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Abstract: Problem statement: Heart Rate Variability (HRV) has been used as a measure of mortality 
primarily with patients who had undergone cardiac surgery. The analysis of Heart Rate Variability 
(HRV) demands specific capabilities which are not provided either by parametric or nonparametric 
conventional estimation methods. The Empirical Mode Decomposition (EMD) adaptively estimates the 
Intrinsic Mode Functions (IMFs) of nonlinear nonstationary signals. Approach: The intrinsic mode 
functions estimated from the HRV signal were based on  local characteristics of the signal. The principle 
objective was to analyze the HRV latencies of healthy subjects in different age and pathological 
conditions. The method was applied to HRV signal of 17 healthy young control subjects, 17 healthy old 
control subjects and 20 congestive heart failure patients for half hour duration. Results: The results 
showed that a healthy person’s HRV rapidly rises to its maximum response much earlier than the HRV of 
pathological subjects. The rising slope of the time scale’s plot discriminates the healthy controls and 
pathological subjects with 100% sensitivity and specificity. Conclusion: This fact makes the method a 
promising approach to be applied in clinical practice as a screening test for specific risk-groups. 
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INTRODUCTION 

 
 Over the last 20 years there has been widespread 
interest in the study of variations in the beat-to-beat 
interval of heart known as heart rate variability or RR 
interval variations. Clinical depression strongly 
associated with mortality with such patients may be 
seen through a decrease in HRV. Heart rate is 
influenced by sympathetic and parasympathetic (vagal) 
activities of autonomous nervous system. The 
sympathetic activity accelerates the heart rate while the 
parasympathetic activity decelerates the heart rate. The 
influence of both branches of the autonomous nervous 
system is known as sympathovagal balance reflected in 
the HRV, which is a non invasive measure of the 
autonomous nervous system balance (Buccelletti et al., 
2009; Feldman et al., 2010).  
 Empirical Mode Decomposition (EMD), 
introduced by Huang et al. (1998) is a method of 
decomposing nonlinear, non-stationary, multi 
component signals. The components resulting from 

EMD are called Intrinsic Mode Functions (IMFs). EMD 
is defined by an algorithm and has got no analytical 
formulation. Hence the decomposition is best 
understood by experimental investigation rather than 
analytical results. Being fully data dependent and 
highly adaptive it is found to be a highly efficient 
method of decomposing any nonlinear and non-
stationary signals. Job Lindsen and Bhattacharya (2010) 
used EMD and Independent component analysis method 
to correct the blink artifacts (Lindsen and Bhattacharya, 
2010). Ortiz et al. (2005) applied EMD method to 
decompose  the  fetal   HRV  series into its components 
in order to identify, the high frequency oscillations (Ortiz 
et al., 20005). Neto et al. (2004) applied EMD to 
situations where postural changes occur, provoking 
instantaneous changes in heart rate as a result of 
autonomic modifications. Shafqat et al. (2009) applied 
EMD to evaluate the effect of local anesthesia on HRV 
parameters. In this research the EMD method is used to 
analyze the HRV latencies of healthy subjects in 
different age and pathological conditions. 
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Empirical Mode Decomposition (EMD): The 
Empirical mode decomposition is based on the 
following assumptions; 1.The signal has at least two 
extrema’s-one maxima and one minima, 2. The 
characteristic time scale is defined as the time lapse 
between the extrema and 3. If the data is totally devoid 
of extrema, but has some inflection points, it can be 
differentiated one or more times to reveal the extrema. 
Final results are obtained by integration of the 
components. The essence of this method is to identify 
intrinsic oscillatory modes of their characteristic time 
scales in the data empirically and then decompose the 
data accordingly. The components obtained as a result 
of the decomposition process are termed as Intrinsic 
Mode Functions (IMFs). Formally an IMF can be 
defined as a function that satisfies the following two 
conditions 1.In the whole data set, the number of 
extrema and the number of zero crossings must be 
either equal to or differ by at most one and 2.At any 
point the mean value of the envelope defined by local 
minima and the envelope defined by local maxima is 
zero. The name IMF is adopted since it represents the 
oscillation mode imbedded in the data. With this 
definition of IMF in each cycle, defined by the zero 
crossings involves only one mode of oscillation with no 
complex riding waves.  
 

MATERIALS AND METHODS 
 
Datasets used in the analysis: To study the intrinsic 
mode functions of HRV in different age and 
pathological condition, half an hour duration HRV 
signal from three different groups of subjects were 
considered for the analysis:  
 
• 17 healthy young control subjects without any 

clinical evidence of heart disease 
• 17 healthy old control subjects without any clinical 

evidence of heart disease 
• 20 Congestive Heart Failure (CHF)  
  
 The ECG data for the three groups has been 
collected from the biomedical website, 
http://www.physionet.org. The healthy subjects ECG 
data was drawn from the Fantasia database and the 
CHF data from the BIDMC-CHFDB. 
 Discrete event series, Ri - Ri-1 intervals as a 
function of Ri occurrence times, was constructed by an 
adaptive QRS detector algorithm. The QRS detector 
was based on the one presented Christov (2004). As a 
result of the detection algorithm, an unevenly sampled 
RR interval time series was obtained. In order to 

recover an evenly sampled signal from the irregularly 
sampled event series, cubic interpolation was applied. 
 
Methodology: The EMD method is a sifting process 
that estimates the local time scales of HRV signal. It 
involves the following steps, leading to a 
decomposition of the signal S(t) into its constituents 
components: 
 
• x (an auxillary variable) is set to the signal S(t) to 

be analyzed and a variable k, which is the number 
of estimated IMFs, is set to zero 

• Splines are fitted to the upper extrema and the 
lower extrema. This will define the lower (LE) and 
Upper Envelopes (UE) 

• The average envelope, m, is calculated as the 
arithmetic mean between UE and LE 

• A candidate IMF, h, is estimated as the difference 
between x and m 

• If h does not fulfill the criteria defining an IMF, it 
is assigned to the variable x and the steps (b)-(d) 
are repeated. Otherwise, if h is an IMF then the 
procedure moves to step (f) 

• If h is an IMF it is saved as ck, where k is the kth 
component 

• The mean squared error, mse, between two 
consecutive IMFs ck-i and ck is calculated and this 
value is compared to a stopping condition (usually 
a very small value, i.e. 10-5) 

• If the stopping condition is not reached, the partial 
residue, rk, is estimated as the difference between a 
previous partial residue rk-1 and ck and its content is 
assigned to the dummy variable x and the steps of 
(b)-(d) are repeated 

• If the stopping condition is reached then the sifting 
process is finalized and the final residue rfinal can be 
estimated as the difference between S(t) and the 
sum of all IMFs 

 
 The criterion used to state whether h is an IMF or 
not is to verify whether h satisfies the two conditions 
that define an IMF. Currently, there is no set of 
equations to estimate IMFs; therefore, the sifting 
procedure described above is an empirical technique, is 
employed for this purpose. An example of typical IMF 
is shown in Fig. 1. 
 When the sifting process stops, the original signal 
S(t) can be represented as: 
 

n

k final
k 1

S(t) c r
=

= +∑  (1) 
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Fig. 1: A typical IMF 
 

Where n is the number of IMFs, ck the kth IMF and rfinal 

is the final residue.  
 Equation 1 indicates that IMFs can be linearly 
combined in order to obtain the decomposed signal S(t). 
 
Time domain HRV measures: 
 

( )
N

2

n n
j 1

1
V c j

N =

= ∑  (2) 

 
 The power of the nth IMF was computed as: 
           
where, cn is the nth IMF and j=1,….N samples and 
average period (mean period) of the IMF, cn is: 
  

n

dist
T̂

Zc 1
=

−
 (3) 

 
where, dist refers to the distance between the first and 
last zero crossings and Zc is the number of zero 
crossings.  
 
Interpretation of intrinsic mode function: By the 
nature of the decomposition procedure, the signal is 
decomposed into N fundamental components, each with 
distinct time scale. More specifically, the first 
component is the smallest time scale component which 
corresponds to the highest frequency component of the 
data. As the decomposition process proceeds, the time 
scale increases and hence, the mean frequency of the 
scales decreases. The average period of intrinsic time 
scale almost doubles that of the previous one, 
suggesting that the EMD behaves like a dyadic filter. 
Based on this a time scale filtering method can be build 
up as: 
  

h

l,h j
j l

S (t) c (t)
=

=∑  

 
Where: 
 
l, h є [1,…, N], l≤ h. (4) 
 
When l=1 and h < N, it is a high-pass filter; when l > 1 
and h=N, it is a low-pass filter; when 1<l≤ h< N, it is a 
band-pass filter.       

RESULTS 
 
 The method is applied to half an hour duration 
HRV measurements of 17 healthy young controls, 17 
healthy old controls and 20 congestive heart failure 
patients. At first, the method is demonstrated by 
applying it to a typical young and old Control and a 
Heart Failure (CHF) subject. Afterwards, the 
discrimination of the three subject groups with respect 
to different parameters obtained from the method will 
be shown. The typical signals, IMFs and the 
reconstructed signals are shown in Fig. 2. For the 
typical young and old control subject and CHF patient, 
records f1y07 and f1o04 and CHF 02 records from 
physionet website were selected, shown in (Fig. 2 
a(i),b(i) andc(i)). The method adaptively decomposes 
the three signals into IMFs as shown in Fig. 2. a(ii),b(ii) 
andc(ii). The average periods, absolute powers and 
normalized powers of IMFs are computed. The signal is 
reconstructed using the IMFs leaving out the residue 
component were shown in (Fig.2.a (iii), b(iii) andc(iii)).  
   The absolute powers (Vn) and average periods (Tn) 
of the IMFs are computed using simple formulae given 
in equation (2) and (3). The average period of the 
successive IMFs almost doubles the previous IMF’s 
average period. The residue part of the signal is a 
monotonic trend with average period zero (Tn =0). 
 The computed average periods (Tn ) of IMFs for 
the 3 subjects are given in Table 1. 
 The method decomposes the healthy young and old 
control’s HRV signal (f1y07 and f1o04) into eight 
IMFs and CHF patient’s HRV into ten IMFs. The 
additional component in CHF patient’s HRV was due to 
the latencies present in the signal. Plotting the average 
periods of IMFs against its IMF number gives an 
exponential graph as shown in Fig. 3. The average 
period of IMFs of CHF 02 subject was significantly 
lower (Table 1) in value and the rate of increase (slope) 
w.r.to IMFs also smaller compared to healthy controls.  
 From Fig. 3, the rising slopes of the exponential 
curves of healthy controls are significantly higher 
compared to CHF patients’ curve. The slope of the 
exponential curve was approximated using y=abx, a 
curve fitting mathematical equation. The variable ‘y’ 
represents the average period of IMFs and ‘x’ 
represents the IMF numbers. Variable ‘a’ represents the 
slope of the exponential graph and ‘b’ is the scaling 
factor (approximately 2) of the time scales. The 
parameters ‘a’ and ‘b’ are estimated using simple least 
square curve fitting technique (Ramana, 0000). The 
estimated ‘a’ and ‘b’ parameters for the typical healthy 
young and old controls and CHF patient are given in 
Table 2. 
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Table 1: Average Periods of IMFs 
IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 
F1y07 4.2518 8.2811 15.845 32.627 61.482 116.53 209.31 498.33 - - 
F1o04 3.3051 6.657 13.866 34.45 65.032 130.42 228.19 576.33 - - 
Chf 02 1.9193 3.6335 7.1147 13.623 25.349 59.081 114.63 216.8 411.25 626 

 

 
a(i) 

 

 
a(ii) 

 

 
a(iii) 
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b(i) 

 

 
b(ii) 

 

 
b(iii) 
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c(i) 

 

 
c(ii) 

 

 
     c(iii) 

 
Fig. 2: a(i),b(i) &c(i) selected young, old and CHF records,  a(ii),b(ii) &c(ii) IMFs and a(iii),b(iii) &c(iii) 

reconstructed signal without residue 
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Fig. 3: Average periods of IMFs 
 

 
 

Fig. 4: Absolute power of IMFs 
 

 
 

Fig. 5: Normalized power of IMFs 
 

 
 

Fig. 6: Cumulative sum of IMFs normalized power 
 

 The slope ‘a’ of the average period curve of CHF 
patient is significantly lower (0.99042) compared to 
healthy controls (2.1683 and 1.6244). The average 
periods of successive IMFs of healthy controls and 
CHF patients approximately doubles (1.94 to 2.07 
times) as that of the previous IMFs average period, as 
defined by the parameter ‘b’. 
 The computed absolute power (Vn ) of IMFs for the 
3 subjects were presented in Fig. 4. For healthy young 

control subject (f1y07) the absolute power was high in 
all IMFs. Two significant peaks are observed at IMF 1 
and IMF 5. For healthy old control subject (f1o04) the 
power is less compared to healthy young in all IMFs 
except in IMF4 and dominates all the other IMFs. But 
for CHF 02 the absolute powers of all IMFs were 
completely suppressed. 
 The IMFs powers can be calculated in normalized 
units (n.u) which represent the relative value of each 
IMF power in proportion to the total power. 
Normalization tends to minimize the effect on the 
powers of IMFs, if the total power changes. The 
computed normalized powers (Nn) of IMFs for the 3 
subjects were presented in Fig. 5 for comparison. In 
healthy young control subject (f1y07) the relative powers 
of all IMFs (except IMF 7and8) are high. In healthy old 
control subject (f1o04) the relative power of IMF 4 is 
very dominating compared to all IMFs. But for CHF 02 
the relative powers of all IMFs were suppressed except 
for the last (IMFs 9 and 10) two IMFs power, the last 
scale (IMF 10) is dominating compared to all the IMFs. 
Suppression of power in the lower scales (higher 
frequencies) makes the system less adaptive. 
 The contribution of first six IMFs of healthy young 
and old subjects to the HRV measurements are 
approximately 92 % and 94%. The contribution of 
third, fourth and fifth IMFs of healthy old is 
approximately 72 %. But, the contribution of first six 
IMFs of CHF patient to the total power was 
approximately 50%. The results show that more power 
in the lowest (IMF 1) scale increases the power of high 
frequency component in healthy young subject. More 
power in the middle (IMF 4, 5) scales increases the 
power of lower frequency components in healthy old 
subjects. In CHF subjects the power in the lowest scale 
and middle scales (high and lower frequency 
components) are much suppressed, but the power in the 
last scales (lowest frequency components) were higher. 
The latencies of the IMFs can be presented visually by 
plotting the cumulative sum of IMF’s normalized 
powers against it’s IMF number as shown in Fig. 6.  
 The curve for healthy young control subject is 
more rapidly rising from the first IMF and approaches 
the maximum earlier. The curve for healthy old control 
subjects is initially very slow in the first three IMFs but 
after the third IMF more rapidly rising and approaches 
the maximum earlier. But, the curve for CHF subject is 
slow rising and approaches the maximum later. These 
observations are very characteristics for all the three 
groups of signals. 
 The group’s average plots of average periods are 
shown in Fig. 7. 
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Fig. 7.Group’s average plots of average periods 
 

 
 
Fig. 8: Group’s absolute power average plots 
 

 
 

Fig. 9: Group’s normalized power average plots 
 

 
 

Fig. 10: Group’s Cumulative sum of powers average 
plots 

 
The group’s average plots show that the slopes of the 
healthy controls are higher than CHF group patients. 
The slopes, parameter ‘a’ completely discriminates the 
healthy controls and CHF group patient with 100% 
sensitivity and specificity for a threshold value of 1.4 as 
given in Fig. 11. The estimated parameters are given in 
Table-3 and 4. The scaling parameter ‘b’ is 
approximately equal to two as given in Fig. 12.  

 
 
Fig. 11: Discrimination of healthy and CHF groups 
 

 
 

Fig. 12: A dyadic scaling parameter ‘b’ 
 

Table 2: Estimated parameters of time scales 
Records a b 
F1y07 2.1683 1.9504 
F1o04 1.6244 2.0711 
CHF 02 0.99042 1.942 

 
Table 3: ‘a’ and ‘b’ of healthy young and old controls 
 Healthy young  Healthy Old 
 ------------------------  ------------------------ 
Recs a b Recs a b 
F1y01 1.5211 1.9762 F1o01 1.7778 1.9709 
F1y02 1.8689 1.9241 F1o02 1.6338 1.957 
F1y03 1.8145 1.9645 F1o03 1.5439 1.9474 
F1y04 1.6837 2.0483 F1o04 1.6244 2.0711 
F1y05 1.8516 1.9672 F1o05 1.7847 1.9299 
F1y06 2.2276 1.8835 F1o06 2.1323 1.8355 
F1y07 2.1683 1.9504 F1o07 1.7117 1.8863 
F1y08 1.4463 2.1294 F1o09 2.3139 1.9968 
F1y09 1.6467 2.0093 F1o10 1.4076 2.045 
F1y10 1.557 1.8651 F2o01 2.0781 1.9243 
F2y02 2.0526 2.012 F1o01 1.9314 1.9503 
F2y03 1.879 1.9718 F2o02 1.4821 1.9191 
F2y06 1.7984 1.9822 F2o03 2.0674 1.9473 
F2y07 2.044 2 F2o04 2.4377 1.9762 
F2y08 1.5269 1.9408 F2o06 2.0238 1.9285 
F2y09 1.4833 1.9699 F2o07 1.8366 1.8245 
F2y10 1.599 2.1044 F2o08 1.5112 2.199 
Avg. 1.774641 1.9823 Avg. 1.841082 1.959359 

 
 The group’s absolute power average plot (Fig. 8) 
shows the absolute power of young subjects are 
significantly high compared to old and CHF group 
patients. In healthy young subjects the power in the 
lowest scale (highest frequency) dominates other scales.  
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Table 4: ‘a’ and ‘b’ of CHF patients 
 CHF 
 --------------------------------- 
Recs a b 
chf01 1.3832 1.9288 
chf02 0.99042 1.942 
chf03 1.0975 2.0123 
chf04 0.74149 2.0965 
chf05 0.82322 2.028 
chf09 0.91877 1.9891 
chf10 0.75579 2.002 
chf11 0.89613 1.981 
chf12 1.0524 1.997 
chf13 0.80251 1.996 
chf14 1.1233 2.069 
chf15 0.84106 2.0747 
chf201 1.1642 2.0159 
chf202 1.0087 2.0346 
chf203 0.9781 2.0321 
chf204 0.97292 2.0331 
chf205 0.70257 2.1389 
chf206 0.66204 2.0552 
chf207 1.0352 2.0402 
chf208 0.97265 2.0409 
Avg. 0.946109 2.025365 
 
In healthy old subjects the power in the middle scale 
(IMF 4) dominates other scales. In CHF group the 
power is completely suppressed in all scales. But in the 
CHF group’s normalized power average plot (Fig. 9) 
the normalized powers in the last scales (IMFs 9 and10) 
are very dominating compared to all lower scales. 
 The cumulative sum of normalized powers of IMFs 
average plot (Fig. 10) completely discriminates the 
healthy controls and patient groups in the middle scales 
(4th, 5th and 6th IMFs). The CHF patients average curve 
is significantly very slow in rising and approaches the 
maximum later.  
The estimated parameters ‘a and b’ of exponential 
curves for all the 54 records are given in the following 
Tables (3 and 4). Parameter ‘a’ completely 
discriminates (as in Fig.11) the healthy and patient’s 
groups and the plots of parameter ‘b’ shows the method 
is almost like a dyadic filter (as in Fig.12). 
 

DISCUSSION 
 
 In this study, a practical method for analyzing the 
HRV latencies is presented. It was shown that the 
latencies of HRV signal discriminates the healthy 
subjects and congestive heart failure subjects 
significantly. As a specific application the method was 
applied to half an hour HRV measurement of healthy 
controls and congestive heart failure patients and a 
good discrimination of the two groups was obtained.  
 The EMD method estimates the local time scales 
adaptively which reflects the intrinsic properties of 
the signal.  

 
 
Fig. 13: Sum of the powers of first six scales 
 
The first six scales (1-6 IMFs) of healthy control 
subjects contribute significant power (more than 85% 
of the total power) to the signal total power, but for 
congestive heart failure system the power in these 
scales are much suppressed (less than 50% of total 
power) as shown in the Fig. 13. This feature makes the 
healthy systems to reach its maximum response much 
earlier and makes the system more adaptive than 
congestive heart failure patients. 
 

CONCLUSION 
 
 The common hypothesis is that the human 
cardiovascular system is a highly complex adaptive 
system and that the complexity of its behavior allows 
for the broadest range of adaptive responses. The 
proposed technique is simple and adaptive method to 
analyze the complex HRV signal. The fastness in 
reaching maximum response of the healthy system 
represents its more adaptiveness for particular level of 
input and the slowness in reaching maximum response 
(more latency) of CHF subjects represents the system’s 
inability to respond quickly for various levels of inputs. 
All patients and healthy controls are discriminated 
correctly with 100% sensitivity and specificity. This 
fact makes the method a promising approach to be 
applied in clinical practice as a screening test for 
specific risk-groups. 
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