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Abstract: Problem statement: Expert level opening knowledge is beneficial to game playing 
programs. Unfortunately, expert level opening knowledge is only sparsely available for 9×9 Go. We 
set to build expert level opening books for 9×9 Go. Approach: We present two completely different 
approaches to build opening books for 9×9 Go without relying on human Go expertise. The first 
approach is based on game outcome statistics on opening sequences from 300,000 actual 9×9 Go 
games played by computer programs. The second approach uses off-line stage-wise Monte-Caro tree 
search. Results: After “solution tree” style trimming, the opening books are compact and can be 
used effectively. Testing results show that GoIntellect using the opening books is 4% stronger 
than GoIntellect without the opening books in terms of winning rates against Gnugo and other 
programs. In addition, using an opening book makes the program 10% faster. Conclusion: 
Classical knowledge and search approach does not work well in the game of Go. Recent 
development in Monte-Carlo tree search brings a breakthrough and new hope-computer programs 
have started challenging human experts in 9×9 Go. A well constructed opening book can further 
advance the state of the art in computer Go. 
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INTRODUCTION 

 
 The classical full board search paradigm has 
produced programs stronger than human expert players 
in a number of games such as Chess, Checkers and 
Othello. Yet this classical approach failed miserably in 
Go, since good Go knowledge does not translate to 
good evaluation function to be used by mini-max style 
full board game tree search (Chen, 2003). The playing 
strength of programs for 19×19 and 9×9 Go stuck at 
intermediate amateur level until the recent development 
of Monte-Carlo Tree Search (MCTS) (Coulom, 2007a; 
Gelly et al., 2006; Kocsis and Szepesv’ari, 2006), 
which bypassed the need of static evaluation functions 
and brought a breakthrough in computer Go. Much 
additional work has been done on MCTS and its 
enhancement in recent years (Chaslot et al., 2007; 
Chen et al., 2008; Chen and Zhang, 2008; Coulom, 
2007b; Gelly and Silver, 2007). 
 Opening books are common in computer game 
playing (Buro, 1999; Lincke, 2000). The playing 
strength of 9×9 Go programs can be further enhanced 

by using expert level opening books. Unfortunately, 
there are no publicly available expert opening books for 
9×9 Go. Even 9×9 Go game records by professional 
experts are scarce, not enough available for building 
opening books. We propose two approaches to build 
9×9 Go opening books without relying on human Go 
expertise. The first approach is based on game outcome 
statistics on opening sequences from 300,000 actual 
9×9 Go games played by computer programs. Top 9×9 
Go programs can now challenge human experts. We 
discuss the details of this approach and described how 
to use such an opening book in a 9×9 Go program. We 
also discuss a second approach of using off-line stage-
wise Monte-Caro tree search. The testing results of 
using the constructed opening books are, which shows 
GoIntellect using the opening books is 4% stronger than 
GoIntellect without the opening books in terms of 
winning rates against Gnugo. In addition, using an 
opening book makes the program 10% faster.  
 

MATERIALS AND METHODS 
 
 We shall discuss the details of our approach in 
this study. 
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Fig. 1: Equivalent opening move sequences 
 
Canonical orientation of a game: We call a sequence 
of moves of any length starting from the empty Go 
board an opening move sequence. An opening move 
sequence (including a whole game) can have equivalent 
move sequences in 8 different orientations. For 
example, the following 8 opening move sequences are 
all equivalent (Fig. 1) 
 In building an opening book, we should combine 
the outcome statistics of all extension games from each 
of the 8 equivalent initial move sequences. We don’t 
need to consider color flip here, since Black always 
plays first in Go. 
 Let B be the set of all 81 points on the 9×9 Go board. 
We define 8 transformation functions from B to B: 
 
f0: Identity function mapping every point to itself 
f1: Rotate clockwise 90° 
f2: Rotate clockwise 180° 
f3: Rotate clockwise 270° 
f4: Reflection with respect to the vertical center line 
f5: f1 followed by f4 
f6: f2 followed by f4 
f7: f3 followed by f4 
 
 Applying f0-f7 to each move in the move sequence 
in the upper left diagram of Fig. 1, we get all the 
equivalent variations in Fig. 1.  
 These 8 transformations together with composite 
function operator form a group in modern algebra. f0 is 
the identity element.  

 
 
Fig. 2: Position types of a 9×9 Go board 
 
They each have an inverse transformation: 
 
f1

−1 = f3 
f3

−1 = f1 
f i

−1 = fi for i = 0, 2, 4, 5, 6, 7 
 
f1 and f3 are inverse to each other. The other 
transformations are inverse to itself. These 8 
transformations can generate equivalent move 
sequences. Two move sequences <m1, m2, …, mk> and 
<m1’, m2’, …, mk’> are said to be equivalent if and only 
if there is an i in {0, 1, 2,…, 7} such that fi (mj) = mj’ 
for j = 1, 2, …, k. 
 We classify all 81 9×9 Go board points into 4 
types: Center, axis,  diagonal  and pie. As shown in 
Fig. 2, there are: 
 
1 center: c1 
4 axes: a1, a2, a3, a4 
4 diagonals: d1, d2, d3, d4 
8 pies: p1, p2, …, p8 
 
 Let t(m) be the type of move location m. We call 
<t(m1), t(m2), …, t(mk)> the location type sequence of 
move sequence <m1, m2, …, mk>. For example, let’s 
consider a short move sequence <E5, D3, C5>, Fig. 3. 
 This short opening move sequence has its 
location type sequence <c1, p5, a4>. We call the 
sequence of the subscripts, <1, 5, 4> in this example, 
its location type index sequence (Table 1). We shall 
use this index sequence to identify the canonical 
form of a move sequence. 
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Fig. 3: An opening move sequence 
 

 
 
Fig. 4: Canonical form of the move sequence in Fig. 3 
 
Table 1: The equivalent move sequences of the move sequence in 

Fig. 3 and their type index sequences 
  Location type Type index 
I Fi(S) sequence sequence 
0 E5, D3, C5 c1, p5, a4 154 
1 E5, C6, E7 c1, p7, a1 171 
2 E5, F7, G5 c1, p1, a2 112 
3 E5, G4, E3 c1, p3, a3 133 
4 E5, F3, G5 c1, p4, a2 142 
5 E5, G6, E7 c1, p2, a1 121 
6 E5, D7, C5 c1, p8, a4 184 
7 E5, C4, E3 c1, p6, a3 163 

 
 A move sequence can have up to 8 equivalent 
move sequences under rotation and reflection (through 
a transform function f0-f7 on every element of the 
sequence). We call the one with lexically smallest 
location type index sequence its canonical form. 
Considering the earlier example opening move 
sequence S = <E5, D3, C5>, we have one hundred and 
twelve is the smallest location type index sequence, so 
the canonical form of S is <E5, F7, G5>, Fig. 4, which 
can be obtained via function f2 (rotate clockwise 180°). 
We call f2 the canonical transformation for the move 
sequence <E5, D3, C5>. The canonical transformation 

converts a move sequence to the equivalent sequence in 
the canonical form. 
 The original sequence can be reconstructed via f2

−1 
(= f2). In this example, the canonical transformation can 
be determined when move 2 is played. A sufficient 
condition to determine a unique canonical 
transformation for any extension of an opening 
sequence is a move at a pie point. 
 Only about 1/8 of the actual games are in canonical 
form. Before we merge them into a big opening tree, we 
should convert them into canonical form, so we can 
collect all relevant statistics together for the equivalent 
opening move sequences. 
 
2.2 Merge games into a tree: It would be ideal to use 
9×9 games played by human Go experts to build an 
opening book. Unfortunately the available professional 
9×9 games are rather limited. So we use 9×9 games 
played by computer Go programs instead. We have 
over 300,000 testing games of GoIntellect against 
GnuGo, CrazyStone, Mogo and older versions of 
GoIntellect plus thousands additional 9×9 games down 
loaded from KGS on the Internet. 
 All the games were in sgf format. We wrote a 
script to process the games one at a time. For each 
game, we first let GoIntellect to step through all moves 
in the game to reach the end configuration, then count 
the territory score (we use Chinese rule with 7.5 points 
komi) and record the win/loss result. Then find its 
canonical transformation by applying all transform 
functions to moves one at a time until the canonical 
orientation is determined (usually after examining no 
more than first 3 moves). We apply the canonical 
transformation to moves up to the depth limit of 
opening book tree; we use 16 as the limit and get an 
opening sequence in canonical form.  
 A node in the opening tree needs to record the 
move location plus the move/player information (we 
code every board location into a number and use + 
number for Black move,-number for White move), the 
number of games passing through the node and the 
number of winning games (say from the node move 
player’s point of view) passing through the node. We 
initialize the tree, in sgf form, by using the first game. 
We merge a new opening sequence into the growing 
opening tree by tracing its move sequence (in 
canonical form) through the tree until it goes off the 
tree, then we augment the tree by attaching a branch 
from the node for the remaining opening move 
sequence in the game.  
 The C-like pseudo code for building an opening 
book from game records is shown in Fig. 5. We 
choose tree rather than graph as underlying data 
structure for the opening book for two reasons.  
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Fig. 5: C-like pseudo code for opening book building from game records 
 
First, it is much more efficient to build a tree from 
game records than to build a graph. Second, sometimes 
the path leading to a node affects the set of legal moves 
at the node (ko status). 
 Due to the limitation on the memory, we can’t just 
build a giant game tree of 300,000 games. We have to 
trim game trees before they get too big, then merge 
trimmed trees together. We developed a procedure to 
merge many opening trees into one big opening tree, so 
we can build it a reasonable size piece at a time. Several 

opening books can be merged into one via the pseudo 
code in Fig. 6. 
 
Trim an opening tree to an opening book: We can 
trim move beyond opening depth, if we did not do so 
before the game merging. Also we can trim away any 
node with fewer than a threshold number of games passing 
through, we use 20 as the threshold, so the remaining 
nodes are more reliable. At this point, nodes with very low 
winning rates, say less than 25%, can be pruned, since 
they are likely to be bad moves.  
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Fig. 6: C-like pseudo code for merging opening books 
 
If we are to play, we will never choose it. If the opponent 
selects this bad move, we probably can win without using 
the opening book. A sorting routine was programmed to 
order the children of a node according to winning rates for 
the whole tree providing convenience in tree 
manipulations. 
 Assume we play Black, then at each node black is to 
play next, we just need to keep small number of best 
successors and trim the rest sub-trees. In that way, we 
can get a compact “solution tree” opening book with size 
shrunk by 1000 fold. Similarly we can create a “solution 
tree” for White. Merging Black “solution tree” and 
White “solution tree”, we get an opening book that can 
be used by either Black or White. The sgf opening tree 
we produced after merging 300,000 games before 
trimming was several hundred mega bytes in size. The 
final working opening tree is about 60 K bytes 
containing about 3000 moves.  

Practice: We shall show how to make opening book 
moves in 9x9 Go matches. And we introduce an alternate 
approach of building an opening book for 9x9 G0. 
 
Use of the opening book: The opening book is a sgf 
game tree containing only move sequences in canonical 
form. The players may play moves in any orientation. 
To use the book, we keep 8 tree-node pointers p0, p1, 
p2,…, p7, where pi points to the node of which the move 
sequence from the root to it is a move sequence in 
canonical form <fi(m1), fi(m2),…, fi(mk)> where <m1, 
m2,…, mk> is the actual move sequence of on the board 
so far, if such a node exists, otherwise pi is null. The 8 
pointers are initialized to point to the root of the 
opening book tree, which corresponds to the empty 9×9 
board. When an actual move m is played on the board 
by either side, for each non-null pi, we advance the 
pointer pi to point to the successor node containing the 
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move fi(m) if such successor exists; otherwise pi 
becomes null. 
 When it is our turn to play and at least one pi is not 
null, our book move selection is to consider all 
successor nodes of all nodes pointed by a pi and pick 
the successor with highest winning rate. We also take 
the confidence factor into consideration-the more 
games through it the better. If the winning rate is below 
a threshold (45% in our implementation), we give up 
the book move and go back to MCTS. If the winning 
rate is high enough, get the node move m1 of the best 
child of the selected node pointed by pi. fi

−1(m1) will be 
our book move to play on the board. When all 8 pi’s 
become null, the game is out the opening book. We 
shall discuss building opening books using stage-wise 
off-line MCTS. 
 
Off-line stage-wise Monte-Carlo tree search: We 
shall discuss building opening books using off-line 
stage-wise MCTS. The basic idea is to run the 
program’s MC tree growing engine, i.e., UCT 
algorithm, days and nights to build a huge Monte-Carlo 
Search Tree (MCST) then take the top part as an 
opening book. But this basic idea has a drawback: as 
the tree gets bigger and bigger, the UCT algorithm will 
play the best move exponentially more often than the 
rest moves. It more or less converges to the “principle 
variation” path. A book should be able to provide 
moves responding to opponent’s suboptimal play. To 
remedy this drawback, we use the following stage-wise 
strategy to combine many separate MC search trees into 
one big opening tree. 
 We first did 20 million simulations from the empty 
board position trying only moves in canonical 
orientation, which took about a half hour. We 
identified the top 6 opening moves based on winning 
rates. For each of the 6 candidate opening first move, 
we played a Black stone on the board at the position, 
then start a new MCTS to grow a new MCST. For 
each such MCST generated, we identified 3-5 top 
responses and grew a new set of MCSTs with first two 
moves already placed on the board. We then 
developed the next set of MC trees with first three 
moves specified. This process could go on many 
levels. We only selectively got to no more than 4 
levels. We performed 20 million simulations for each 
MCST. Then we trimmed and merged them and then 
trimmed it again to form an opening book tree. Since 
we would like to store and reload MC search trees for 
later use. We used a compact text format to store 
essential information of a MC Search Tree (MCST). 

The following context-free grammar specifies the 
syntax of our MCST: 
 
<MCST> ::= {<move> <num wins> <num games> 
<MCST-list>} 
<MCST-list> ::= <empty> | <MCST> <MCST-list> 
<move> ::= <sign> <board point> | <sign><pass> | 0 
<num wins> ::= <natural number> 
<num games> ::= <natural number> 
<sign> ::= + |-| <empty> 
 
 Where “{“ and “}” are literals. A positive number 
represents a Black move and a negative number 
represent a White move. This format is simpler and 
more compact than sgf format and easier to write a 
parser for. The authors would like to thank Mr. Dawei 
Du for the implementation of the compact text disk 
read/write format for MCST. 
 

RESULTS AND DISCUSSION 
 
 We tested the effectiveness of an opening book 
constructed from over 300 thousand actual games and 
another opening book generated from stage-wise off-
line MCTS against GnuGo 6.0 level 10. The number 
of simulations per move for GoIntellect (GI) is set to 
1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 K (when it 
does not have an opening book move or does not use 
an opening book). For each of the two opening books, 
for each of the number of simulations per move 
setting, GI using the opening book played 100 games 
taking Black and another 100 games taking White and 
GI without opening book played the same number of 
games for comparison of the outcomes. A total of 
6000 games played on various PCs. The result is 
summarized in Fig. 7. 
 The versions of GI using opening book 
outperformed the version without opening book by 
about 4% on the average in winning rates. 
Furthermore, when there is an acceptable opening 
book move available, the program consumes very 
little time. The time saved can be used by later moves. 
GI with opening book typically retrieves 2-6 opening 
moves from the opening book a game, saving about 
10% of the time.  
 GI with the opening book from actual games 
performed slightly better than GI with the opening book 
from off-line MC simulations. The outcome may 
reverse if we use more simulations for a building block 
and more layers of building blocks in off-line MC 
simulation based opening book. Additional testing 
games played against other programs showed similar 
playing strength improvements. 
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Fig. 7: Experimental results against GnuGo 6.0 level 10. GI with playing level k performs 2k−1 K simulations per 

move 
 

CONCLUSION 
 
 Opening books can help programs play stronger 
and faster. When expert knowledge is not readily 
available, we can build opening books by combining 
actual games and using the outcome statistics to guide 
the move selection. The book can be trimmed to a 
compact size leaving out nonessential portions of the 
tree. Off-line stage-wise MCTS approach is equally 
effective. The full board opening book approach is 
effective in 9×9 Go. But when the size of the Go board 
increases, the outcome statistics on opening sequences 
become rather sparse and less reliable. For 19×19 Go, 
instead of building opening books for the full board, we 
build opening books for corners, called Joseki 
dictionaries. We use human expert knowledge in this 
case-Joseki dictionary books are abundant.  
 In Joseki dictionaries for corners, we also consider 
Black and White flip. Each of the 4 corners has 4 
different variations of a Joseki from reflection w.r.t. its 
main diagonal and color flip. So each Joseki has 16 
equivalents, 4 for each corner. The same techniques 
described can be used to play standard corner moves 
using a Joseki dictionary (a move tree) with 16 Joseki 
tree node pointers, 4 for each corner. The experience of 
Go Intellect has been that Joseki dictionaries have little 
benefit in 19×19 Go matches. 
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