Journal of Computer Science 8 (10): 1594-1600, 2012
ISSN 1549-3636
© 2012 Science Publications

Building Opening Books for 9x9
Go Without Relying on Human Go Expertise

'Keh-Hsun Chen antPeigang Zhang
'Department of Computer Science,
University of North Carolina at Charlotte, CharggtNC 28223, USA
’Microsoft Coorperation, Boulder, CO 80301, USA

Abstract: Problem statement: Expert level opening knowledge is beneficial tomga playing
programs. Unfortunately, expert level opening krexige is only sparsely available fox®Go. We
set to build expert level opening books fo99Go. Approach: We present two completely different
approaches to build opening books for99Go without relying on human Go expertise. Thetfir
approach is based on game outcome statistics oningpsequences from 300,000 actuab 9Go
games played by computer programs. The second agpuses off-line stage-wise Monte-Caro tree
search.Results: After “solution tree” style trimming, the openirgpoks are compact and can be
used effectively. Testing results show that Goletdl using the opening books is 4% stronger
than Golntellect without the opening books in terafswinning rates against Gnugo and other
programs. In addition, using an opening book makes program 10% fasteiConclusion:
Classical knowledge and search approach does nok well in the game of Go. Recent
development in Monte-Carlo tree search brings aktteough and new hope-computer programs
have started challenging human experts %8 @o. A well constructed opening book can further
advance the state of the art in computer Go.

Key words: Computer Go, Monte-Carlo tree search, opening $ook

INTRODUCTION by using expert level opening books. Unfortunately,
there are no publicly available expert opening lsofok
The classical full board search paradigm had*9 Go. Even 89 Go game records by professional
produced programs stronger than human expert gayeFXPerts are scarce, not enough available for mgldi

in a number qf games such as Che_ss, Cr_]eck_ers aggg Go opening books without relying on human Go
Othello. Yet this classical approach failed misérab expertise. The first approach is based on gamemec

Go, since gqod Go !mowledge does noF _translate Wtatistics on opening sequences from 300,000 actual
good evaluation function to be used by m|n|-ma>t$ty 9x9 Go games played by computer programs. Tx® 9
full board game tree search (Chen, 2003). The piYi Go programs can now challenge human experts. We
strength of programs for ¥39 and %9 Go stuck at giscuss the details of this approach and desciiied
intermediate amateur level until the recent develept to use such an opening book in*¥09Go program. We
of Monte-Carlo Tree Search (MCTS) (Coulom, 2007a;also discuss a second approach of using off-liagest
Gelly et al., 2006; Kocsis and Szepesv'ari, 2006), wise Monte-Caro tree search. The testing results of
which bypassed the need of static evaluation fansti using the constructed opening books are, which show
and brought a breakthrough in computer Go. MuchGolntellect using the opening books is 4% strortigan
additional work has been done on MCTS and itsGolntellect without the opening books in terms of
enhancement in recent years (Chagbtal.,, 2007; Winning rates against Gnugo. In addition, using an
Chenet al., 2008; Chen and Zhang, 2008; Coulom,°P€ning book makes the program 10% faster.
2007b; G(_elly and Silver, 2007). _ MATERIALSAND METHODS

Opening books are common in computer game
playing (Buro, 1999; Lincke, 2000). The playing We shall discuss the details of our approach in
strength of 89 Go programs can be further enhancedhis study.

Corresponding Author: Keh-Hsun Chen, Department of Computer Science, égity of North Carolina, Charlotte,
NC 28223, USA
1594

J. Computer i, 8 (10): 1594-1600, 2012

| ! Cob U GO R Rl)
Yo Yo il L L
. s $ / L]] i
QI 8 B8 a1 v g
! |
| | ? _._k_____r b
9 |
o7e 0 Tole LTl 1 AR TR BRI) TS
? ok e T
T)
L TR T T
! rsui
O
5 AR RN - B AR

Fig. 2: Position types of ax9 Go board

Fig. 1: Equivalent opening move sequences))
They each have an inverse transformation:
Canonical orientation of a game: We call a sequence
of moves of any length starting from the empty Gofl_ =1
board an opening move sequence. An opening mo t=fy
sequence (including a whole game) can have equivalefi - =fifori=0,2,4,5,6,7
move sequences in 8 different orientations. For]
example, the following 8 opening move sequences ark @nd & are inverse to each other. The other
all equivalent (Fig. 1) transformations are inverse to itself. These 8
In building an opening book, we should COmbinetransformatlc_)l_ns can generate equwaler;t r(;wove
the outcome statistics of all extension games feaith s(;(]quer:ces. nv¥o>rr;?gesas%q;eg<e:ee§djiT\ilzéléHt ?anzlnonly
of the 8 equivalent initial move sequences. We don’;s tﬁéreﬁé ani |kn {0, 1, 2,..., 7} such that(f) = m
need to consider color flip here, since Black alsvay forj=1, 2, ... k. J
plays first in Go. We classn‘y all 81 99 Go board points into 4
Let B be the set of all 81 points on théd9G0 board. types: Center, axis, diagonal and pie. As shown i

We define 8 transformation functions from B to B: Fig. 2, there are:

fo:
fl:

Identity function mapping every point to itself
Rotate clockwise 90°

1 center: ¢
4 axes: g &, &, &

f,: Rotate clockwise 180° 4 diagonals: d db, ds, i

fa: Rotate clockwise 270° 8 pies:p P ..., B

f4: Reflection with respect to the vertical centeeli

fs: f; followed by f; Let t(m) be the type of move location m. We call
fe: f, followed by f, <t(my), t(my), ..., t(m)> the location type sequence of
f,: 5 followed by move sequence <mim, ..., m>. For example, let's

Applying fo-f; to each move in the move sequence

consider a short move sequence <E5, D3, C5>, Fig. 3
This short opening move sequence has its

in the upper left diagram of Fig. 1, we get all thelocation type sequence gcps, a>. We call the
equivalent variations in Fig. 1. sequence of the subscripts, <1, 5, 4> in this examp
These 8 transformations together with compositdts location type index sequence (Table 1). Welshal
function operator form a group in modern algebgés f use this index sequence to identify the canonical
the identity element. form of a move sequence.
1595

J. Computer i, 8 (10): 1594-1600, 2012

converts a move sequence to the equivalent seqirence
the canonical form.

The original sequence can be reconstructed,Via f
(= fy). In this example, the canonical transformation ca
be determined when move 2 is played. A sufficient

condition to determine a unique canonical

9 9 transformation for any extension of an opening
sequence is a move at a pie point.
"ff‘ Only about 1/8 of the actual games are in canbnica
S form. Before we merge them into a big opening tves,
should convert them into canonical form, so we can
collect all relevant statistics together for thesigglent
opening move sequences.

Fig. 3: An opening move sequence

2.2 Merge games into a tree: It would be ideal to use
9x9 games played by human Go experts to build an
opening book. Unfortunately the available profesalo
@ 9x9 games are rather limited. So we us® Yames
played by computer Go programs instead. We have
over 300,000 testing games of Golntellect against
o__a GnuGo, CrazyStone, Mogo and older versions of
- Golntellect plus thousands additionad®games down
loaded from KGS on the Internet.

All the games were in sgf format. We wrote a
script to process the games one at a time. For each
game, we first let Golntellect to step throughratives
in the game to reach the end configuration, thamto
the territory score (we use Chinese rule with bbis
Fig. 4: Canonical form of the move sequence in 8ig. komi) and record the win/loss result. Then find its

canonical transformation by applying all transform
Table 1: The equivalent move sequences of the nsegeience in fynctions to moves one at a time until the candnica
Fig. 3 and their type index sequences orientation is determined (usually after examinimgy

Locationtype Typeindex \nre than first 3 moves). We apply the canonical
| Fi(S) sequence sequence . L
0 E5 D3 C5 o P 152 transformation to moves up to the depth limit of
1 E5. C6. E7 P a 171 opening book tree; we use 16 as the limit and get a
2 E5, F7, G5 Coa 112 opening sequence in canonical form.
3 ES5, G4, E3 Cp & 133 A node in the opening tree needs to record the
4 ES, F3, G5 £Pu & 142 move location plus the move/player information (we
5 ES, G6, E7 LGP 121 code every board location into a number and use +
6 E5, D7, C5 G Ps, & 184 .
7 E5 C4 E3 PN 163 number for Black move,-number for White move), the

number of games passing through the node and the
A move sequence can have up to 8 equivalennumber of .Winning games _(say from the node move

. . E)Iayer’s point of view) passing through the nodee W
move sequences gnder rotation and reflection (gfrou initialize the tree, in sgf form, by using the figame.
a transform function f0-f7 on every element of theyye merge a new opening sequence into the growing
sequence). We call the one with lexically smallestypening” tree by tracing its move sequence (in
location type index sequence its canonical formcanonical form) through the tree until it goes tfé
Considering the earlier example opening movetree, then we augment the tree by attaching a branc
sequence S = <E5, D3, C5>, we have one hundred aritbm the node for the remaining opening move
twelve is the smallest location type index sequesoe sequence in the game.
the canonical form of S is <E5, F7, G5>, Fig. 4jckh The C-like pseudo code for building an opening
can be obtained via function (rotate clockwise 180°). book from game records is shown in Fig. 5. We
We call f2 the canonical transformation for the mov choose tree rather than graph as underlying data
sequence <E5, D3, C5>. The canonical transformatiotructure for the opening book for two reasons.

1596

J. Computer i, 8 (10): 1594-1600, 2012

BuildOpeningBook (string CpeningBook, string [] GameLibrary)
{

S/Lhoad existing Opening book
1f (OpeningBook exists on the disk)
SgfTree mainTree = LoadFromSgfFile (OpeningBook);

alge

Initialize an empty OpeningBook;
J/Add every game record to Opening book
foreach(string ggfFile in GamelLibrary)
J/Load one game record
SgfTree oneGame = LoadFromSgfFile (sgfFile);
J/Transform the game to the canonical sequence
Transformeame ToCanonicalForm (oneGame) ;
J/Calculate game resultb
bool bBlackWin = EvaluateGame (oneGame) ;

//Trace down both tree along the same move path

while (DownTree (mainTree, currentNode ,oneGame ., currentNodel))
J/nucamePassed is the # of games collected at this node

J/nuWins 1s the number of wins at this node

J/P camePagged and P Wins are extended SGF Properties to //save those

values
int nuGamePassed = GetProp(mainTree,currentNode,
P GamePagssed) ;
int nuWins = GetProp(mainTree,currentNode, P Wins);

SetProp(mainTree.burrentNode, P GamePaggsed,
nuGamelagsed++) ;

SetProp (mainTree,currentNode, P Wins, nuWwing,
bBlackWin) ;

}

J/copy remaining move to UpeningBook tree

while {(oneGame.currentNode,childNode != NULL) |
oneGame. currentNode = oneGame.currentNode.childNode
mainTree, currentNode = CreatechildNode (mainTree,

currentMode , oneGame, currentNode ,Move) ;
SetProp (mainTree,currentNode, P GamePassed, 1);
SetPropExt (mainTree,currentNode, P Wins, nuWins,
bBlackWin) ;

}

b
S/Save Opening book
SaveSgfTrecetoFile (mainTree, OpeningBook);

}

Fig. 5: C-like pseudo code for opening book buitgdirom game records

First, it is much more efficient to build a treeorfn opening books can be merged into one via the pseudo
game records than to build a graph. Second, soretim code in Fig. 6.
the path leading to a node affects the set of legales

at the node (ko status). . . : .
Due to the limitation on the memory, we can't justtrlm move beyond opening depth, if we did not do so

.) ’ before the game merging. Also we can trim away any
build a giant game tree of 300,000 games. We have e yith fewer than a threshold number of gamesipg
trim game trees before they get too big, then mergg,ough, we use 20 as the threshold, so the remgaini
trimmed trees together. We developed a procedure tgodes are more reliable. At this point, nodes witty low
merge many opening trees into one big opening $@e, winning rates, say less than 25%, can be prunede si
we can build it a reasonable size piece at a tBegeral they are likely to be bad moves.

1597

Trim an opening tree to an opening book: We can

J. Computer i, 8 (10): 1594-1600, 2012

MergeTwolpeningBooks (SqiTiode openBooklodel, Sgfliode, openBookNodez) {
S/ Merge current node value
M nucamePassedl = GetProp {openBookNodel, P GamePassed) ;
int nuGamePassed? = GetProp (openBooklNoded, P GamePassed);
M nulWinsi = GatProp (openBookWodel, P Wins) ;
int nulinsZ = GetProp (openBookNodeld, P Wins) ;
nuGamePassedl += nuGamePassed?;
nulWinsl += nulWinsZ2;
SetProp fopenBookliodel, P GamePassed, nuzamePassedli);
SetProp (openBookliodel, P Wins, nuWinsl);

S/For all child nodes of openBookNodeZ
ngNode node = openBooklNodelZ . childNode,;
while (node != NULL){
T 4JIF tryee 1 has this child, merge it to tree 1
Sgfliode child = GetChildiiode (openBookliodel,
node Move) ;
if (child != NULL)}
MergeTwoOpeningBooks (child, node) ;
else //Copy this node to opening book 1
CreateChildiode (openBooklodel, node) ;
node = node . Brothor,

J

MergedpeningBooks (styring MainBook, string [] openBooks) |
SALoadmain open book
SGEFTree mainTree = LoadFromSgfFile (MainBook) ;
SiMerge all other open hook
%ﬁ% (string openbook in openBooks) §
/fLoad one openbook
SGFTree oneBookTree = LoadFromSgfFile (openbooi)
MergeTwodpeningBooks (mainTree,root,
oncBookTree. yoot) !

}
//5ave open hook

SaveSgfTreetoFilemainTyree, MainFRook)

Fig. 6: C-like pseudo code for merging opening ksok

If we are to play, we will never choose it. If theponent Practices We shall show how to make opening book
selects this bad move, we probably can win withmitg moves in 9x9 Go matches. And we introduce an altern
the opening book. A sorting routine was programiteed approach of building an opening book for 9x9 GO.
order the children of a node according to winnizigs for
the whole tree providing convenience in treeUse of the opening book: The opening book is a sgf
manipulations. game tree containing only move sequences in caalbonic
Assume we play Black, then at each node blagk is tiorm. The players may play moves in any orientation
play next, we just need to keep small number of besTo use the book, we keep 8 tree-node pointgrgp
successors and trim the rest sub-trees. In that way p,,..., p, where ppoints to the node of which the move
can get a compact “solution tree” opening book it sequence from the root to it is a move sequence in
shrunk by 1000 fold. Similarly we can create atiioh canonical form <{m,), fi(m,),..., fi(m)> where <m,
tree” for White. Merging Black “solution tree” and m,,..., m> is the actual move sequence of on the board
White “solution tree”, we get an opening book thah so far, if such a node exists, otherwisésmull. The 8
be used by either Black or White. The sgf openieg t pointers are initialized to point to the root ofeth
we produced after merging 300,000 games beforepening book tree, which corresponds to the emp8y 9
trimming was several hundred mega bytes in size. Thboard. When an actual move m is played on the board
final working opening tree is about 60 K bytesby either side, for each non-nul|, pve advance the
containing about 3000 moves. pointer p to point to the successor node containing the
1598

J. Computer i, 8 (10): 1594-1600, 2012

move f(m) if such successor exists; otherwise p The following context-free grammar specifies the

becomes null. syntax of our MCST:
When it is our turn to play and at least onesmot
null, our book move selection is to consider all<MCST> := {<move> <num wins> <num games>

successor nodes of all nodes pointed by and pick <MCST-list>}

the successor with highest winning rate. We al&e ta <MCST-list> ::= <empty> | <MCST> <MCST-list>

the confidence factor into consideration-the more<move> ::= <sign> <board point> | <sign><pass> | 0
games through it the better. If the winning rateéfow ~ <NUmM wins> ::= <natural number>

a threshold (45% in our implementation), we give up<nUm games> ::= <natural number>

the book move and go back to MCTS. If the winning<Sign> ::= + |-| <empty>

rate is high enough, get the node move m1l of tls be

child of the selected node pointed hyfp*(m,) will be Where “{* and “}" are literals. A positive number
our book move to play on the board. When all’'8 p represents a Black move and a negative number
become null, the game is out the opening book. Wéepresent a White move. This format is simpler and

shall discuss building opening books using stageewi more compact than sgf format and easier to write a
off-line MCTS. parser for. The authors would like to thank Mr. @aw

Du for the implementation of the compact text disk

Off-line stage-wise Monte-Carlo tree search: We read/write format for MCST.
shall discuss building opening books using off-line
stage-wise MCTS. The basic idea is to run the RESULTSAND DISCUSSION
program’'s MC tree growing engine, i.e., UCT e tested the effectiveness of an opening book
algorithm, days and nights to build a huge Montek€a constructed from over 300 thousand actual games and
Search Tree (MCST) then take the top part as a@nother opening book generated from stage-wise off-
opening book. But this basic idea has a drawbask: aine MCTS against GnuGo 6.0 level 10. The number
the tree gets bigger and bigger, the UCT algorithith of simulations per move for Golntellect (GI) is et
play the best move exponentially more often than th1 2 4, 8, 16, 32, 64, 128, 256 and 512 K (when it
rest moves. It more or less converges to the “@iac does not have an opening book move or does not use
variation” path. A book should be able to provide an Opening book)_ For each of the two Opening bpoks
moves responding to opponent’s suboptimal play. TGor each of the number of simulations per move
remedy this drawback, we use the fO”OWing stagsaewi Setting, Gl using the opening book p|ayed 100 games
strategy to combine many separate MC search tné@s i taking Black and another 100 games taking White and
one big opening tree. Gl without opening book played the same number of

We first did 20 million simulations from the empty games for Comparison of the outcomes. A total of

board position trying only moves in canonical 6000 games played on various PCs. The result is
orientation, which took about a half hour. We symmarized in Fig. 7.

identified the top 6 opening moves based on winning The versions of Gl using opening book
rates. For each of the 6 candidate opening firsteno outperformed the version without opening book by
we played a Black stone on the board at the positio about 4% on the average in winning rates.
then start a new MCTS to grow a new MCST. ForFurthermore, when there is an acceptable opening
each such MCST generated, we identified 3-5 tog?00k move available, the program consumes very
responses and grew a new set of MCSTs with first tw little time. The time saved can be used by lateveso

moves already placed on the board. We ther?" with opening book typically retrieves 2-6 opemin

o moves from the opening book a game, saving about
developed the next set of MC trees with first threelo% of the time.

moves specified. This process could go on many Gl with the opening book from actual games

levels. We only selectively got to no more than 4,6rformed slightly better than G with the openbapk
levels. We performed 20 million simulations for Bac from off-line” MC simulations. The outcome may

MCST. Then we trimmed and merged them and theneyerse if we use more simulations for a builditack
trimmed it again to form an opening book tree. 8inc and more layers of building blocks in off-line MC
we would like to store and reload MC search tregs f simulation based opening book. Additional testing
later use. We used a compact text format to storgames played against other programs showed similar
essential information of a MC Search Tree (MCST).playing strength improvements.

1599

J. Computer i, 8 (10): 1594-1600, 2012

Performances against GnuGo

100
90
20
70

&0
50
40

Winning percentage

30
—+ GIwith opening library built from actual games

20 GI without opening library
10 = (I with opening library built from MCTS

1 2 3 4] & 7 2 = 10
31 Playing level

Fig. 7: Experimental results against GnuGo 6.01l&@ G| with playing level k performs*Z K simulations per
move

CONCLUSION Chen, K. and P. Zhang, 2008. Monte-Carlo go with

Oveni knowledge-guided simulations. ICGA J., 31: 67-76.
pening books can help programs play stronger] . :

and faster. When expert knowledge is not readilycn€n, K., 2003. Computer go: Increasing interest.
available, we can build opening books by combining ICGAJ.

actual games and using the outcome statistics itegu Chen, K., D. Du and P. Zhang, 2008. A fast indgxin
the move selection. The book can be trimmed to a method for monte-carlo go. Comput. Games, No.

compact size leaving out nonessential portionshef t 5131: 92-101DOI: 10.1007/978-3-540-87608-3 9

tree. Off-ine stage-wise MCTS approach is equallycq,om R, 2007a. Computing ELO ratings of move
effective. The full board opening book approach is o h f . itv of Alb
effective in %9 Go. But when the size of the Go board patterns in the game of go. University of Alberta.

increases, the outcome statistics on opening seqeen €oulom, R., 2007b. Efficient selectivity and backup
become rather sparse and less reliable. Fel9%o0, operators in Monte-Carlo tree search. Proceedings
instead of building opening books for the full bawve of the 5th International Conference on Computers
build opening books for corners, called Joseki and Games, (CG’ 07), Springer-Verlag Berlin,
dictionaries. We use human expert knowledge in this Heidelberg, pp: 72-83.

case-Joseki dictionary books are abundant. . - .
In Joseki dictionaries for corners, we also coasid Gelly, S. and D. Silver, 2007. Combining online and

Black and White flip. Each of the 4 corners has 4 offline knowledge in UCT. Proceedings of the 24th
different variations of a Joseki from reflectionrv.its International Conference on Machine Learning,
main diagonal and color flip. So each Joseki has 16 (ML’ 07), ACM Press, USA, pp: 273-280. DOI:
equivalents, 4 for each corner. The same techniques 10.1145/1273496.1273531

described can be used to play standard corner MOV@Selly, S., Y. Wang, R. Munos and O. Teytaud, 2006.
using a Joseki dictionary (a move tree) with 16eBos Modifications of UCT with Patterns in Monte-

tree node pointers, 4 for each corner. The expesief . .
Go Intellect has been that Joseki dictionaries Hiae Carlo Go. Institute National de Recherche en

benefit in 1%19 Go matches. Informatique Et En Automatique.
Kocsis, L. and C. Szepesvari, 2006. Bandit based
REFERENCES monte-carlo planning. Computer and Automation

Buro, M., 1999. Toward opening book learning. ICCA Research Institute.

J., 22: 98-102. Lincke, T.R., 2000. Strategies for the Automatic

Chaslot, G.M.J.B., M.H.M. Winands, H.J.V.D. Herik, ~ construction of opening books. Proceedings of the
JW.HM. Uiterwilk and B. Bouzy, 2007. 2nd International Conference on Computers and
Progressive strategies for monte-carlo tree search. Games, (CG’ 00), Springer-Verlag, London, UK.,
New Math. Natural Comput., 4: 343-357. pp: 74-86.

1600

