π θ θ=  

and ( )*

1S θ = E(S1(θ)|Y1, V1). 

A simulation study was conducted to compare the 

semiparametric IPW estimator, true weight IPW 

estimator, the CC estimator and the MLE that was 

considered as the benchmark. Comparisons were made 

based on the average bias, standard deviation, standard 

error and the 95% coverage probability. Overall, the 

semiparametric IPW estimator was found to be 

asymptotically unbiased and more efficient than the CC 

estimator that was seriously biased and the true weight 

estimator π(Y, V) that had a bigger standard error. It 

means that even if π(Y, V) is known, which is not always 

the case, it should be substituted by ˆ( , )Y Vπ in the 

estimating function using the true weight. Moreover, 

they illustrated the practical use of the proposed 

methodology with a data set from a survey study 

conducted in Taiwan in 2007 that consists of 7,386 

respondents. The response count variable was the 

number of speed regulations that a motorcycle rider 

violated in a year (about 90% of motorcycle riders not 
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violating speed regulations). Only the covariate related 

to the distance covered in kilometers had 15% of data 

missing while data of other covariates were fully 

observed. The analysis results overall showed that the 

performance of the semiparametric IPW estimator was 

very close to that of the CC estimator. 

Besides the work of Lukusa et al. (2016), Pahel et al. 

(2011) used expression (1) to predict the missing dental 

caries data, particularly under the ZI regression model 

framework. Similar to Lambert (1992) and Lukusa et al. 

(2016), they used the ZIP regression model where 

process 1 and process 2 were generated by p = H(βTχ1) 

and λ = exp(γTχ2), respectively, for χ1 and χ2 as sets of 

covariates. Similar to Lukusa et al. (2016), Pahel et al. 

(2011) assumed χ1 = χ2 = χ. In order to impute the 

missing dental caries data, they considered the complete 

case and some additional information. In Step 1, estimate 

ZIP model with non-missing caries data. In Step 2, 

generate predictions for levels of caries based on 

estimated coefficients. In addition, if the predicted 

probability in process 1 is less than say t, a uniform (0, 1) 

random variate, then the missing is filled in with 0 

(meaning no dental caries); otherwise process 2 is used to 

fill in the missing values. The final result is a summary of 

all imputations based on the formula of Rubin (1987). To 

illustrate the performance of the proposed multiple 

imputation techniques for missing dental caries data, 

they used a real example where they compared the three 

model imputations: The Poisson model, the ZIP model 

and the ZIP model with random effects, respectively. 

Under the missing not MCAR for the response variable, 

they imputed the three models and computed their 

Akaike Information Criterion (AIC) value (Akaike, 

1974). Although Pahel et al. (2011) and Böhning et al. 

(1999) studied the ZI data for the dental caries, the main 

difference is that Pahel et al. (2011) considered the 

missing data problem, whereas Böhning et al. (1999) 

focused on the problem of missing teeth. 

Zero-Inflated Power Series Distributions 

The ZIPS model is a two-component mixture model 

that consists of a Power Series (PS) distribution, such as 

Poisson, binomial, negative binomial and geometric 

distributions and a degenerated distribution at zero. The 

probability mass function of the PS distribution is 

expressed as follows: 

 

( ) ( )
( )

; ,

yb y
f y

h

λ
λ

λ
=  (10) 

 

where ( ) ( )
0

y

y

h b yλ λ
∞

=

=∑ , y = 1, 2,..., b(y) > 0 and λ is the 

PS model parameter to be estimated. The ZIPS 

distribution is given by: 

( )
( ) ( )

( ) ( )
1 ; , 0,

1 ; , 0.

p p f y y
P Y y

p f y y

λ

λ

 + − =
= = 

− >
 (11) 

 

More interestingly, the ZIPS models include most of 

the ZI models except for the ZIGP models. Let yi be a 

realization of a random variable Yi that has a ZIPS 

distribution. Let χ1i and χ2i be covariate sets for the ith 

subject and define θ = (βT
, γT

)
T
 a vector of parameters to 

be estimated. The likelihood function of the ZIPS model 

is then expressed as follows: 

 

( ) ( ) ( )
( )

( )

( ) ( )
( )

( )00

1

1 1 ,

ii
i

I yI y
y

n
i i i

i i i

i i i

b y b y
L p p p

h h

λ
θ

λ λ

>=

=

     = + − −   
      

∏  (12) 

 

where pi = H(βTχ1i) and λi = exp(γTχ2i), i = 1,..., n. The 

MLE of θ is obtained by optimizing the log-likelihood 

function ℓ(θ) = log L(θ). The ZIPS model framework 

seems to become more attractive for many 

researchers. For example, Bhattacharya et al. (2008) 

provided a general Bayesian setup to test for the ZI 

feature in a ZIPS distribution. Samani et al. (2012) 

used a likelihood-based approach. Under the ZIPS 

regression model framework, Samani et al. (2012) 

proposed the mixed Stochastic EM (SEM) and EM 

algorithms (M-SEM-EM algorithm) for parameter 

estimation in the likelihood-based approach. 

Unfortunately, so far, that was the unique work that 

addressed the missing data problem. We briefly 

present their approach. To capture the ZI feature, 

Samani et al. (2012) extended the idea of Samani 

(2011) known as the missing inflated power series 

distribution model. 

Assuming the response Y to be MNAR (Rubin, 

1976), Samani et al. (2012) expressed the joint 

incomplete data model as follows: 

 

( )
( ) * *

21 3 2 1 3

,

log 1| , 1,..., .

i i i

T
ii i i i

Y ZIPS p

it P Y Y Y i n

λ

δ α χ α α





 = = + + =  



 (13) 

 

Here logit(pi) = βTχ1i. log(λi) = γTχ2i for χ1i ≠ χ2i. δi is 

a binary missing indicator variable defined as δi = 1 if 

yi is observed and δi = 0 otherwise. χ3i is another 

covariate vector. *

1i
Y  and *

2iY  are defined, respectively, 

as *

1
1

i
Y = if Yi = 0 and *

1i i
Y Y= otherwise, whereas 

*

2i i
Y Y= if Yi is from the PS family and *

2 0iY =  

otherwise. In expression (13), α1, α2 and α3 are 

parameters of the MNAR selection probability model. 

The log-likelihood for the ZIPS joint model under the 

response MNAR is then given as follows: 
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( ) ( ) ( ) ( ) ( ){ }1 2 3 1 2 3

1

, log 1| , , , 1 log 1| , , , log | , ,
n

i i i i i i i i

i

y P y P y P Y yθ δ δ α α α δ δ α α α β γ
=

= = + − = + =∑l  

 

where θ = (βT
, γT

, αT
)

T
 and ( )1 2 3, ,

T
Tα α α α= . 

To estimate θ, they maximized ℓ(θ, y) by a variant of 

the EM algorithm, known as a MSEM-EM algorithm. 

Furthermore, they computed the AIC value (Akaike, 

1974) in order to compare different regression models 

under the ZIPS model framework. Overall, their 

simulation study results showed that the larger the sample, 

the better the estimate of θ. They applied the proposed 

methodology to the data set from the British Household 

Panel Survey regarding the number of visits to a hospital 

during the year by using the AIC to compare the Poisson, 

NB, ZIP and ZINB regression models. They found that 

the ZIP regression model was the best model because it 

had the smallest AIC value. They proceeded to fit the ZIP 

regression model and the results confirmed that it was 

MNAR because the number of visits showed a significant 

Poisson status on the probability of the nonresponse; 

Samani et al. (2012) for more details. Besides Samani et al. 

(2012), Chen and Fu (2011) proposed a parametric model 

selection when some covariates were MAR (Rubin, 1976). 

Considering the ZIPS distribution, they proposed a new 

model selection criterion in place of the classical AIC 

(Akaike, 1974) in order to account for the missing 

covariates that were assumed to be MAR. In effect, in the 

presence of missing data, the classical AIC misleads the 

conclusion of model selection. Interestingly, the 

proposed method can be implemented in the presence of 

missing data or without missing data. Chen and Fu 

(2011) showed that their developed method is a modified 

version of Monte Carlo EM (MCEM) algorithm that is 

based on the data augmentation scheme. We briefly 

present their idea. Let x = (xobs, xmis) be the vector of 

covariates partially observed. In order to reduce the 

number of nuisance parameters that need to be estimated 

via the MCEM algorithm and allow a more convenient 

model specification for the distribution of covariates, 

following Ibrahim et al. (2005), Chen and Fu (2011) 

modeled the vector of covariates xi = (xobs,i, xmis,i) by 

developing the following probability model: 
 

( )
( ) ( ) ( )
1

1 1 2 1 2 1 1

,..., |

| ,..., , | , | ,

i iq

iq i iq q i i i

P x x

P x x x P x x P x

α

α α α−= L

 (14) 

 

where αj is a vector of indexing parameters for the jth 

conditional distribution, ( )1 ,...,
T

T T

qα α α= and the αj’s are 

distinct. They defined the missing value indicator vector 

ri = (ri1,..., riq) of the covariate vector xi as rij = 0 if xij is 

observed and rij = 1 if xij is missing. Under the 

assumption and excluding the missing data indicator 

from the model, the complete data probability function 

of subject i from the ZIPS regression model is given by 

P(yi, xi, ri|θ) ∝ P(yi, xi|θ) = P(yi|xi,β,γ)P(xi|α) that leads 

to the complete data log-likelihood: 
 

( ) ( ) ( )
1

log | , , log | ,
n

c i i i

i

P y x P xθ β γ α
=

   = +   ∑l  (15) 

 

where θ = (βT
, γT

, αT
)

T
. In order to obtain the estimate of 

θ, Chen and Fu (2011) used the data augmentation 

techniques (Ghosh et al., 2006) and a modified version 

of the MCEM algorithm to maximize the log-likelihood 

ℓad(θ) that was obtained by including the latent variable 

into ℓc(θ). Following Claeskens and Consentino (2008) 

who derived a version of AIC (Akaike, 1974) that is 

suitable for the situation of missing covariates, they 

proposed the new criterion for ZIPS regression models 

with missing covariates. See Chen and Fu (2011) for more 

details regarding their methodology. They conducted a 

simulation study to illustrate the application of the 

proposed method in selecting the best model among the 

four candidate models: Poisson, NB, ZIP and ZINB 

regression models. They illustrated the practical use of the 

proposed methodologies by using a real data set from the 

Female Consumer Lifestyle Study in which the whole data 

set was collected in six cities of China in 2003 on broad 

topics, such as lifestyle, the frequency of buying goods for 

slim and the average amount of purchases. 

Hurdle Models 

Closely related to the ZI models, the hurdle models 

were developed by Mullahy (1986) and were popularized 

by Cameron and Trivedi (2013) in order to deal with 

count data sets having more zero counts than allowed for 

by the Poisson and NB models. The difference between 

the hurdle and ZI count models is that the later can 

separately model the zero and non-zero counts. The hurdle 

models are two-component models: A hurdle component 

for zeros versus non-zeros and a truncated count 

component for positive counts. For the hurdle component, 

either a binomial model or a censored count distribution, 

such as a censored Poisson, geometric, or NB distribution, 

can be used to model zeros versus non-zeros. For a 

truncated count component, a Poisson, geometric or NB 

model can be used for positive counts. More specifically, 

the hurdle model combines a zero hurdle model Pzero(Y = 

y) (right-censored at 1) and a count data model Pcount(Y = 

y) (left-truncated at 1), expressed as follows: 
 

( )
( )

( ) ( )
( )

, 0,

1 0 , 0.
1 0

zero

hurdle count

zero

count

P Y y y

P Y y P Y y
P Y y

P Y

 = =


= = =
 − = >  − =

 (16) 
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For example, Mullahy (1986) used a Poisson 

distribution to model the zeros versus non-zeros and a 

zero-truncated Poisson distribution to model the 

positive counts. The hurdle models have been 

intensively applied in many studies. In the last decade, 

the hurdle models have been mentioned for about 

2,000 times as titles or keywords; see the Scopus 

engine from Elsevier. Nevertheless, none of them 

addressed the missing data problem. 

Multivariate Zero-Inflated Models 

Besides the univariate ZI count model frame, it is 

possible to have several outcomes measured on each 

individual. For instance, Li et al. (1999) studied 

multivariate zero-inflated Poisson models in order to 

model outcomes of manufacturing processes producing 

numerous defect-free products while Wang (2003) studied 

the bivariate zero-inflated negative binomial models for 

bivariate count data with excess zeros and applied the 

proposed model to analyze the data of health-care 

utilization with a sample of 5,190 single-person 

households from the 1977-1978 Australian Health Survey. 
Yang et al. (2016) proposed a flexible MCEM 

algorithm for estimation of the Bivariate Zero-Inflated 
Poisson (BZIP) regression model when the response 
count is MAR. They applied the proposed 
methodology to a bivariate data set regarding the 
demand for health care in Australia. More details can 
be found in Yang et al. (2016). 

Discussion 

Table 2 (column 2) provides the number of 

appearances in terms of titles, keywords and abstracts for 

the most used ZI models. For instance, ZINB is 

mentioned about 620 times overall and 39 times as a 

title in the literature according to the Scopus engine 

from Elsevier. Similarly, the Scopus search engine 

reveals that multivariate ZI models are mentioned 

about 40 times only and there are about 12 titles only 

pointing out bivariate ZI data. Moreover, Table 2 

provides the existing references for ZIP models with 

missing data, the purpose of study and the 

methodology used to deal with missing data. 

Based on the missing mechanisms, Pahel et al. (2011) 

considered the missing in the count response variable as 

MAR. Samani et al. (2012) assumed the missing in the 

count response variable was MNAR. Chen and Fu 

(2011) and Lukusa et al. (2016) considered the missing 

in covariates as MAR. Yang et al. (2016) proposed a 

joint MAR mechanism for the bivariate count response 

variable. Regarding the purpose and methodology,   

Chen and Fu (2011) and Samani et al. (2012) considered 

the ZIPS regression model framework and implemented 

different variants of the EM algorithm to estimate the 

model parameters and to compute the AIC values for 

model selection in the presence of missing data.    

Lukusa et al. (2016) developed the semiparametric 

inverse probability weighting method for estimation of 

the ZIP regression model that used a nonparametric 

selection probability and showed that the proposed 

estimator had good asymptotic properties. In addition, 

they showed that their estimator was more efficient than 

the estimator that uses the true weight and the CC 

estimator that was seriously biased. Pahel et al. (2011) 

developed a multiple imputation method for missing 

dental caries data under the ZIP regression model. 

 
Table 2. Summary of popular zero-inflated models 

Popular model Number of appearances Reference with missing Missing mechanism Proposed method 

ZINB 620 (39) not yet addressed −− −− 

ZIGP 132 (9) not yet addressed −− −− 

ZIP 731 (110) Lukusa et al. (2016) Covariate MAR Semiparametric inverse 

    probability weighting 

  Pahel et al. (2011) Response not MCAR Multiple imputation of 

    missing dental caries 

ZIPS 16 (9) Chen and Fu (2011) Covariate MAR Modified MCEM under 

    likelihood-based approach 

  Samani et al. (2012) Response MAR M-SEM-EM under 

    likelihood based approach 

Hurdle 2108 (79) not yet addressed −− −− 

BZIP 40 (12) Yang et al. (2016) Response MAR MCEM under likelihood- 

    based approach 

ZINB, zero-inflated negative binomial; ZIGP, zero-inflated generalized Poisson; ZIP, zero-inflated Poisson; ZIPS, zero-inflated 

Poisson series; BZIP, bivariate zero-inflated Poisson 

Column 2, the number represents the frequency of citations as title, keywords or abstracts. The number in bracket represents the 

frequency of the article titles related to the corresponding zero inflated regression model. 

−− means there is not yet an article of the corresponding zero-inflated model with missing data. 

MCEM, Monte Carlo expectation-maximization; M-SEM-EM, mixed stochastic expectation maximization and expectation-

maximization. 
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Based on the non-missing caries data, they imputed 

missing caries data by using the Poisson model, ZIP 

model and ZIP model with random effects. Indeed, the 

ZIP model with random effects yielded the best result 

because this model accounted for the cluster effects. 

Yang et al. (2016) applied a straightforward 

likelihood approach to estimate parameters of a BZIP 

model when the bivariate count variable is missing at 

random. The EM algorithm and MCEM algorithm are 

the most used estimation methods in the literature of 

ZI regressions models with missing data. Moreover, in 

simulation studies from Chen and Fu (2011), the 

proportion of zeros generated is not clearly presented. 

Therefore, the ZI feature may not be clearly 

perceived. Chen and Fu (2011) and Samani et al. 

(2012) also generated the missing data where the 

missing rate was less than 25%. Regarding the work 

of Lukusa et al. (2016), their simulation study used 

only moderate and large samples. It can be interesting 

to see how the proposed method performed under 

small or moderate samples. Pahel et al. (2011) 

assumed the missing mechanism to be not MCAR. 

Nevertheless, it is not clear whether it was a MAR or 

MNAR mechanism. Yang et al. (2016), who fit a 

BZIP regression model, pointed out that in some 

cases, the estimator based on the CC method was 

closer to the MLE that was obtained by using the 

MCEM method. However, often under the MAR the 

CC estimate is expected to be biased. Further 

investigations are needed. In general, most of the 

methods developed in the literature of ZI models with 

missing data agree with the summary of the most used 

methods given in Table 1. 

Conclusion 

The missing data problem has been intensively 

studied from various angles in the regression model 

literature. Some studies investigated the missing data 

under specific distribution models or vice versa; 

particularly, we have reviewed the literature of ZI 

models with missing data. It is crystal clear that fewer 

works related to the ZI models dealt with the missing 

data problem and the ZI feature simultaneously.       

Chen and Fu (2011), Pahel et al. (2011), Samani et al. 

(2012) Lukusa et al. (2016) and Yang et al. (2016) seem 

to be the only appealing works; see Table 2. 

Surprisingly, the ZINB, ZIGP and hurdle regressions 

models are among the most used models for ZI count 

data. However, these three regression models with 

missing data, exclusively, have not yet been 

investigated. On the other hand, the ZIP, ZIPS and 

BZIP regression models have less than three works 

each on the missing data problems. Table 2 gives the 

whole picture of the ZI data literature in terms of the 

regression model appearance, the missing data 

mechanisms considered, the references and the 

methodology used to handle the missing data. We 

wish to inspire researchers to discover the research 

regarding ZI models with missing data. There are 

many extensions or future studies to be carried on. For 

instance, Chen and Fu (2011) and Samani et al. 

(2012) could include the asymptotic behavior of the 

proposed AIC. Lukusa et al. (2016) could assume a 

MNAR mechanism. Yang et al. (2016) might also 

consider the case where covariates in the BZIP 

regression model are MNAR. Finally, ZI data with 

missing values still have plenty of orientations yet to 

be investigated. ZI data are important in many studies 

and sectors of life. A relationship between Table 1 

and 2 shows many potential studies that could be 

done. Thus with the information from Table 1 and 2, 

researchers are invited to come out with some 

comprehensive and intensive studies of ZI data with 

missing values. 
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