
Journal of Computer Science 6 (5): 511-518, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Abbas Y. AL-Bayati, Department of Mathematics, College of Computers Sciences and Mathematics,
Mosul University, Iraq

511

New Scaled Sufficient Descent Conjugate Gradient Algorithm

for Solving Unconstraint Optimization Problems

1Abbas Y. AL-Bayati and 2Rafiq S. Muhammad
1Department of Mathematics, College of Computers Sciences and Mathematics,

University of Mosul, Iraq
2Department of Mathematics, College of Education, University of Suleimani, Iraq

Abstract: Problem statement: The scaled hybrid Conjugate Gradient (CG) algorithm which usually
used for solving non-linear functions was presented and was compared with two standard well-Known
NAG routines, yielding a new fast comparable algorithm. Approach: We proposed, a new hybrid
technique based on the combination of two well-known scaled (CG) formulas for the quadratic model
in unconstrained optimization using exact line searches. A global convergence result for the new
technique was proved, when the Wolfe line search conditions were used. Results: Computational results,
for a set consisting of 1915 combinations of (unconstrained optimization test problems/dimensions) were
implemented in this research making a comparison between the new proposed algorithm and the other
two similar algorithms in this field. Conclusion: Our numerical results showed that this new scaled
hybrid CG-algorithm substantially outperforms Andrei-sufficient descent condition (CGSD) algorithm
and the well-known Andrei standard sufficient descent condition from (ACGA) algorithm.

Key words: Unconstrained optimization, hybrid conjugate gradient, scaled conjugate gradient,

sufficient descent condition, conjugacy condition

INTRODUCTION

 For solving the unconstrained optimization
problem:

{ }nmin f (x) : x R∈ (1)

where, 2f : R R→ is continuously differentiable

function, bounded from below. Starting from an initial
guess, a nonlinear CG-algorithm generates a sequence
of points {xk}, according to the following recurrence
formula:

k 1 k k kx x d+ = + α (2a)

where, αk is the step-length, usually obtained by Wolfe
line searches:

T
k k k k k k kf (x d) f (x) g d+ α − ≤ ρα (2b)

T T
k 1 k k kg d g d+ ≥ σ (2c)

with
1

0 1
2

< ρ < ≤ σ < and the directions dk are computed

as:

0 0d g= − (3a)

CGSD CGSD
k 1 k 1 k 1 k kd g s+ + += −θ + β (3b)

Where:

k k 1 ky g g+= − , k k 1 ks x x+= − (3c)

MATERIALS AND METHODS

Algorithms based on sufficient descent conditions:
This type of algorithms present a modification of the
standard computational CG scheme in order to satisfy
both the sufficient descent and the conjugacy conditions
in the frame of CG as in (4), with:

T
CGSD k 1 k 1
k 1 T

k k 1

g g

y g
+ +

+
+

θ = (4)

T2

k 1CGSD CGSD
k k 1 k k k 1T T

k k k k

g1
g - s g

y s y s
+

+ +

 
 β = δ
 
 

 (5)

T

CGSD k k 1
k T

k 1 k 1

y g

g g
+

+ +

δ = (6)

J. Computer Sci., 6 (5): 511-518, 2010

512

or:

()()
()

T TT
k k 1 k k 1CGSD k 1 k 1

k 2T T
k k k k

y g s gg g

y s y s

+ ++ +β = − (7)

 Equation 4-7 are represent an algorithm that
belongs to the family of scaled CG-algorithms
introduced by (Birgin and Martinez, 2001). Observing
that if f is a quadratic function and αk is selected to
achieve the exact minimum of f in the direction dk then

T
k k 1s g 0+ = and the formula (5) for CGSD

kβ reduced to the

Dai and Yuan computational scheme (Andrei, 2008a):

DY T T
k k 1 k 1 k kg g y s+ +β = (8)

 However, the parameter CGSD

kβ is considered for

general non-linear functions and inexact line searches
and it is selected in such a manner that the sufficient
descent condition is satisfies at every iteration. Besides,
the parameters CGSD

k 1+θ and δk are chosen in such manner

that the conjugacy condition Tk k 1y d 0+ = always holds,

independently of the line searches used in the
algorithm. Here below we list outlines of the Andrei
algorithm.

CGSD algorithm (Andrei, 2007):

Step 1: Initialization. Select n

0x R∈ and the parameters

1 20 1< σ < σ < . Compute f (x0) and g0, consider

00 g -d = and 0
0

1

g
α = , set k = 0.

Step 2: Test for convergence, if 6
0g 10 ,−≤ then stop,

else set k = k+1 and continue.
Step 3: Compute the line search parameter αk which

satisfy the Wolfe-conditions:

 T

k k k k 1 k k kf (x d) f (x) g d+ α − ≤ σ α (9)

 T T

k k k k 2 k kf (x d) d g d∇ + α ≥ σ (10)

 update the variables k 1 k k kx x d+ = + α .

 Compute f(xk+1):

 gk+1, sk = xk+1-xk, yk = gk+1-gk (11)

Step 4: Compute CGSD CGSD
k 1 k 1 k kd g s ,+ += −θ + β where

CGSD
k 1+θ and CGSD

kβ are defined as in (4) and (7)

respectively.

Step 5: If T 3
k 1 k 12 2

g d 10 d g ,−
+ +≤ − then define dk+1 = d,

otherwise, set dk+1 = -gk+1 and compute the
initial guess k k 1 k 1 k2 2

d d− −α = α , then set k =

k+1 and continue with Step 2.

ACGA algorithm (Andrei, 2009a): This algorithm
also presents a modification of the Dai and Yuan
computational scheme in order to satisfy both the
sufficient descent and the conjugacy conditions in the
frame of CG. The steps of this algorithm are same as in
Andrei (CGSD), except Step (4) which will be defined
as:

ACGA
k 1 k 1 k kd g s+ += − + β (12a)

s.t.:

T T T
k k 1 k k 1 k k 1

k T T 2
k k k k

y g (y g)(s g)

y s (y s)
+ + +β = − (12b)

Or:

T T T
ACGA ACGAk 1 k k 1 k k 1 k
k kT T 2

k k k k

g g (g s)(g g)

y s (y s)
+ + +β = − δ (12c)

 Now we introduce a new proposed method based
on modifying both scalars θk+1 and βk.

A new proposed algorithm (say, new hybrid): here,
we are going to investigate another new sufficient
descent algorithm based on the reformulation of the
scalars θk+1 and βk. The new proposed scalars are
depend on the general hybrid techniques of two or more
than two parameters. These scalars are very useful in
making the search directions generated by the new
algorithm more sufficiently descent. The outlines of the
new proposed algorithm are given by:

Step 1: Select n

0x R∈ and the parameters

1 20 1< σ < σ < . Compute f (x0) and g0, consider

d0 = - g0 and 0
0

1

g
α = , set k = 0.

Step 2: Test for convergence, if 6
0g 10 ,−≤ then stop,

else set k = k+1 and continue.
Step 3: Compute the line search parameter αk which

satisfy the Wolfe-conditions defined by (9) and
(10). Update k 1 k k kx = x + d+ α Compute f(xk+1),

gk+1.

J. Computer Sci., 6 (5): 511-518, 2010

513

Step 4: Compute hybrid hybrid
k 1 k 1 k kd g s+ += −θ + β , where

hybrid
k 1+θ and hybrid

kβ are computed as:

 { }{ }hybrid 24 CGSD
k 1 k 1 k 1 max 1.1 10 ,min 1, , −

+ + +θ = × γ θ (13a)

10

T 2
k k k ki

k 1
k 1 k

T
k k k k i 1

d d ()
min

2[f (x) f (x)

()g d]

+
+

=

  
  
 α − η γ =   − −  
  α − η  

 (13b)

 s.t.:

T

k 1 k k k k

ki 2T i 2
k k k k

f f g d1

d g 10 g

+

−

 − + α +
 η =
 × α × 

 (13c)

T

CGSD k 1 k 1
k 1 T

k k 1

g g

y g
+ +

+
+

θ = (13d)

 { }{ }hybrid CGSD ACGA
k k kmax 0,min ,β = β β (14a)

()()

()
T TT
k k 1 k k 1CGSD k 1 k 1

k 2T T
k k k

y g s gg g

y s y s

+ ++ +β = − (14b)

()()

()
T TT
k k 1 k k 1ACGA k 1 k 1

k 2T T
k k k k

y g s gy g

y s y s

+ ++ +β = − (14c)

 where the details of ACGA

kβ are given in (Andrei,

2009a).
Step 5: If:

T 3
k 1 k 12 2

2T
k 1 k k 1 2

g d 10 d g and

g g 0.2 g

−
+ +

+ +

≤ −

≤
 (14d)

 then define dk+1 = d, otherwise, set dk+1 = -θk+1gk+1

and compute the initial guess

k k 1 k 1 k2 2
d d− −α = α , then set k = k+1 and

continue with Step 2, where the details of
(14d) are given in (Birgin and Martinez, 2001;
Al-Bayati et al., 2009).

 The algorithms (12) and (13) belongs to the family
of hybrid CG-algorithms.

Rate of convergence of the new hybrid algorithm:
Theorem 1: If y T

k ks 0≠ and:

CGSD CGSD

k 1 k 1 k 1 k kd g s+ + += −θ + β (14e)

 do = -go where CGSD
kβ is given by (5), then:

2T CGSD
k 1 k 1 k 1 k 1

k

1
g d g

4+ + + +

 
≤ − θ − δ 

 (15)

Proof: Since d = -go, we have 2T
o o og d g= − , which

satisfy (15). Multiplying (14e) by Tk 1g + , we have:

()()

()
()

T T
2 k 1 k 1 k 1 kT CGSD

k k 1 k 1 k 1 T
k k

22 T
k 1 k k 1CGSD

k 2T
k k

g g g s
g d g

y s

g s g

y s

+ + +
+ + +

+ +

= −θ +

−δ
 (16)

but:

() ()
()

() ()
()

()
()

T
T CGSD CGSD T
k k k 1 k k k k k 1

2T
k k

2 22 2T CGSD T
k k k 1 k k 1 k k 1CGSD

k
2T

k k

2 2T
2 k 1 k k 1CGSD

k 1 k 2CGSD T
k k k

y s g 2 2 y s g

y s

1 1
y s g 2 g s g

2 2

y s

g s g1
g

4 y s

+ +

+ + +

+ +
+

   δ δ
   

 
+ δ δ ≤ =

+ δ
δ

 (17)

 Using (17) in (16):

()
()

()
()

2 2T CGSD
k k 1 k 1 k 1 k 1CGSD

k

2 22 2T T
k 1 k k 1 k 1 k k 1CGSD CGSD

k k2 2T T
k k k k

1
g d g g

4

g s g g s g

y s y s

+ + + +

+ + + +

≤ −θ + +
δ

δ − δ
 (18)

 We get:

2T CGSD
k 1 k 1 k 1 k 1CGSD

k

1
g d g

4+ + + +

 
≤ − θ − δ 

 (19)

 Hence, the direction given by (3) and (7) is a
descent direction. If for all k, CGSD

k 1+θ is positive and

given by CGSD
k 1

k

1

4+θ >
δ

 and the line searches satisfy

J. Computer Sci., 6 (5): 511-518, 2010

514

Wolfe conditions, then the search directions given by
(3) and (7) satisfy the sufficient descent condition since

Andrei's algorithm bound by: 2CGSD
k 1 k 1CGSD

k

1
g

4+ +

 
− θ − δ 

.

Spectral CGSD
k 1+θ derivation: to determine the parameters

CGSD
k 1+θ and CGSD

kδ for CGSD method observe that:

CGSD
k 1 k 1 k 1d Q g+ + += − (20)

 Where:

()
()k 1

2 TT
k 1 k k 1CGSD CGSDk 1 k 1

k 1 k 1 k k2T T
k k k k

g s gg g
d g () s

y s y s
+

+ ++ +
+ += −θ + − δ × (21)

()
()

2T
k 1CGSD CGSD Tk k 1

k 1 k 1 k k k k 12T T
k k k k

gs g
d - I- s s .g

y s y s

++
+ + +

 
 = θ + δ
 
 

 (22)

 From (20) and (22) we get:

()
()

2T
k 1CGSD CGSD CGSD Tk k 1

k 1 k 1 k k k2T T
k k k k

gs g
Q I s s

y s y s

++
+ += θ − + δ (23)

 Now, by summarization of CGSD

k 1Q + as:

()
()

2T T
CGSD k 1CGSD CGSD Tk k 1 k 1 k
k 1 k 1 k k k2T T

k k k k

gs g g s
Q I s s

y s y s

++ +
+ +

+= θ − + δ (24)

 And considering the conjugacy condition:

T
k k 1y d 0+ = (25)

CGSDT
k 1ky Q 0+ = (26)

()
()

2T T
k 1T CGSD CGSD Tk k 1 k 1 k

k k 1 k k k2T T
k k k k

gs g g s
y [I s s] 0

y s y s

++ +
+

+θ − + δ = (27)

 But:

CGSD
k CGSD

k 1

1

+

δ =
θ

 (28)

 After doing some algebraic operations, we get:

() ()
()

2 2TT
2 k 1 k 1 k k 1CGSD CGSDk 1 k

k 1 k 1T T T T
k k 1 k k k 1 k 1 k k

g g s gg s
() 0
y g y s y g (y s)

+ + ++
+ +

+ + +

θ − + θ + = (29a)

2
T

k 1CGSD CGSD k 1 k
k 1 k 1T T

k k 1 k k

g g s
()() 0

y g y s
+ +

+ +
+

θ − θ − = (29b)

 Since 2

k 1g + in the numerator of CG operators has a

strong global convergence (Al-Bayati et al., 2009),
hence from the first bracket of the Eq. 29b:

2

k 1CGSD
k 1 T

k 1 k 1

g

y g
+

+
+ +

θ = (29c)

T

CGSD k 1 k
k T CGSD

k 1 k 1 k 1

y g 1

g g
+

+ + +

δ = =
θ

 (30)

 From (29c) we have observed that:

CGSD CGSD
k 1 k 1CGSD

k

1 3

4 4+ +θ − = θ
δ

 (31a)

 Therefore, for all k ,CGSD

k 1 0+θ ≥ , i.e. if T
k 1 kg y 0+ > ,

then for all k the search direction dk+1 given by (3) and
(7) with (33), given later, satisfy the sufficient descent
condition.

Anticipative θθθθk+1 derivation: Recently (Andrei, 2004)
using the information in two successive points of the
iterative process, proposed another approximation
scalar to the Hessian matrix of function f , to obtain a
new algorithm which was favorably compared with the
Barzilai and Browein’s method. This is only a half step
of the spectral procedure. Indeed, at the point

k 1 k k kx x d+ = + α , we can write:

T 2 T 2
k 1 k k k k k k k

1
f (x) f (x) g d d f (z)d

2+ = + α + α ∇ (31b)

where, z is on the line segment connecting xk and xk+1.
Having in view the local character of the searching
procedure and that the distance between xk and xk+1 is
small enough, we can choose z = xk+1 and consider

k 1 R+γ ∈ as a scalar approximation of 2 k 1f (x)+∇ . This is

an anticipative viewpoint, in which a scalar
approximation of the Hessian at point xk+1 is computed
using only the local information from two successive
points: xk and xk+1 , therefore we can write:

T
k 1 k 1 k k k kT 2

k k k

2
[f (x) f (x) g d]

d d ()+ +γ = − − α
α

 (31c)

 This formula can also be found in Dai an Yuan
(Andrei, 2008b). Observing that k 1 0+γ > for convex

functions (Andrei, 2007); if T
k 1 k k k kf (x) f (x) g d 0,+ − − α <

J. Computer Sci., 6 (5): 511-518, 2010

515

then the reduction k 1 kf (x) f (x)+ − in function values is

smaller than T
k k kg dα . In this cases, the idea is to reduce

the step size αk as k k ,α − η maintaining the other

quantities at their values in such away so that γk+1 is
positive. To get a value for ηk, let as select a real µ>0,
“small enough” but comparable with the value of the
function and have:

T
k k k 1 k k kT

k k

1
(f (x) f (x) g d)

g d +η = − + α + µ (31d)

for which a new value of γk+1 can be computed as:

T
k 1 k 1 k k k k kT 2

k k k k

2
[f (x) f (x) ()g d]

d d ()+ +γ = − − α − η
α − η

 (31e)

with these, the value for parameter θk+1 is selected as:

k 1
k 1

1
+

+

θ =
γ

 (31f)

where, γk+1 is given by either (31c) or (31e).

Proposition: Assume that f(x) is continuously
differentiable and f (x)∇ is Lipschitz continuous, with a
positive constant L. then at point xk+1:

k 1 2L+γ ≤ (32)

Proof: From (31c) we have:

T T
k k k k k k k k

k 1 2 2
k k

2[f (x) f () d f (x) f (x) d]

d
+

+ α ∇ ζ − − α ∇γ =
α

where, kζ is on the line segment connecting xk and

xk+1. Therefore:

T
k k k

k 1 2

k k

2[f () f (x)] d

d
+

∇ ζ − ∇γ =
α

 Using the inequality of Cauchy and the Lipschitz
continuity it follows that:

k k k k
k 1

k k k k

k 1 k

k k

2 f () f (x) 2L x

d d

2L x x
2L

d

+

+

∇ ζ − ∇ ζ −
γ ≤ ≤

α α

−
≤ =

α

 Therefore, from (31f) we get a lower bound for

k 1

1

2L+θ ≥ , i.e., it is bounded away from zero.

Theorem 2: If T

k ky s 0≠ and ACGA
k 1 k 1 k kd g s+ += − + β ,

(d0 = -g0), where ACGA
kβ is given by Eq. 12c, then:

2T

k 1 k 1 k 1ACGA
k

1
g d (1) g

4+ + +≤ − −
δ

 (33)

Proof: Since 0 0d g= − , we have 2T
0 0 0g d g ,= − which

satisfies Eq. 33. Multiplying Eq. 12a by T
k 1g ,+ we have:

T T

2T k 1 k 1 k 1 k
k 1 k 1 k 1 T

k k

2 T
k 1 k 1 kACGA

k T 2
k k

(g g)(g s)
g d g

y s

g (g s)

(y s)

+ + +
+ + +

+ +

= − + −

δ

 (34)

But:

()()T T
k 1 k 1 k 1 k

T
k k

T
T ACGA ACGA T
k k k 1 k k k 1 k k 1

T 2
k k

g g g s

y s

[(y s)g 2] [2 (g s)g]

(y s)

+ + +

+ + +

=

δ δ
 (35)

() ()
()

2 22 2T ACGA T
k k k 1 k k 1 k k 1ACGA

k
2T

k k

1 1
y s g 2 g s g

2 2

y s

+ + +

 
+ δ δ ≤ (36)

()
()

2 2T
2 k 1 k k 1ACGA

k 1 k 2ACGA T
k k k

g s g1
g

4 y s

+ +
+= + δ

δ
 (37)

 Using Eq. 37 in 34 we get Eq. 33.
 Hence, the direction given by (12) is a descent

direction because () 0411 >− ACGA
kδ for all k.

How to compute the parameter ACGA

kδδδδ : To determine

the parameters ACGA
kδ for (ACGA)-method observe

that:

ACGA
k 1 k 1 k 1d Q g+ + += − (38)

where:

J. Computer Sci., 6 (5): 511-518, 2010

516

()
()

2 TT
k 1 k k 1ACGAk 1 k 1

k 1 k 1 k k k2T T
k k k k

g s gg g
d g s s

y s y s

+ ++ +
+ += − + − δ (39)

where the matrix ACGA

k 1Q + is:

()
()

2T
k 1ACGA ACGA Tk k 1

k 1 k k k2T T
k k k k

gs g
Q I s s

y s y s

++
+ = − + δ (40)

 Now, by summarization of ACGA

k 1Q + to resemble the

Quasi-Newton method, as:

()
()

2T T
ACGA k 1ACGA Tk k 1 k 1 k
k 1 k k k2T T

k k k k

gs g g s
Q I s s

y s y s

++ +
+

+= − + δ (41)

and considering the conjugacy condition:

T
k k 1y d 0+ = (42)

CGSDT
k 1k k 1y Q g 0+ + = (43)

()
()

2T T
k 1T ACGA Tk k 1 k 1 k

k k k k k 12T T
k k k k

gs g g s
y [I s s]g 0

y s y s

++ +
+

+− + δ = (44)

 After doing some algebraic operations, it follows
that:

T T T T

ACGA k k k 1 k k 1 k k k
k 2 2T T

k 1 k k 1 k 1 k 1 k

y s g y (g y)(y s)

g s g g (g s)
+ +

+ + + +

δ = + − (45)

 Therefore using (45) in (12c) we get (12b).

RESULTS

 We present the computational performance of a
Fortran implementation of the new hybrid algorithm on
a set of 1915 unconstrained optimization test
problems/dimensions. The Fortran implementation of
the present algorithm is based on the Fortran 90
implementation of the scaled CG-method provided by
(Birgin and Martinez, 2001). The comparisons of
algorithms are given in the following context. Let

ALG!
if and ALG2

if be the optimal values found by ALG1

and ALG2, for problem i = 1.., 65, respectively. We say

that, in a particular problem i, the performance of
ALG1 was better than the performance of ALG2 if:

ALG1 ALG2 3
i if f 10−− < (46)

and the number of iterations, or the number of function-
gradient evaluations, of ALG1was less than the number
of iterations, or the number of function-gradient
evaluations of ALG2, respectively (Andrei, 2009a;
2009b; 2008c). We compare the performance of our
new hybrid algorithm against the CGSD-algorithm
(Andrei, 2008a) and against the standard ACGA-
algorithm (Andrei, 2009a) in three different tables. In
Table 1 and 2, sixty-five test-functions are solved using
three different algorithms; namely: (Andrei, 2007)
(CGSD); (Andrei, 2009a), (ACGA) and the new
proposed (New Hybrid) algorithms. Each test function
is solved by using 10 different dimensions, n = 100,
200, …, 1000. Table 1 and 2 present the performances
of these algorithms subject to the minimum number of
iterations (# iter) and the minimum number of function-
gradient evaluations (# fgev).
 When comparing the new hybrid against CGSD in
Table 1, subject to #iter, the new hybrid was better in
163 problems while CGSD was better in 134 problems;
they are equal in 293 problems and fail in 60 problems
out of 650 problems; now subject to #fgev, the New
Hybrid was better in 168 cases while CGSD was better
in 138 cases; they have equal results in 284 cases and
fail in 60 cases.
 In Table 2, according to #iter, the new hybrid
algorithm was better in 274 cases while ACGA was
better in 194 cases; they have equal results in 155 cases
and fail in 54 cases. However, according to #fgev, New
Hybrid was better in 273 cases while ACGA was better
in 209 cases; they have equal results in 114 cases and
fail in 54 cases.
 Table 3 shows elaboration comparison of 6
arbitrary selected test functions with different
dimensions out of the 65-test problems with the three
different algorithms.

Table 1: Performance of the new hybrid versus CGSD; In 650

problem/dimension
 New hybrid CGSD Equality Over Total
#iter 163 134 293 60 650
#fgev 168 138 284 60 650

Table 2: Performance of the new hybrid versus ACGA; In 650

problem/dimension
 New hybrid CGSD Equality Over Total
#iter 247 194 155 54 650
#fgev 273 209 114 54 650

J. Computer Sci., 6 (5): 511-518, 2010

517

Table 3: Comparison of Different CG-algorithms with an arbitrary
selection of 6 different test functions out of 65-test
problems

 CGSD New hybrid ACGA
 ------------------ ------------------ -----------------
Tf n iter fgev iter fgev iter fgev
10 100 65 102 67 105 66 110
 200 91 135 97 143 91 136
 300 101 152 108 161 109 168
 400 145 223 143 216 125 182
 500 153 236 143 221 157 228
 600 144 214 175 246 171 249
 700 174 255 162 232 183 277
 800 179 264 214 315 185 270
 900 197 305 189 286 191 284
 1000 211 322 221 333 210 309
22 100 70 132 62 113 67 121
 200 112 212 62 114 117 221
 300 110 206 237 459 41 79
 400 139 255 125 235 95 170
 500 159 299 77 135 116 215
 600 65 121 55 99 119 225
 700 117 221 83 148 87 159
 800 86 159 111 200 165 302
 900 50 88 71 125 91 168
 1000 79 142 100 191 49 90
34 100 369 442 363 422 315 369
 200 568 645 512 573 513 576
 300 756 842 674 733 585 649
 400 868 963 819 884 790 858
 500 964 1039 881 947 781 831
 600 1059 1142 948 1023 907 970
 700 1101 1222 1000 1066 1020 1085
 800 1290 1421 1182 1256 1039 1102
 900 1522 1736 1215 1297 1174 1249
 1000 1378 1454 1316 1398 1196 1263
47 100 11 29 11 29 11 29
 200 15 37 15 37 15 37
 300 13 37 13 37 14 39
 400 15 40 15 40 15 40
 500 18 41 18 41 27 61
 600 15 40 15 40 24 61
 700 15 41 15 41 29 75
 800 16 43 16 43 23 57
 900 15 43 15 43 35 88
 1000 16 43 16 43 76 176
51 100 24 45 24 45 27 52
 200 27 56 27 56 24 47
 300 24 47 24 47 27 51
 400 24 48 24 48 25 51
 500 35 448 23 48 23 49
 600 23 49 23 47 39 551
 700 28 61 76 1608 25 47
 800 23 47 26 175 33 381
 900 21 41 21 41 31 281
 1000 25 49 31 282 25 52
65 100 32 52 35 56 39 65
 200 33 53 34 57 33 57
 300 37 56 36 57 36 58
 400 33 54 36 58 37 62
 500 34 58 37 58 35 58
 600 35 56 37 58 37 63
 700 33 59 33 57 35 59
 800 32 52 36 56 32 58
 900 34 55 36 56 35 62
 1000 33 57 32 55 36 62

 Finally, we have selected (65) large-scale
unconstrained optimization problems in (10) different
dimensions and in generalized from the CUTE
(Bongartz et al., 1995) library, along with other large-
scale optimization problems.

DISCUSSION

 In this study, we have introduced a new scaled
hybrid (CG) algorithm which is based on two well-
known (CG) formulas. The new algorithm is compared
with two well-known libraries; namely CGSD and
ACGA algorithms using (65) well-known non linear
test functions with (10) different dimensions. Our
numerical results indicate that the new technique has an
improvements of about (5%) in both #iter and #fgev
against the standard CGSD algorithm. While it saves
about (6%) in both #iter and #fgev against the standard
ACGA algorithm. The name of test functions are: given
in (Bongartz et al., 1995).

1. Freudenstien and Roth function:
2. Extended Trigonometric Function
3. Extended Rosenbrock Function:
4. Extended White and Holst function:
5. Extended Beal function:
6. Extended penalty function:
7. Peturbed Quadratic function.
8. Raydan 2 Function
9. Diagonal 1, 2 and 3 Functions.
10. Diagonal 2 Function.
11. Diagonal 3 Function.
12. Hager Function.
13. Generalized Tridiagonal-1 Function.
14. Extended Tridiagonal-1 Function.
15. Extended Three Exponential Terms.
16. Generalized Tridiagonal-2 Function.
17. Diagonal4 Function.
18. Diagonal5 Function (Matrix Rom).
19. HIMMELBC (CUTE).
20. Generalized PSC1 function.
21. Extended PSC1 Function.
22. Extended Powell Function.
23. Extended Block Diagonal BD1 Function.
24. Extended Maratos function.
25. Extended Cliff CLIFF (CUTE).
26. Quadratic Diagonal Perturbed Function
27. Extended Wood Function:
28. Quadratic Function QF
29. Extended Quadratic Penalty QP1 Function
30. A Quadratic Function QF2
31. Extended EP1 Function
32. Extended Tridiagonal-2 Function

J. Computer Sci., 6 (5): 511-518, 2010

518

33. BDQRTIC Function:
34. TRIDIA Function:
35. NONDQUAR Function:
36. DQDRTIC Function:
37. EG2 function:
38. DIXMAANA (CUTE)
39. DIXMAANB (CUTE)
40. DIXMAANC (CUTE)
41. DIXMAANE (CUTE):
42. Partial Perturbed Quadratic
43. Broyden Tridiagonal Function:
44. Almost Perturbed Quadratic Function:
45. Tridiagonal Perturbed Quadratic
46. EDENSCH Function (CUTE)
47. Vardim Function (Cute):
48. STAIRCASE S1Function:
49. DIAGONAL 6
50. DIXON3DQ Function:
51. ENGVAL1 (CUTE) Function:
52. DENSCHNA (CUTE) Function:
53. DENSCHNB (CUTE) Function:
54. DENSCHNF (CUTE) Function:
55. SINQUAD (CUTE) Function:
56. BIGGSB1 Function(Cute):
57. Generalized quartic GQ1 function:
58. Diagonal 7 Function:
59. DIAGONAL8 Function :
60. Full Hessian Function:
61. SINCOS Function:
62. Generalized quartic GQ2 function
63. EXTROSNB(CUTE):
64. ARGLINB (CUTE)
65. HIMMELBG (CUTE)

CONCLUSION

 In this research, a new fast scaled hybrid CG
algorithm is introduced. The proposed algorithm
improved the standard CGSD and ACGA algorithms by
adaptively modifying the search direction. The new
proposed algorithm is generic and easy to implement in
all gradient based optimization process. The simulation
results showed that it is robust and has a potential
significantly enhance the computational efficiency of
iterations and function-gradient evaluations.

REFERENCES

Al-Bayati, A.Y., A.J. Salim and K.K. Abbo, 2009.

Two-version of conjugate gradient-algorithms
based on conjugacy condition for unconstrained
optimization. Am. J. Econ. Bus. Admin., 1: 97-104
http://www.scipub.org/fulltext/ajeba/ajeba1297-104.pdf

Andrei, N., 2004. A new gradient descent method for
unconstrained optimization. ICI, Technical report,
Bucharest1, Romania.

 http://www.ici.ro/camo//neculai/newstep.pdf
Andrei, N., 2007. Scaled memory less BFGS

preconditioned conjugate gradient algorithm for
unconstrained optimization. Methods Soft Ware,
22: 561-571. DOI: 10.1080/10556780600822260

Andrei, N., 2008a. A Dai-Yuan conjugate gradient
algorithm with sufficient descent and conjugacy
conditions for unconstrained optimization. Applied
Math. Lett., 21: 165-171. DOI:
10.1016/J.AML.2007.05.002

Andrei, N., 2008b. A scaled nonlinear conjugate
gradient algorithm for unconstrained optimization.
ICI Tech. Rep., 57: 549-570. DOI:
10.1080/02331930601127909

Andrei, N., 2008c. 40 Conjugate gradient algorithms
for unconstrained optimization. ICI, Technical
Report No. 13/08.

 http://www.ici.ro/camo/neculai/p13a08.pdf
Andrei, N., 2009a. Another nonlinear conjugate

gradient algorithm for unconstrained optimization.
Methods Software, 24: 89-104. DOI:
10.1080/10556780802393326

Andrei, N., 2009b. Performance profiles of line-search
algorithms for unconstrained optimization. ICI,
Technical Report.

 http://www.ici.ro/camo/neculai/w07p27.pdf
Birgin, B. and J.M. Martinez, 2001. A spectral

conjugate gradient method for unconstrained
optimization. Applied Math. Optimiz., 43: 117-128.
DOI: 10.1007/s00245-001-0003.

Bongartz, I., A.R. Conn, N.I. Gould and P. Toint, 1995.
CUTE: constrained and unconstrained testing
environments. ACM Trans. Math. Software,
21: 123-160. DOI: 10.1145/200979.201043.0

