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Abstract: Problem statement: Heart Rate Variability (HRV) has been used as asuee of mortality
primarily with patients who had undergone cardiacgery. The analysis of Heart Rate Variability
(HRV) demands specific capabilities which are naivjled either by parametric or nonparametric
conventional estimation methods. The Empirical M@a#gomposition (EMD) adaptively estimates the
Intrinsic Mode Functions (IMFs) of nonlinear nongtaary signals.Approach: The intrinsic mode
functions estimated from the HRV signal were basedocal characteristics of the signal. The pplei
objective was to analyze the HRV latencies of hgakubjects in different age and pathological
conditions. The method was applied to HRV signal dhealthy young control subjects, 17 healthy old
control subjects and 20 congestive heart failurgepts for half hour duratiorResults: The results
showed that a healthy person’s HRV rapidly risesstsmaximum response much earlier than the HRV of
pathological subjects. The rising slope of the tisgale’s plot discriminates the healthy controld an
pathological subjects with 100% sensitivity andc#fiEty. Conclusion: This fact makes the method a
promising approach to be applied in clinical pi@eths a screening test for specific risk-groups.

Key words. Average period, empirical mode decomposition, heate variability, intrinsic mode
function, pathological conditions, clinical pragjcautonomous nervous system, mode
functions, scale filtering method

INTRODUCTION EMD are called Intrinsic Mode Functions (IMFs). EMD
is defined by an algorithm and has got no analltica
Over the last 20 years there has been widespreddrmulation. Hence the decomposition is best
interest in the study of variations in the beab&at understood by experimental investigation rathemtha
interval of heart known as heart rate variabilityRR  analytical results. Being fully data dependent and
interval variations. Clinical depression strongly highly adaptive it is found to be a highly efficten
associated with mortality with such patients may bemethod of decomposing any nonlinear and non-
seen through a decrease in HRV. Heart rate istationary signals. Job Lindsen and Bhattachar@aQyp
influenced by sympathetic and parasympathetic (yagaused EMD and Independent component analysis method
activiies of autonomous nervous system. Theto correct the blink artifacts (Lindsen and Bhditaya,
sympathetic activity accelerates the heart ratdenthe  2010). Ortiz et al. (2005) applied EMD method to
parasympathetic activity decelerates the heart ldte = decompose the fetal HRV series into its corepts
influence of both branches of the autonomous nexvouin order to identify, the high frequency oscillatio(Ortiz
system is known as sympathovagal balance reflénted et al., 20005). Netoet al. (2004) applied EMD to
the HRV, which is a non invasive measure of thesituations where postural changes occur, provoking
autonomous nervous system balance (Bucceéet., instantaneous changes in heart rate as a result of
2009; Feldmaret al., 2010). autonomic modifications. Shafgat al. (2009) applied
Empirical Mode  Decomposition  (EMD), EMD to evaluate the effect of local anesthesia &tVH
introduced by Huanget al. (1998) is a method of parameters. In this research the EMD method is tsed
decomposing  nonlinear, non-stationary,  multianalyze the HRV latencies of healthy subjects in
component signals. The components resulting frondifferent age and pathological conditions.
Corresponding Author: Santhi Chelladurai M.E., Electronics and CommuimacaEngineering,
Government College of Technology, Coimbatore-13
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Empirical Mode Decomposition (EMD): The

recover an evenly sampled signal from the irredylar

Empirical mode decomposition is based on thesampled event series, cubic interpolation was agpli

following assumptions; 1.The signal has at least tw

extrema’s-one maxima and one minima, 2. Themethodology: The EMD method is a sifting process

characteristic time scale is defined as the tinpsda
between the extrema and 3. If the data is totadlyodd

that estimates the local time scales of HRV sigital.
involves

the following steps, leading to a

of extrema, but has some inflection points, it &8 decomposition of the signal S(t) into its constitise

differentiated one or more times to reveal the ezrtL.
Final results are obtained by integration of the
components. The essence of this method is to fgenti.
intrinsic oscillatory modes of their characteristime
scales in the data empirically and then decomplse t
data accordingly. The components obtained as dtresy
of the decomposition process are termed as Intrinsi
Mode Functions (IMFs). Formally an IMF can be
defined as a function that satisfies the followiwgp
conditions 1.In the whole data set, the number of
extrema and the number of zero crossings must bg
either equal to or differ by at most one and 2.Ay a
point the mean value of the envelope defined bylloc
minima and the envelope defined by local maxima is
zero. The name IMF is adopted since it represdmds t
oscillation mode imbedded in the data. With this
definition of IMF in each cycle, defined by the aer
crossings involves only one mode of oscillationhwib :
complex riding waves.

MATERIALSAND METHODS

Datasets used in the analysis: To study the intrinsic
mode functions of HRV in different age and *®
pathological condition, half an hour duration HRV
signal from three different groups of subjects were
considered for the analysis:

» 17 healthy young control subjects without anye
clinical evidence of heart disease

e 17 healthy old control subjects without any clithica
evidence of heart disease

» 20 Congestive Heart Failure (CHF)

components:

X (an auxillary variable) is set to the signal 3¢t)

be analyzed and a variable k, which is the number
of estimated IMFs, is set to zero

Splines are fitted to the upper extrema and the
lower extrema. This will define the lower (LE) and
Upper Envelopes (UE)

The average envelope, m, is calculated as the
arithmetic mean between UE and LE

A candidate IMF, h, is estimated as the difference
between x and m

If h does not fulfill the criteria defining an IMR,

is assigned to the variable x and the steps (b)-(d)
are repeated. Otherwise, if h is an IMF then the
procedure moves to step (f)

If his an IMF it is saved as,cwhere k is the kth
component

The mean squared error, mse, between two
consecutive IMFs g and ¢ is calculated and this
value is compared to a stopping condition (usually
a very small value, i.e. T

If the stopping condition is not reached, the pérti
residue, i, is estimated as the difference between a
previous partial residug.rand ¢ and its content is
assigned to the dummy variable x and the steps of
(b)-(d) are repeated

If the stopping condition is reached then the raifti
process is finalized and the final residgg ican be
estimated as the difference between S(t) and the
sum of all IMFs

The criterion used to state whether h is an IMF or

The ECG data for the three groups has beeRot is to verify whether h satisfies the two coiutis

collected from the biomedical

website, that define an IMF. Currently, there is no set of

http://www.physionet.org. The healthy subjects ECGequations to estimate IMFs; therefore, the sifting
data was drawn from the Fantasia database and th@ocedure described above is an empirical techpigue

CHF data from the BIDMC-CHFDB.
Discrete event series,; R R.; intervals as a
function of R occurrence times, was constructed by an

employed for this purpose. An example of typicalHM
is shown in Fig. 1.

When the sifting process stops, the original digna

adaptive QRS detector algorithm. The QRS detectoB(t) can be represented as:

was based on the one presented Christov (20043 As

result of the detection algorithm, an unevenly sahp S(t):Zn:CK fr (1)

In order to
1516
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i ] RESULTS
= T AW The method is applied to half an hour duration
HRV measurements of 17 healthy young controls, 17
Tirme (me) healthy old controls and 20 congestive heart failur
patients. At first, the method is demonstrated by
Fig. 1: A typical IMF applying it to a typical young and old Control aad
Heart Failure (CHF) subject. Afterwards, the
Where n is the number of IMFs,tbe kth IMF and ¢4 discrimination of the three subject groups withpext
is thefinal residue. to different parameters obtained from the metholtl wi
Equation 1 indicates that IMFs can be linearlybe shown. The typical signals, IMFs and the
combined in order to obtain the decomposed sigttal S reconstructed signals are shown in Fig. 2. For the
typical young and old control subject and CHF ptie

Time domain HRV measures: records fly07 and flo04 and CHF 02 records from

physionet website were selected, shown in (Fig. 2

v ZEZN:‘C (j)‘z ) a(i),b(i) andc(i)). The method adaptively decompose
TN the three signals into IMFs as shown in Fig. 2),a(ii)

andc(ii). The average periods, absolute powers and

The power of the nth IMF was computed as: normalized powers of IMFs are computed. The signal
reconstructed using the IMFs leaving out the residu

where, ¢, is the nth IMF and j=1,....N samples and component were shown in (Fig.2.a (iii), b(iii) agay).

average period (mean period) of the INFis: The absolute powers gVand average periods {jT

of the IMFs are computed using simple formulae give
-~ dist in equation (2) and (3). The average period of the
T ~Ze-1 ®) successive IMFs almost doubles the previous IMF’s

average period. The residue part of the signal is a
where, dist refers to the distance between thé dinsl monotonic trend with average period zergq €0).
last zero crossings and Zc is the number of zero The computed average periods, (Tof IMFs for
crossings. the 3 subjects are given in Table 1.

) o ) The method decomposes the healthy young and old
Interpretation of intrinsic mode function: By the  control's HRV signal (fly07 and fLo04) into eight
nature of the decomposition procedure, the sigsal i\Fs and CHF patients HRV into ten IMFs. The
decomposed into N fundamental components, each witQygitional component in CHF patient’s HRV was due t
distinct time scale. More specifically, the first \ha |atencies present in the signal. Plotting therage
component is the smallest time scale componenthNhicperiods of IMFs against its IMF number gives an
corresponds to the highest frequency componertef t gyponential graph as shown in Fig. 3. The average
data. As the decomposition process proceeds, it ti heriod of IMFs of CHF 02 subject was significantly
scale increases and hence, the mean frequegc;_eof tHhwer (Table 1) in value and the rate of increasepe)
scales decreases. The average period of intriiaie t 1o |MFs also smaller compared to healthy cdstro
scale almost doubles that of the previous one,  prom Fig. 3, the rising slopes of the exponential
suggesting that the EMD behaves like a dyadicrfilte ¢ryes of healthy controls are significantly higher
Based on this a time scale filtering method caibviaéd compared to CHF patients’ curve. The slope of the

up as. exponential curve was approximated using Y=ab
N curve fitting mathematical equation. The variabje *
S,h(t)=2q(t) represents the average period of IMFs and ‘X
j=l

represents the IMF numbers. Variable ‘a’ represthds
Where: slope of the exponential graph and ‘b’ is the sgali

: factor (approximately 2) of the time scales. The
l, he[l,...,N], K h. (4) parameters ‘a’ and ‘b’ are estimated using simpéest

square curve fitting technique (Ramana, 0000). The

When I=1 and h < N, it is a high-pass filter; wHenl  estimated ‘@’ and ‘b’ parameters for the typicahltiey
and h=N, it is a low-pass filter; when ¥h< N, itisa young and old controls and CHF patient are given in
band-pass filter. Table 2.
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Table 1: Average Periods of IMFs

IMFs IMF, IMF,  IMF3 IMF4 IMFs IMF¢ IMF» IMFg IMFq IMF 1o
Fly07 4.2518 8.2811 15.845 32.627 61.482 116.53  .3209 498.33 - -
Flo04 3.3051 6.657 13.866 3445 65.032 130.42 928.1 576.33 - -
Chf02 1.9193 3.6335 7.1147 13.623 25.349 59.081 4.6B1 216.8 411.25 626
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control subject (fly07) the absolute power was high
all IMFs. Two significant peaks are observed at IMF
and IMF 5. For healthy old control subject (flo@Hg
power is less compared to healthy young in all IMFs
except in IMF4 and dominates all the other IMFst Bu
for CHF 02 the absolute powers of all IMFs were
completely suppressed.

The IMFs powers can be calculated in normalized
units (n.u) which represent the relative value athe
IMF power in proportion to the total power.
Normalization tends to minimize the effect on the
powers of IMFs, if the total power changes. The
computed normalized powers (Nn) of IMFs for the 3
subjects were presented in Fig. 5 for comparison. |
healthy young control subject (f1y07) the relatpavers
of all IMFs (except IMF 7and8) are high. In healtbig
control subject (flo04) the relative power of IMFig4
very dominating compared to all IMFs. But for CHE 0
the relative powers of all IMFs were suppressedixc
for the last (IMFs 9 and 10) two IMFs power, thetla
scale (IMF 10) is dominating compared to all theFBvi
Suppression of power in the lower scales (higher
frequencies) makes the system less adaptive.

The contribution of first six IMFs of healthy yogin
and old subjects to the HRV measurements are
approximately 92 % and 94%. The contribution of
third, fourth and fifth IMFs of healthy old is
approximately 72 %. But, the contribution of filsi
IMFs of CHF patient to the total power was
approximately 50%. The results show that more power
in the lowest (IMF 1) scale increases the powenigh
frequency component in healthy young subject. More
power in the middle (IMF 4, 5) scales increases the
power of lower frequency components in healthy old
subjects. In CHF subjects the power in the loweates
and middle scales (high and lower frequency
components) are much suppressed, but the powbkein t
last scales (lowest frequency components) wereehigh
The latencies of the IMFs can be presented visumily
plotting the cumulative sum of IMF's normalized
powers against it's IMF number as shown in Fig. 6.

The curve for healthy young control subject is
more rapidly rising from the first IMF and approash

The slope ‘a’ of the average period curve of CHFthe maximum earlier. The curve for healthy old cont

patient is significantly lower (0.99042) compareml t sypjects is initially very slow in the first thréFs but
healthy controls (2.1683 and 1.6244). The averag@fter the third IMF more rapidly rising and apprbes
periods of successive IMFs of healthy controls andhe maximum earlier. But, the curve for CHF subject
CHF patients approximately doubles (1.94 to 2.07slow rising and approaches the maximum later. These
times) as that of the previous IMFs average per&sd, observations are very characteristics for all theee
defined by the parameter ‘b’ groups of signals.

The computed absolute power,(Mof IMFs for the The group’s average plots of average periods are
3 subjects were presented in Fig. 4. For healtyngo shown in Fig. 7.
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Table 2: Estimated parameters of time scales

Group'snormalized power

- ) Records a b
g 029 F1y07 2.1683 1.9504
Z o2 AN B F1004 1.6244 2.0711
g 015 : ey youne CHF 02 0.99042 1.942
RS N CHF ~
ZE 0.05 .
0 Table 3: ‘a’ and ‘b’ of healthy young and old canisr
1 2 3 4 5 6 7 8 9 10
IMF mumber Healthy young Healthy Old

Recs a b Recs a b

F1ly01 15211 1.9762 Flo01 1.7778 1.9709
F1y02 1.8689 1.9241 F1o002 1.6338 1.957
Cumulative sum of group's nornmalized power F1y03 1.8145 1.9645 F1003 1.5439 1.9474
F1ly04 1.6837 2.0483 Flo04 1.6244 2.0711
F1y05 1.8516 1.9672 F1o05 1.7847 1.9299
F1y06 2.2276 1.8835 F1o06 2.1323 1.8355

Fig. 9: Group’s normalized power average plots

—+Healthy young

Normalized power
o
(=)}

, * Healthy old F1y0o7  2.1683 1.9504 F1007  1.7117 1.8863

04 CHF F1y08  1.4463 21294 F1009  2.3139 1.9968
021 F1y09  1.6467 2.0093 F1010  1.4076 2.045

0 Flyl0 1557  1.8651 F2001  2.0781 1.9243

1 2 3 4 5 6 7 8 910 F2y02  2.0526 2012  Flo01  1.9314 1.9503

IMF mumber F2y03  1.879 1.9718 F2002  1.4821 1.9191

F2y06  1.7984 1.9822 F2003  2.0674  1.9473

Fig. 10: Group’s Cumulative sum of powers average2yo7 — 2.044 2 F2004 24377  1.9762
plots F2y08  1.5269 1.9408 F2006  2.0238 1.9285

F2y09 14833 1.9699  F2007 1.8366 1.8245

F2yl0  1.599 2.1044 F2008  1.5112 2.199
The group’s average plots show that the slopedef t Avé' 1.774641 1.9823  Avg. 1841082 1.959359

healthy controls are higher than CHF group patients
The slopes, parameter ‘a’ completely discriminates )
healthy controls and CHF group patient with 100%  The group’s absolute power average plot (Fig. 8)
sensitivity and specificity for a threshold valuelos as  shows the absolute power of young subjects are
given in Fig. 11. The estimated parameters arengive ~ significantly high compared to old and CHF group
Table-3 and 4. The scaling parameter ‘b’ ispatients. In healthy young subjects the power i@ th
approximately equal to two as given in Fig. 12. lowest scale (highest frequency) dominates othalesc
1522
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Table 4: 'a’ and ‘b’ of CHF patients

Sum of the powers of first six scales

CHF
Recs a b 01
chfo1 1.3832 1.9288 Nofmalized 0.6 e
chfo2 0.99042 1.942 power 0.4 'Heaﬁl}_}f;m”
chfo3 1.0975 2.0123 0.2 ® Healthyo
chfo4 0.74149 2.0965 0 " N CHF
chfos 0.82322 2.028
chfo9 0.91877 1.9891 1.Young 2.0ld 3. CHF
chf10 0.75579 2.002
chfl1 0.89613 1.981 ) ) )
chf12 1.0524 1.997 Fig. 13: Sum of the powers of first six scales
chf13 0.80251 1.996
chfl4 1.1233 2.069 The first six scales (1-6 IMFs) of healthy control
chf15 0.84106 2.0747 biect tribute sianificant tha¥685
ohf201 11642 20159 subjects contribute significant power (more thafb
chf202 1.0087 2.0346 of the total power) to the signal total power, ot
chf203 0.9781 2.0321 congestive heart failure system the power in these
gmggg 8'%323 g'gggé scales are much suppressed (less than 50% of total
chi206 0.66204 2 0552 power) as shown in the Fig. 13. This feature makes
chf207 1.0352 2.0402 healthy systems to reach its maximum response much
chf208 0.97265 2.0409 earlier and makes the system more adaptive than
Avg. 0.946109 2.025365 congestive heart failure patients.
In healthy old subjects the power in the middlelesca CONCLUSION

(IMF 4) dominates other scales. In CHF group the
power is completely suppressed in all scales. Buhé

CHF group’s normalized power average plot (Fig. 9) , . . .
the normalized powers in the last scales (IMFs@®Lah cardiovascular system is a highly complex adaptive

are very dominating compared to all lower scales. system and that the complexity of_its behavioratio

The cumulative sum of normalized powers of IMFsfOr the broadest range of adaptive responses. The
average plot (Fig. 10) completely discriminates theProposed technique is simple and adaptive method to
healthy controls and patient groups in the middiless  analyze the complex HRV signal. The fastness in
(4™ 5" and &' IMFs). The CHF patients average curve reaching maximum response of the healthy system
is significantly very slow in rising and approachtbs represents its more adaptiveness for particulasl lef/
maximum later. input and the slowness in reaching maximum response
The estimated parameters ‘a and b’ of exponentiaimore latency) of CHF subjects represents the syste
curves for all the 54 records are given in theololhg  jnability to respond quickly for various levels ioputs.
Tables (3 and 4). Parameter ‘a’ completely patients and healthy controls are discriminated
discriminates (as in Fig.11) the h‘ez’;\Ithy and pésen correctly with 100% sensitivity and specificity. i§h
groups and the plots of parameter ‘b’ shows thehoget o

fact makes the method a promising approach to be

is almost like a dyadic filter (as in Fig.12). . ) I . .
applied in clinical practice as a screening test fo
DISCUSSION specific risk-groups.
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