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Abstract: Problem statement: The scaled hybrid Conjugate Gradient (CG) algorithm which usually 
used for solving non-linear functions was presented and was compared with two standard well-Known 
NAG routines, yielding a new fast comparable algorithm. Approach: We proposed, a new hybrid 
technique based on the combination of two well-known scaled (CG) formulas for the quadratic model 
in unconstrained optimization using exact line searches. A global convergence result for the new 
technique was proved, when the Wolfe line search conditions were used. Results: Computational results, 
for a set consisting of 1915 combinations of (unconstrained optimization test problems/dimensions) were 
implemented in this research making a comparison between the new proposed algorithm and the other 
two similar algorithms in this field. Conclusion: Our numerical results showed that this new scaled 
hybrid CG-algorithm substantially outperforms Andrei-sufficient descent condition (CGSD) algorithm 
and the well-known Andrei standard sufficient descent condition from (ACGA) algorithm. 
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INTRODUCTION 
  
 For solving the unconstrained optimization 
problem: 
 

{ }nmin f (x) : x R∈    (1) 

 
where, 2f : R R→ is continuously differentiable 

function, bounded from below. Starting from an initial 
guess, a nonlinear CG-algorithm generates a sequence 
of points {xk}, according to the following recurrence 
formula: 
 

k 1 k k kx x d+ = + α  (2a) 
 
where, αk is the step-length, usually obtained by Wolfe 
line searches: 
 

T
k k k k k k kf (x d ) f (x ) g d+ α − ≤ ρα  (2b)  

 
T T
k 1 k k kg d g d+ ≥ σ  (2c)  

 

with 
1

0 1
2

< ρ < ≤ σ <  and the directions dk are computed 

as: 

0 0d g= −  (3a) 
 

CGSD CGSD
k 1 k 1 k 1 k kd g s+ + += −θ + β   (3b) 

  
Where: 
 

k k 1 ky g g+= − , k k 1 ks x x+= −  (3c) 
  

MATERIALS AND METHODS 
 
Algorithms based on sufficient descent conditions: 
This type of algorithms present a modification of the 
standard computational CG scheme in order to satisfy 
both the sufficient descent and the conjugacy conditions 
in the frame of CG as in (4), with: 
 

T
CGSD k 1 k 1
k 1 T

k k 1

g g

y g
+ +

+
+

θ =  (4) 

 
T2

k 1CGSD CGSD
k k 1 k k k 1T T

k k k k

g1
g  - s g

y s y s
+

+ +

 
 β = δ
 
 

 (5)  

 
T

CGSD k k 1
k T

k 1 k 1

y g

g g
+

+ +

δ =  (6) 
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or: 
 

( )( )
( )

T TT
k k 1 k k 1CGSD k 1 k 1

k 2T T
k k k k

y g s gg g

y s y s

+ ++ +β = −  (7) 

 
 Equation 4-7 are represent an algorithm that 
belongs to the family of scaled CG-algorithms 
introduced by (Birgin and Martinez, 2001). Observing 
that if f is a quadratic function and αk is selected to 
achieve the exact minimum of f in the direction dk then 

T
k k 1s g 0+ =  and the formula (5) for CGSD

kβ  reduced to the 

Dai and Yuan computational scheme (Andrei, 2008a): 
 

DY T T
k k 1 k 1 k kg g y s+ +β =  (8) 

 
 However, the parameter CGSD

kβ is considered for 

general non-linear functions and inexact line searches 
and it is selected in such a manner that the sufficient 
descent condition is satisfies at every iteration. Besides, 
the parameters CGSD

k 1+θ and δk are chosen in such manner 

that the conjugacy condition Tk k 1y d 0+ =  always holds, 

independently of the line searches used in the 
algorithm. Here below we list outlines of the Andrei 
algorithm. 
 
CGSD algorithm (Andrei, 2007):  
 
Step 1: Initialization. Select n

0x R∈  and the parameters 

1 20 1< σ < σ < . Compute f (x0) and g0, consider 

00 g -d = and 0
0

1

g
α = , set k = 0. 

Step 2: Test for convergence, if 6
0g 10 ,−≤  then stop, 

else set k = k+1 and continue.  
Step 3: Compute the line search parameter αk which 

satisfy the Wolfe-conditions: 
 
 T

k k k k 1 k k kf (x d ) f (x ) g d+ α − ≤ σ α    (9) 

 
 T T

k k k k 2 k kf (x d ) d g d∇ + α ≥ σ   (10) 

 
 update the variables k 1 k k kx x d+ = + α . 

 Compute f(xk+1): 
 
 gk+1, sk = xk+1-xk, yk = gk+1-gk  (11)  
 

Step 4: Compute CGSD CGSD
k 1 k 1 k kd g s ,+ += −θ + β  where 

CGSD
k 1+θ and CGSD

kβ are defined as in (4) and (7) 

respectively. 

Step 5: If T 3
k 1 k 12 2

g d 10 d g ,−
+ +≤ −  then define dk+1 = d, 

otherwise, set dk+1 = -gk+1 and compute the  
initial guess k k 1 k 1 k2 2

d d− −α = α , then set k = 

k+1 and continue with Step 2. 
 
ACGA algorithm (Andrei, 2009a): This algorithm 
also presents a modification of the Dai and Yuan 
computational scheme in order to satisfy both the 
sufficient descent and the conjugacy conditions in the 
frame of CG. The steps of this algorithm are same as in 
Andrei (CGSD), except Step (4) which will be defined 
as:  
 

ACGA
k 1 k 1 k kd g s+ += − + β  (12a) 

 
s.t.: 
 

T T T
k k 1 k k 1 k k 1

k T T 2
k k k k

y g (y g )(s g )

y s (y s )
+ + +β = −  (12b) 

 
Or: 
 

T T T
ACGA ACGAk 1 k k 1 k k 1 k
k kT T 2

k k k k

g g (g s )(g g )

y s (y s )
+ + +β = − δ  (12c) 

 
 Now we introduce a new proposed method based 
on modifying both scalars θk+1 and βk. 
 
A new proposed algorithm (say, new hybrid): here, 
we are going to investigate another new sufficient 
descent algorithm based on the reformulation of the 
scalars θk+1 and βk. The new proposed scalars are 
depend on the general hybrid techniques of two or more 
than two parameters. These scalars are very useful in 
making the search directions generated by the new 
algorithm more sufficiently descent. The outlines of the 
new proposed algorithm are given by: 
 
Step 1: Select n

0x R∈  and the parameters  

1 20 1< σ < σ < . Compute f (x0) and g0, consider 

d0 = - g0 and 0
0

1

g
α = , set k = 0. 

Step 2: Test for convergence, if 6
0g 10 ,−≤  then stop, 

else set k = k+1 and continue.  
Step 3: Compute the line search parameter αk which  

satisfy the Wolfe-conditions defined by (9) and  
(10). Update k 1 k k kx = x + d+ α  Compute f(xk+1),  

gk+1. 
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Step 4: Compute hybrid hybrid
k 1 k 1 k kd g s+ += −θ + β , where  

hybrid
k 1+θ and hybrid

kβ  are computed as: 

 

 { }{ }hybrid 24 CGSD
k 1 k 1 k 1 max 1.1 10 ,min 1,  ,  −

+ + +θ = × γ θ  (13a) 

 

  

10

T 2
k k k ki

k 1
k 1 k

T
k k k k i 1

d d ( )
min

2[f (x ) f (x )

( )g d ]

+
+

=

  
  
 α − η γ =   − −  
  α − η  

 (13b) 

 
 s.t.: 
 

 
T

k 1 k k k k

ki 2T i 2
k k k k

f f g d1

d g 10 g

+

−

 − + α +
 η =
 × α × 

 (13c) 

 

 
T

CGSD k 1 k 1
k 1 T

k k 1

g g

y g
+ +

+
+

θ =  (13d) 

 

 { }{ }hybrid CGSD ACGA
k k kmax 0,min ,β = β β  (14a) 

 

 
( )( )

( )
T TT
k k 1 k k 1CGSD k 1 k 1

k 2T T
k k k

y g s gg g

y s y s

+ ++ +β = −  (14b) 

 

 
( )( )

( )
T TT
k k 1 k k 1ACGA k 1 k 1

k 2T T
k k k k

y g s gy g

y s y s

+ ++ +β = −  (14c) 

 
 where the details of ACGA

kβ  are given in (Andrei, 

2009a). 
Step 5: If: 
 

 
T 3
k 1 k 12 2

2T
k 1 k k 1 2

g d 10 d g and

g g 0.2 g

−
+ +

+ +

≤ −

≤
 (14d) 

 
 then define dk+1 = d, otherwise, set dk+1 = -θk+1gk+1 

and compute the initial guess 

k k 1 k 1 k2 2
d d− −α = α , then set k = k+1 and 

continue with  Step 2, where the details of 
(14d) are given in (Birgin and Martinez, 2001; 
Al-Bayati et al., 2009). 

 
 The algorithms (12) and (13) belongs to the family 
of hybrid CG-algorithms. 

Rate of convergence of the new hybrid algorithm: 
Theorem 1: If y T

k ks 0≠  and: 

 
CGSD CGSD

k 1 k 1 k 1 k kd g s+ + += −θ + β  (14e)  

 

 do = -go where CGSD
kβ  is given by (5), then: 

 

2T CGSD
k 1 k 1 k 1 k 1

k

1
g d g

4+ + + +

 
≤ − θ − δ 

  (15) 

 

Proof: Since d = -go, we have 2T
o o og d g= − , which 

satisfy (15). Multiplying (14e) by Tk 1g + , we have: 

 

( )( )

( )
( )

T T
2 k 1 k 1 k 1 kT CGSD

k k 1 k 1 k 1 T
k k

22 T
k 1 k k 1CGSD

k 2T
k k

g g g s
g d g

y s

g s g

y s

+ + +
+ + +

+ +

= −θ +

−δ
   (16) 

 
but: 
 

( ) ( )
( )

( ) ( )
( )

( )
( )

T
T CGSD CGSD T
k k k 1 k k k k k 1

2T
k k

2 22 2T CGSD T
k k k 1 k k 1 k k 1CGSD

k
2T

k k

2 2T
2 k 1 k k 1CGSD

k 1 k 2CGSD T
k k k

y s g 2 2 y s g

y s

1 1
y s g 2 g s g

2 2

y s

g s g1
g

4 y s

+ +

+ + +

+ +
+

   δ δ
   

 
+ δ δ ≤ =

+ δ
δ

  (17) 

 
 Using (17) in (16): 
 

( )
( )

( )
( )

2 2T CGSD
k k 1 k 1 k 1 k 1CGSD

k

2 22 2T T
k 1 k k 1 k 1 k k 1CGSD CGSD

k k2 2T T
k k k k

1
g d g g

4

g s g g s g

y s y s

+ + + +

+ + + +

≤ −θ + +
δ

δ − δ
  (18) 

 
 We get: 
 

2T CGSD
k 1 k 1 k 1 k 1CGSD

k

1
g d g

4+ + + +

 
≤ − θ − δ 

  (19) 

 
 Hence, the direction given by (3) and (7) is a 
descent direction. If for all k, CGSD

k 1+θ is positive and 

given by CGSD
k 1

k

1

4+θ >
δ

 and the line searches satisfy 
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Wolfe conditions, then the search directions given by 
(3) and (7) satisfy the sufficient descent condition since 

Andrei's algorithm bound by: 2CGSD
k 1 k 1CGSD

k

1
g

4+ +

 
− θ − δ 

. 

Spectral CGSD
k 1+θ derivation: to determine the parameters 

CGSD
k 1+θ  and CGSD

kδ for CGSD method observe that: 
 

CGSD
k 1 k 1 k 1d Q g+ + += −   (20) 

 
 Where: 
 

( )
( )k 1

2 TT
k 1 k k 1CGSD CGSDk 1 k 1

k 1 k 1 k k2T T
k k k k

g s gg g
d g ( ) s

y s y s
+

+ ++ +
+ += −θ + − δ ×  (21) 

 

( )
( )

2T
k 1CGSD CGSD Tk k 1

k 1 k 1 k k k k 12T T
k k k k

gs g
d - I- s s .g

y s y s

++
+ + +

 
 = θ + δ
 
 

        (22) 

 
 From (20) and (22) we get: 
 

( )
( )

2T
k 1CGSD CGSD CGSD Tk k 1

k 1 k 1 k k k2T T
k k k k

gs g
Q I s s

y s y s

++
+ += θ − + δ  (23) 

 
 Now, by summarization of CGSD

k 1Q +  as: 

 

( )
( )

2T T
CGSD k 1CGSD CGSD Tk k 1 k 1 k
k 1 k 1 k k k2T T

k k k k

gs g g s
Q I  s s

y s y s

++ +
+ +

+= θ − + δ  (24) 

 
 And considering the conjugacy condition:  
 

T
k k 1y d 0+ =  (25) 

 
CGSDT
k 1ky Q 0+ =  (26) 

 

( )
( )

2T T
k 1T CGSD CGSD Tk k 1 k 1 k

k k 1 k k k2T T
k k k k

gs g g s
y [ I s s ] 0

y s y s

++ +
+

+θ − + δ =  (27)  

 
 But: 
 

CGSD
k CGSD

k 1

1

+

δ =
θ

 (28)  

 
 After doing some algebraic operations, we get: 
 

( ) ( )
( )

2 2TT
2 k 1 k 1 k k 1CGSD CGSDk 1 k

k 1 k 1T T T T
k k 1 k k k 1 k 1 k k

g g s gg s
( ) 0
y g y s y g (y s )

+ + ++
+ +

+ + +

θ − + θ + =  (29a) 

2
T

k 1CGSD CGSD k 1 k
k 1 k 1T T

k k 1 k k

g g s
( )( ) 0

y g y s
+ +

+ +
+

θ − θ − =  (29b)  

 
 Since 2

k 1g + in the numerator of CG operators has a 

strong global convergence (Al-Bayati et al., 2009), 
hence from the first bracket of the Eq. 29b: 
 

2

k 1CGSD
k 1 T

k 1 k 1

g

y g
+

+
+ +

θ =  (29c) 

 
T

CGSD k 1 k
k T CGSD

k 1 k 1 k 1

y g 1

g g
+

+ + +

δ = =
θ

 (30) 

 
 From (29c) we have observed that: 
 

CGSD CGSD
k 1 k 1CGSD

k

1 3

4 4+ +θ − = θ
δ

 (31a) 

 
 Therefore, for all k ,CGSD

k 1 0+θ ≥ , i.e. if T
k 1 kg y 0+ > , 

then for all k the search direction dk+1 given by (3) and 
(7) with (33), given later, satisfy the sufficient descent 
condition. 
 
Anticipative θθθθk+1 derivation: Recently (Andrei, 2004) 
using the information in two successive points of the 
iterative process, proposed another approximation 
scalar to the Hessian matrix of function f , to obtain a 
new algorithm which was favorably compared with the 
Barzilai and Browein’s method. This is only a half step 
of the spectral procedure. Indeed, at the point 

k 1 k k kx x d+ = + α  , we can write: 
 

T 2 T 2
k 1 k k k k k k k

1
f (x ) f (x ) g d d f (z)d

2+ = + α + α ∇  (31b) 

 
where, z is on the line segment connecting xk and xk+1. 
Having in view the local character of the searching 
procedure and that the distance between xk and xk+1 is 
small enough, we can choose z = xk+1 and consider 

k 1 R+γ ∈  as a scalar approximation of 2 k 1f (x )+∇ . This is 

an anticipative viewpoint, in which a scalar 
approximation of the Hessian at point xk+1 is computed 
using only the local information from two successive 
points: xk and xk+1 , therefore we can write:  
 

T
k 1 k 1 k k k kT 2

k k k

2
[f (x ) f (x ) g d ]

d d ( )+ +γ = − − α
α

 (31c) 

 
 This formula can also be found in Dai an Yuan 
(Andrei, 2008b). Observing that k 1 0+γ >  for convex 

functions (Andrei, 2007); if T
k 1 k k k kf (x ) f (x ) g d 0,+ − − α <  
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then the reduction k 1 kf (x ) f (x )+ −  in function values is 

smaller than T
k k kg dα . In this cases, the idea is to reduce 

the step size αk as k k ,α − η  maintaining the other 

quantities at their values in such away so that γk+1 is 
positive. To get a value for ηk, let as select a real µ>0, 
“small enough” but comparable with the value of the 
function and have: 
 

T
k k k 1 k k kT

k k

1
(f (x ) f (x ) g d )

g d +η = − + α + µ  (31d) 

 
for which a new value of  γk+1 can be computed as: 
 

T
k 1 k 1 k k k k kT 2

k k k k

2
[f (x ) f (x ) ( )g d ]

d d ( )+ +γ = − − α − η
α − η

 (31e) 

 
with these, the value for parameter θk+1 is selected as: 
 

k 1
k 1

1
+

+

θ =
γ

 (31f) 

 
where, γk+1 is given by either (31c) or (31e). 
 
Proposition: Assume that f(x) is continuously 
differentiable and f (x)∇  is Lipschitz continuous, with a 
positive constant L. then at point xk+1: 
 

k 1 2L+γ ≤   (32) 

 
Proof: From (31c) we have: 
 

T T
k k k k k k k k

k 1 2 2
k k

2[f (x ) f ( ) d f (x ) f (x ) d ]

d
+

+ α ∇ ζ − − α ∇γ =
α

 

 
where, kζ  is on the line segment connecting xk and 

xk+1. Therefore: 
 

T
k k k

k 1 2

k k

2[ f ( ) f (x ) ] d

d
+

∇ ζ − ∇γ =
α

 

 
 Using the inequality of Cauchy and the Lipschitz 
continuity it follows that: 
 

k k k k
k 1

k k k k

k 1 k

k k

2 f ( ) f (x ) 2L x

d d

2L x x
2L

d

+

+

∇ ζ − ∇ ζ −
γ ≤ ≤

α α

−
≤ =

α

 

 Therefore, from (31f) we get a lower bound for 

k 1

1

2L+θ ≥ , i.e., it is bounded away from zero. 

 
Theorem 2:  If  T

k ky s 0≠    and   ACGA
k 1 k 1 k kd g s+ += − + β , 

(d0 = -g0), where ACGA
kβ  is given by Eq. 12c, then:  

 
2T

k 1 k 1 k 1ACGA
k

1
g d (1 ) g

4+ + +≤ − −
δ

  (33) 

 

Proof: Since 0 0d g= − , we have 2T
0 0 0g d g ,= − which 

satisfies Eq. 33. Multiplying Eq. 12a by T
k 1g ,+  we have:  

 
T T

2T k 1 k 1 k 1 k
k 1 k 1 k 1 T

k k

2 T
k 1 k 1 kACGA

k T 2
k k

(g g )(g s )
g d g

y s

g (g s )

(y s )

+ + +
+ + +

+ +

= − + −

δ

  (34) 

 
But: 
 

( )( )T T
k 1 k 1 k 1 k

T
k k

T
T ACGA ACGA T
k k k 1 k k k 1 k k 1

T 2
k k

g g g s

y s

[(y s )g 2 ] [ 2 (g s )g ]

(y s )

+ + +

+ + +

=

δ δ
  (35) 

 

( ) ( )
( )

2 22 2T ACGA T
k k k 1 k k 1 k k 1ACGA

k
2T

k k

1 1
y s g 2 g s g

2 2

y s

+ + +

 
+ δ δ ≤   (36) 

 

( )
( )

2 2T
2 k 1 k k 1ACGA

k 1 k 2ACGA T
k k k

g s g1
g

4 y s

+ +
+= + δ

δ
  (37) 

 
 Using Eq. 37 in 34 we get Eq. 33. 
 Hence, the direction given by (12) is a descent 

direction because ( ) 0411 >− ACGA
kδ  for all k. 

 
How to compute the parameter ACGA

kδδδδ : To determine 

the parameters  ACGA
kδ  for (ACGA)-method observe 

that:  
 

ACGA
k 1 k 1 k 1d Q g+ + += −   (38) 

 
where: 
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( )
( )

2 TT
k 1 k k 1ACGAk 1 k 1

k 1 k 1 k k k2T T
k k k k

g s gg g
d g s s

y s y s

+ ++ +
+ += − + − δ   (39) 

 
where the matrix ACGA

k 1Q +  is:  

 

( )
( )

2T
k 1ACGA ACGA Tk k 1

k 1 k k k2T T
k k k k

gs g
Q I s s

y s y s

++
+ = − + δ   (40) 

 
 Now, by summarization of ACGA

k 1Q +  to resemble the 

Quasi-Newton method, as: 

 

( )
( )

2T T
ACGA k 1ACGA Tk k 1 k 1 k
k 1 k k k2T T

k k k k

gs g g s
Q I s s

y s y s

++ +
+

+= − + δ  (41) 

 
and considering the conjugacy condition:  

 
T
k k 1y d 0+ =   (42) 

 
CGSDT
k 1k k 1y Q g 0+ + =   (43) 

 

( )
( )

2T T
k 1T ACGA Tk k 1 k 1 k

k k k k k 12T T
k k k k

gs g g s
y [I s s ]g 0

y s y s

++ +
+

+− + δ =   (44) 

 
 After doing some algebraic operations, it follows 
that: 

 
T T T T

ACGA k k k 1 k k 1 k k k
k 2 2T T

k 1 k k 1 k 1 k 1 k

y s g y (g y )(y s )

g s g g (g s )
+ +

+ + + +

δ = + −   (45) 

 
 Therefore using (45) in (12c) we get (12b).  

 
RESULTS 

 
 We present the computational performance of a 
Fortran implementation of the new hybrid algorithm on 
a set of 1915 unconstrained optimization test 
problems/dimensions. The Fortran implementation of 
the present algorithm is based on the Fortran 90 
implementation of the scaled CG-method provided by 
(Birgin and Martinez, 2001). The comparisons of 
algorithms are given in the following context. Let 

ALG!
if and ALG2

if  be the optimal values found by ALG1 

and ALG2, for problem i = 1.., 65, respectively. We say 

that, in a particular problem i, the performance of 
ALG1 was better than the performance of ALG2 if: 
 
 

ALG1 ALG2 3
i if f 10−− <   (46) 

 
and the number of iterations, or the number of function-
gradient evaluations, of ALG1was less than the number 
of iterations, or the number of function-gradient 
evaluations of ALG2, respectively (Andrei, 2009a; 
2009b; 2008c). We compare the performance of our 
new hybrid algorithm against the CGSD-algorithm 
(Andrei, 2008a) and against the standard ACGA-
algorithm (Andrei, 2009a) in three different tables. In 
Table 1 and 2, sixty-five test-functions are solved using 
three different algorithms; namely: (Andrei, 2007) 
(CGSD); (Andrei, 2009a), (ACGA) and the new 
proposed (New Hybrid) algorithms. Each test function 
is solved by using 10 different dimensions, n = 100, 
200, …, 1000. Table 1 and 2 present the performances 
of these algorithms subject to the minimum number of 
iterations (# iter) and the minimum number of function-
gradient evaluations (# fgev). 
  When comparing the new hybrid against CGSD in 
Table 1, subject to #iter, the new hybrid was better in 
163 problems while CGSD was better in 134 problems; 
they are equal in 293 problems and fail in 60 problems 
out of 650 problems; now subject to #fgev, the New 
Hybrid was better in 168 cases while CGSD was better 
in 138 cases; they have equal results in 284 cases and 
fail in 60 cases. 
 In Table 2, according to #iter, the new hybrid 
algorithm was better in 274 cases while ACGA was 
better in 194 cases; they have equal results in 155 cases 
and fail in 54 cases. However, according to #fgev, New 
Hybrid was better in 273 cases while ACGA was better 
in 209 cases; they have equal results in 114 cases and 
fail in 54 cases.  
 Table 3 shows elaboration comparison of 6 
arbitrary selected test functions with different 
dimensions out of the 65-test problems with the three 
different algorithms. 
 
Table 1: Performance of the new hybrid versus CGSD; In 650 

problem/dimension 
 New hybrid CGSD Equality Over Total 
#iter 163 134 293 60 650 
#fgev 168 138 284 60 650 

 
Table 2: Performance of the new hybrid versus ACGA; In 650 

problem/dimension 
 New hybrid CGSD Equality Over Total 
#iter 247 194 155 54 650 
#fgev 273 209 114 54 650 
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Table 3: Comparison of Different CG-algorithms with an arbitrary 
selection of 6 different test functions out of 65-test 
problems 

  CGSD  New hybrid ACGA 
  ------------------ ------------------ ----------------- 
Tf n iter fgev iter fgev iter fgev 
10 100 65 102 67 105 66 110 
 200 91 135 97 143 91 136 
 300 101 152 108 161 109 168 
 400 145 223 143 216 125 182 
 500 153 236 143 221 157 228 
 600 144 214 175 246 171 249 
 700 174 255 162 232 183 277 
 800 179 264 214 315 185 270 
 900 197 305 189 286 191 284 
 1000 211 322 221 333 210 309 
22 100 70 132 62 113 67 121 
 200 112 212 62 114 117 221 
 300 110 206 237 459 41 79 
 400 139 255 125 235 95 170 
 500 159 299 77 135 116 215 
 600 65 121 55 99 119 225 
 700 117 221 83 148 87 159 
 800 86 159 111 200 165 302 
 900 50 88 71 125 91 168 
 1000 79 142 100 191 49 90 
34 100 369 442 363 422 315 369 
 200 568 645 512 573 513 576 
 300 756 842 674 733 585 649 
 400 868 963 819 884 790 858 
 500 964 1039 881 947 781 831 
 600 1059 1142 948 1023 907 970 
 700 1101 1222 1000 1066 1020 1085 
 800 1290 1421 1182 1256 1039 1102 
 900 1522 1736 1215 1297 1174 1249 
 1000 1378 1454 1316 1398 1196 1263 
47 100 11 29 11 29 11 29 
 200 15 37 15 37 15 37 
 300 13 37 13 37 14 39 
 400 15 40 15 40 15 40 
 500 18 41 18 41 27 61 
 600 15 40 15 40 24 61 
 700 15 41 15 41 29 75 
 800 16 43 16 43 23 57 
 900 15 43 15 43 35 88 
 1000 16 43 16 43 76 176 
51 100 24 45 24 45 27 52 
 200 27 56 27 56 24 47 
 300 24 47 24 47 27 51 
 400 24 48 24 48 25 51 
 500 35 448 23 48 23 49 
 600 23 49 23 47 39 551 
 700 28 61 76 1608 25 47 
 800 23 47 26 175 33 381 
 900 21 41 21 41 31 281 
 1000 25 49 31 282 25 52 
65 100 32 52 35 56 39 65 
 200 33 53 34 57 33 57 
 300 37 56 36 57 36 58 
 400 33 54 36 58 37 62 
 500 34 58 37 58 35 58 
 600 35 56 37 58 37 63 
 700 33 59 33 57 35 59 
 800 32 52 36 56 32 58 
 900 34 55 36 56 35 62 
 1000 33 57 32 55 36 62 

 Finally, we have selected (65) large-scale 
unconstrained optimization problems in (10) different 
dimensions and in generalized from the CUTE 
(Bongartz et al., 1995) library, along with other large-
scale optimization problems.  
 

DISCUSSION 
 
 In this study, we have introduced a new scaled 
hybrid (CG) algorithm which is based on two well-
known (CG) formulas. The new algorithm is compared 
with two well-known libraries; namely CGSD and 
ACGA algorithms using (65) well-known non linear 
test functions with (10) different dimensions. Our 
numerical results indicate that the new technique has an 
improvements of about (5%) in both #iter and #fgev 
against the standard CGSD algorithm. While it saves 
about (6%) in both #iter and #fgev against the standard 
ACGA algorithm. The name of test functions are: given 
in (Bongartz et al., 1995). 
 
1. Freudenstien and Roth function: 
2. Extended Trigonometric Function 
3. Extended Rosenbrock Function: 
4. Extended White and Holst function: 
5. Extended Beal function: 
6. Extended penalty function: 
7. Peturbed Quadratic function. 
8. Raydan 2 Function 
9. Diagonal 1, 2 and 3 Functions. 
10. Diagonal 2 Function. 
11. Diagonal 3 Function. 
12. Hager Function. 
13. Generalized Tridiagonal-1 Function. 
14. Extended Tridiagonal-1 Function. 
15. Extended Three Exponential Terms. 
16. Generalized Tridiagonal-2 Function. 
17. Diagonal4 Function.  
18. Diagonal5 Function (Matrix Rom). 
19. HIMMELBC (CUTE). 
20. Generalized PSC1 function. 
21. Extended PSC1 Function. 
22. Extended Powell Function. 
23. Extended Block Diagonal BD1 Function. 
24. Extended Maratos function. 
25. Extended Cliff CLIFF (CUTE). 
26. Quadratic Diagonal Perturbed Function 
27. Extended Wood Function: 
28. Quadratic Function QF 
29. Extended Quadratic Penalty QP1 Function  
30. A Quadratic Function QF2 
31. Extended EP1 Function  
32. Extended Tridiagonal-2 Function  
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33. BDQRTIC Function: 
34. TRIDIA Function: 
35. NONDQUAR Function: 
36. DQDRTIC Function:  
37. EG2 function: 
38. DIXMAANA (CUTE)  
39. DIXMAANB (CUTE)  
40. DIXMAANC (CUTE)  
41. DIXMAANE (CUTE):  
42. Partial Perturbed Quadratic  
43. Broyden Tridiagonal Function:  
44. Almost Perturbed Quadratic Function:  
45. Tridiagonal Perturbed Quadratic  
46. EDENSCH Function (CUTE) 
47. Vardim Function (Cute): 
48. STAIRCASE S1Function: 
49. DIAGONAL 6  
50. DIXON3DQ Function: 
51. ENGVAL1 (CUTE) Function:  
52. DENSCHNA (CUTE) Function: 
53. DENSCHNB (CUTE) Function: 
54. DENSCHNF (CUTE) Function:  
55. SINQUAD (CUTE) Function: 
56. BIGGSB1 Function(Cute): 
57. Generalized quartic GQ1 function:  
58. Diagonal 7 Function: 
59. DIAGONAL8 Function : 
60. Full Hessian Function: 
61. SINCOS Function: 
62. Generalized quartic GQ2 function 
63. EXTROSNB(CUTE): 
64. ARGLINB (CUTE)  
65. HIMMELBG (CUTE) 
 

CONCLUSION 
 

 In this research, a new fast scaled hybrid CG 
algorithm is introduced. The proposed algorithm 
improved the standard CGSD and ACGA algorithms by 
adaptively modifying the search direction. The new 
proposed algorithm is generic and easy to implement in 
all gradient based optimization process. The simulation 
results showed that it is robust and has a potential 
significantly enhance the computational efficiency of 
iterations and function-gradient evaluations.  
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