

 © 2020 Aleksei F. Deon and Yulian A. Menyaev. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Twister Generator of Random Normal Numbers by

Box-Muller Model

1Aleksei F. Deon and 2Yulian A. Menyaev

1Department of Information Systems and Computer Science, N.E. Bauman Moscow State Technical University, Moscow, Russia
2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Article history

Received: 07-10-2019

Revised: 21-12-2019

Accepted: 09-01-2020

Corresponding Author:

Yulian A. Menyaev

Winthrop P. Rockefeller

Cancer Institute, University of

Arkansas for Medical Sciences,

Little Rock, AR, USA

Email: yamenyaev@uams.edu

Abstract: Twisting generators of the pseudorandom normal variables can

use uniform random sequences as a basis. However, such technique could

provide poor quality result in cases where the original sequences have

insufficient uniformity or skipping of random values. This work offers a

new approach for creating the random normal variables using the Box-

Muller model as a basis together with the twisting generator of uniform

planes. The simulation results confirm that the random variables obtained

have a better approximation to normal Gaussian distribution. Moreover,

combining this new approach with the tuning algorithm of basic twisting

generation allows for a significantly increased the length of created sequences

without using any additional random access memory of the computer.

Keywords: Pseudorandom Number Generator, Stochastic Sequences,

Congruential Numbers, Twister Generator, Normal Plane Generator

Introduction

The direction of Gaussian Random Number

Generator (GRNG) realizes the process of creating the

random variables   Z with the function of normal

distribution FZ (). Since the random variable z 

Z(m,) with arbitrary first moments m = E1(Z), D =

E2(Z) = E1(2) could be reduced to the standard

random normal variable   (m = 0,  = 1), then

standard GRNGs are usually used to ensure a normal

Gaussian probability distribution:

 
2

2
1

2

x

F e dx












   (1)

Normal GRNGs are widely used in mathematical

studies (Halim et al., 2012; Neugebauer et al., 2019),

systems of message communication (Lee et al., 2006;

Martino et al., 2012; Zhou et al., 2014), designing of

computer games (Sukajaya et al., 2012), complicated

technical systems (Malik et al., 2011; Paraskevakos and

Paliouras, 2011), models for financial analysis (Sauer,

2012), biological studies (Menyaev et al., 2013; 2016),

development of medical devices (Menyaev and Zharov,

2005; 2006a; 2006b) and as well as in many other

applied fields.

There are many different ways to implement GRNG.

Among all of them the generators using the Box-Muller

model (Box and Muller, 1958) are applied widely. In this

type of generation the random variables R are created

using uniformly distributed random values u and v by

one of the following two expressions:

   , 2ln cos 2R u v u v  (2)

   , 2ln sin 2R u v u v  (3)

In the most accessible and widespread form of use for

this generator is given in Wikipedia

(Wikipedia.org/wiki/Box-Muller_transform), in which

the program code of generator is presented in the

programming language C. This code contains the main

generation cycle in the following form:

 if (!generate)

 return z1 * sigma+mu;

 double u1, u2;

 do

 {

 u1 = rand() * (1.0/RAND_MAX);

 u2 = rand() * (1.0/RAND_MAX);

 }

 while (u1 <= epsilon);

 z0 = sqrt(-2.0 * log(u1)) * cos(two_pi * u2);

 z1 = sqrt(-2.0 * log(u1)) * sin(two_pi * u2);

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

2

Here the random variables z0 and z1 correspond to

expressions (2) and (3). As a generator of uniform

random variables the standard function rand() is used,

which might be applied, for example, in any version of

Microsoft Visual Studio. Directly checking the

uniformity of function rand() shows that the random

variables obtained do not have sufficient quality in

terms of uniqueness properties, i.e. both skipping and

repeating of the generated variables is present.

Therefore, the randomness of z0 and z1 is far from

perfect. Let’s consider the uniformity quality of

function rand() more in detail in accordance with

simple a two-stage algorithm.

At the first stage, it is necessary to determine

experimentally the minimum and maximum (min and

max respectively) values of function rand() in the

range of the generated whole random variables. At the

second stage, let’s perform the simplest one-time

generation in this range of [min, max] and that is

together with counting how many times each value is

created by using counters. If generator rand() is

uniform, then it has to demonstrate in counters a

single generation for each random variable, since the

size of [min, max] range exactly corresponds to the

amount of the single-valued generation of random

variables. If the values of the counters are different, it

means that function rand() isn’t uniform. In this case,

the generator of normal values, which follows

expressions (2) or (3), provides insufficient quality of

distribution of the random normal variables.

Below is the program code for the first

aforementioned stage which is written in Microsoft

Visual Studio. The programming language uses C#

dialect. Similar results can be obtained in the language of

historical C or object-oriented C++ one. The function

rand() in historical C produces the random values in the

range [0: 0x7FFF]. Compare to this, the range of

function Random.Next() in C# is extended significantly.

This could be obtained experimentally using the

following code below.

namespace P050101

{ class cP050101

 { static void Main(string[] args)

 { for (int w = 16; w <= 31; w++) // bit length

 { uint N1 = 0xFFFFFFFF >> (32 - w); // max

 Console.Write("w = {0} N1 = {1,12} ", w,

 N1);

 uint min = 0xFFFFFFFF;

 uint max = 0;

 Random r = new Random();

 for (uint i = 0; i <= N1; i++)

 { uint v = (uint)(r.Next());

 if (v < min) min = v;

 else if (max < v) max = v;

 }

 Console.WriteLine(

 "min = {0,9:X} max = {1,9:X}", min, max);

 }

 Console.WriteLine("The test is over");

 Console.ReadKey(); //result viewing

 }

 }

}

After starting program P050101, the following result

appears on the monitor. Parameter w specifies the bit

length of the random variables. The value of N1

determines the maximum whole decimal number in the

corresponding range. The min and max values are in

hexadecimal form. They show the real values achieved

in each phase of the experiment:

w = 16 N1 = 65535 min = 11EC4 max = 7FFEEDD5

w = 17 N1 = 131071 min = 11EA5 max = 7FFFDBA1

w = 18 N1 = 262143 min = 142C max = 7FFFF0A0

w = 19 N1 = 524287 min = 1293 max = 7FFFFC07

w = 20 N1 = 1048575 min = 877 max = 7FFFFC07

w = 21 N1 = 2097151 min = 2A7 max = 7FFFF7C1

w = 22 N1 = 4194303 min = 309 max = 7FFFFF4D

w = 23 N1 = 8388607 min = 54 max = 7FFFFFCD

w = 24 N1 = 16777215 min = A4 max = 7FFFFF7A

w = 25 N1 = 33554431 min = 3 max = 7FFFFFB7

w = 26 N1 = 67108863 min = 1A max = 7FFFFFEC

w = 27 N1 = 134217727 min = 1 max = 7FFFFFF9

w = 28 N1 = 268435455 min = 3 max = 7FFFFFEE

w = 29 N1 = 536870911 min = 1 max = 7FFFFFFC

w = 30 N1 = 1073741823 min = 1 max = 7FFFFFFE

w = 31 N1 = 2147483647 min = 0 max = 7FFFFFFE

This listing experimentally confirms that integers

with a bit length up to 31 bits long, for example, are

generated from the range [0: 0x7FFFFFFF]. So,

function Random.Next() provides a sequence of the

random variables having a length of 31 bits.

The second stage of the uniformity check has to

contain the counters that take into account the issue of

how many times each number from range [0:

0x7FFFFFFF] is generated. However, this can’t be done

directly on a computer with a 32-bit data bus, since in this

case there is no space in the computer's Random Access

Memory (RAM) for the operating system and this

program itself. So, in order to perform the second stage,

the presented below program P050102 uses an array of 227

counters for each of the intervals of random variables [0:

1 227-1], then [1227: 2227-1] and so on until 24 = 16

times to the interval [15227: 24  227-1] is reached. Thus,

based on this it would be possible to consider in detail the

values for counters in the range [0: 231-1] = [0:

0x7FFFFFFF - 1] of random variables. At each of the 16

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

3

iterations, the generation of 231 random numbers is

carried out together with adding the amount of the

corresponding generations in counters of the next

subband with length 227 of random variables:

namespace P050102

{ class cP050102

 { static void Main(string[] args)

 { int w = 31; //generation for bit length

 uint N1 = 0xFFFFFFFF >> (32 - w); //max

 Console.WriteLine("w = {0} N1 = {1}", w, N1);

 int cw = 27; //interval bit length

 int nc = 1 << cw; //amount of numbers & counters

 Console.WriteLine(

 "cw = {0} nc = {1} nc = 0x{1:X}", cw, nc);

 int[] c = new int[nc]; //array of counters

 Random r = new Random(); //generation object

 int m = 1 << (w - cw); // quantity of intervals

 for (int i = 0; i < m; i++)

 { Console.Write("i = {0,2} ", i); //interval

 int n1 = i * nc; //bottom counter edge

 int n2 = (i + 1) * nc - 1; //top edge

 Console.WriteLine(

 "n1 = {0,10:X} n2 = {1,10:X} ",

 n1, n2);

 for (int j = 0; j < nc; j++) c[j] = 0;

 for (uint k = 0; k <= N1; k++)

 { uint v = (uint)r.Next();

 if (n1 <= v && v < n2) c[v - n1]++;

 }

 int q0 = 0, q1 = 0, q2 = 0, q3 = 0;

 for (int j = 0; j < nc; j++)

 { if (c[j] == 0) q0++;

 else if (c[j] == 1) q1++;

 else if (c[j] == 2) q2++;

 else q3++;

 }

 Console.Write(" ");

 Console.Write(

"q0 = {0,10} q1 = {1,10} ", q0, q1);

 Console.WriteLine(

 "q2 = {0,10} q3 = {1,10}", q2, q3);

 }

 Console.ReadKey(); //result viewing

 }

 }

 }

After running the program P050102, the following

listing appears on the monitor:

w = 31 N1 = 2147483647

cw = 27 nc = 134217728 nc 0x8000000

i = 0 n1 = 0 n2 = 7FFFFFF q0 = 49382360 q2 = 24682358 q3 = 10778132

i = 1 n1 = 8000000 n2 = 7777777 q0 = 49380286 q2 = 24693721 q3 = 10770790

i = 2 n1 = 10000000 n2 = 17FFFFFF q0 = 49372134 q2 = 24684975 q3 = 10783667

i = 3 n1 = 18000000 n2 = 1FFFFFFF q0 = 49379005 q2 = 24692946 q3 = 10779396

i = 4 n1 = 20000000 n2 = 27FFFFFF q0 = 49375891 q2 = 42688306 q3 = 10777756

i = 5 n1 = 28000000 n2 = 2FFFFFFF q0 = 49391391 q2 = 24685803 q3 = 10774012

i = 6 n1 = 30000000 n2 = 37FFFFFF q0 = 49376688 q2 = 24693261 q3 = 10777766

i = 7 n1 = 38000000 n2 = 3FFFFFFF q0 = 49381811 q2 = 24687840 q3 = 10773706

i = 8 n1 = 40000000 n2 = 47FFFFFF q0 = 49368176 q2 = 24689824 q3 = 10777062

i = 9 n1 = 48000000 n2 = 4FFFFFFF q0 = 49369637 q2 = 24691240 q3 = 10775962

i = 10 n1 = 50000000 n2 = 57FFFFFF q0 = 49380081 q2 = 24682605 q3 = 10770596

i = 11 n1 = 58000000 n2 = 5FFFFFFF q0 = 49378595 q2 = 24680123 q3 = 10784203

i = 12 n1 = 60000000 n2 = 67FFFFFF q0 = 49376383 q2 = 24689112 q3 = 10779434

i = 13 n1 = 68000000 n2 = 6FFFFFFF q0 = 49368619 q2 = 24689890 q3 = 10772054

i = 14 n1 = 70000000 n2 = 77FFFFFF q0 = 49381570 q2 = 24683658 q3 = 10775170

i = 15 n1 = 78000000 n2 = 7FFFFFFF q0 = 49376263 q2 = 24690133 q3 = 10779016

An analysis of counters in this listing shows that in

each interval there is the following: some random

variables are missed (counter q0), others are generated once

(q1), the remaining variables are repeated twice or more

times (q2+q3). These results allow for a conclusion that

generator Random.Next() from C# language and its

predecessor rand() from historical C one for which the

printouts are the same, unfortunately they are unable to

provide a sufficient quality of uniformity for generation of

random normal variables in accordance with (2) or (3)

using the Box-Muller technique.

In connection with all this above, the purpose of this

article is to create a novel high-quality generator based

on the Box-Muller transformation together with a

technique of an absolutely uniform random number

generation which we proposed and explored recently.

Theory

In modern probability theory, the Kolmogorov's

axiomatics (Kolmogorov, 1968) uses the fact of one-to-

one correspondence between the random variable and the

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

4

probability distribution function. In the continual domain

(Kolmogorov and Fomin, 1999) of finding the random

variable , the distribution function F() is bounded

by the range [0,1]. From the fact of uniqueness it follows

that if any value h of the distribution function F(h) is

given, then the value of the random variable h can be

obtained as the inverse transformation of function
1()h F h 

 . By the definition of distribution function,

the continuity property guarantees a strict ordering of

values of the random variables. Consequently, by

specifying uniform complete random (even continual)

values of the distribution function, it is possible to obtain

identically the random values of this distribution. So, this

main mathematical model contains the bases for

constructing the generators of random variables in

correspondence with given functions of their

distribution. Let’s take this statement into account for

developing a generator of the random normal variables.

By the definition, function F() of normal

distribution of the random variables  has the form

as it is presented in expression (1) above. This

expression allows calculating directly the random

variable  using well-known methods of integrating,

among of which the Darboux-Riemann technique is

standing out as most accurate. However, this approach

may result in the increase of calculation time, which is

proportional to the given accuracy of integrating. In

some tasks of the substantial trials, such a time limit

could be a significant restriction.

The distinctive solution was proposed in the famous

work by Box and Muller (1958), which uses an approach

analogous to the Rayleigh distribution algorithm (Feller,

2008; Gnedenko, 1998). In this technique it is given the

joint random variable  =< s, t > of independent

variables sS and tT with the same normal distribution

functions. Assuming that both random variables s and t

are coincide with the random variable , then their

normal distribution density in accordance with

expression (1) has the following form:

     
2

2
1

2
S Tf s f t f e








   (4)

The probability distribution of the joint random

variable  =< s, t > on the Descartes plane S×T is

defined by the following expression:

   , ,

S T

F S T f s t dsdt
 

  

 

     (5)

Taking into account the independence of the random

variables s and t in (4), the joint probability density f(s,

t) is determined by the following multiplication:

     
2 2 2 2

2 2 2

,

1 1 1

22 2

S T

s t s t

f s t f s f t

e e e
 




  

  

  
 (6)

Substituting (6) into (5), the following expression

appears:

 
2 2

2
1

,
2

S T s t

f S T e dsdt
 

 







 

     (7)

Direct calculation of the probability function F(S,T)

by expression (7) could be performed by any methods of

the numerical integrating. However, this might take a

long time. At the same time, it is possible to reduce

the amount of calculations because expression (7)

may be redirected to polar coordinates. Formally, the

sum 2 2 2r s t   corresponds to the length of the

radius-vector  =< s, t >:

2 2r s t   (8)

In this case, to each radius-vector  =< s, t > in space

S×T corresponds a vector rR at an angle  = [0: 2]

in the polar coordinates of space R×. Their lengths r

and r are equal and the coordinates of vectors  and r

are interrelated:

sin

cos

r r

s r

t r









 

 

 (9)

This geometric representation allows interpreting

expression (7) as a distribution function for the length of

the radius-vector  in the Descartes space S×T. The same

corresponds to the distribution function Fr(R,) of

vector r in the polar space R×. The transition Fr(R,) =

F(S,T) could be performed with the help of Jacobian J,

which allows replacing the multiplication of differentials

dsdt by analogues drd:

 
22

2

0 0

1
,2

2

R r

rF R e J drd



 




    (10)

The form of Jacobian J is defined as follows:

2 2
cos sin

cos sin
sin cos

s s

rr
J r r r

t t r

r

 
 

 



 

  
      
  

 

 (11)

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

5

Substituting (11) into (10) allows getting this:

 
2

2 2 2

2

2

0 0

2

2 2 2

0 0 0

1
,2

2

1
1

2

R r

r

R Rr r R

F R e r drd

re dr d re dr e





 







  

  

    

 

  

 (12)

An important result of expression (12) is the fact that

using two random variables S and T, it is possible to

calculate explicitly in polar coordinates the normal

distribution
2 /21 Re and that is without applying the

methods of the numerical integrating like it is in

expression (1) for the rectangular Descartes coordinates.

In this case, the Kolmogorov's axiomatics main property

(Gnedenko, 1998) of one-to-one correspondence of a

random variable to its distribution function can be

applied. Exactly this property is used in the generator of

the random normal variables, which uses the Box-Muller

technique. The point here is: it might take a complete

generator of uniform random variables for the specific

generations of values of a function of the random normal

variables and then, for each value, the random normal

variables will be calculated using the inverse function.

The uniqueness of Kolmogorov's axiomatics guarantees

the correct result. For this technology the result (12) is

best suited, since the vector length in form of the random

variable is the same in both spaces, i.e. S×T and R×.

In (1) the centered random variable  in space S×T

can take both positive and negative values. However, in

the polar space R× the random variable r has only a

positive value. To somehow smooth this insoluble

contradiction, the Box-Muller model uses an artificial

technique, which introduces the second uniform

generator for angle  on the circular interval [0: 2]

having radius r = R. For this, the elementary

trigonometric transformations are suitable, for example,

like form cos  in (2) or form sin  in (3). The error is

negligible in this case, but positive and negative random

normal variables are obtained perfectly. This approach is

close to the different decisions used in probability theory

in case of situation when an error of the modeling isn’t

important significantly for applied tasks.

Let’s demonstrate the model of such a technique.

First of all, it is necessary to point out now that by

property of any distribution function, its cumulative

value for all the random variables is singular:

 
2

2,2 1 1rF R e




     (13)

Since sequence of the generated random variables is

random but contains all the random variables u' for

Fr(R,2), the complete sequence of corresponding

realizations of the distribution function Fr(u',2) is the

random sequence as well. It contains both, values

Fr(u',2) and values Fr(u = 1-u', 2) because of

accordance to property (13). It is obvious that order of an

enumeration of the random variables u and u' in

functions (12) is not of significant importance because of

their randomness and cumulativity.

Now with the help of the complete uniform generator

it is necessary to obtain uniform random variable u for

expression (12) on interval [0: 1]. Since the axiomatics

of probability theory provides the appearance of all the

random variables in complete sequences of the

observed events, then the following variant for

expression (12) could be used:

2

21 1 .
R

u u e


    (14)

Expression (14) allows calculating the inverse

function  1 ,2rR F u  :

 1 ,2 2lnrR F u u   (15)

At this step, it is required to introduce a technological

correction uU = (0: 1]. It means that random variable u

= 0 has to be excluded from (15) since ln0 is not a

subject to calculation.

Further, it is necessary to determine the sign of the

random variable R, since both values of 2lnR u  

are permissible. For this purpose, in the Box-Muller

model the sign-factor of trigonometric functions (2) and

(3) is used. For the angular random variable  to have

uniform distribution on the circular interval [0, 2], it is

proposed to use the second complete uniform generator

of the random variable v. However, on the circular

interval the points 0 and 2 coincide, therefore one of

them should be abandoned. Since in generator (15) the

random variable u = 0 isn’t used, it is preferable to

choose the half-open circular interval (0, 2].

Assuming that the second generator creates the

random variables v  (0: 1], the value of the random

angle is obtained as the following:

2 v   (16)

Collecting together the generators in expressions (15)

and (16), the final views of generator for the random

normal variable z look as follows:

 cos 2ln cos 2z R u v      (17)

Or the same in similar form:

 sin 2ln sin 2z R u v     

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

6

At this point, let’s finish the theoretical

considerations. Forms of expression (17) with taking into

account the random Descartes plane S×T allows creating

the required generator of the random normal variables

according to the Box-Muller model.

Construction and Results

In expression (10), plane R× = [0,R]×[0,2] is used

to calculate the distribution function Fr(R,2). According

to (13), the maximum value is Frmax(,2) = 1.

Consequently, in the model (17) there is uBMU = (0:

1]. At the same time, according to (16) another

independent complete uniform generator creates the

random variables vBMV = (0: 1]. To realize the

coordinated work of these generators, it is necessary to

use some complete generator of the real random plane.

In our previous work (Deon and Menyaev, 2016a),

we simulated absolutely all possible uniform sequences,

but the problems of designing the generator itself

weren’t considered there. In continuation of that work,

then in (Deon and Menyaev, 2016b) we proposed a

twister generator of the complete uniform random

variables using the technology of a twisting array. In

order to exclude the influence of the twisting array on

the computer RAM, we have perfected the previous

development by proposing a generator of uniform

twisting sequences of arbitrary size but without twisting

array (Deon and Menyaev, 2017; 2019). The technology

of this generator is the basis of generator

cDeonYuliPlaneTwist32D (Deon and Menyaev, 2018),

which creates the random planes

2 2 0 : 2 1 0 : 2 1w w w wN N      


   
  

 using whole

random variables of length w bits. Now the resulting

random whole points on the Descartes plane N×N should

be transformed into random real points on plane U×V =

(0: 1]×(0: 1]. For every such point <u, v> there is a

correspondence of the random normal variable z

according to (17). Now let's figure out how it all works.

In the base class cDeonYuliPlaneTwist32D (Deon and

Menyaev, 2018) two variables u and v having the length

of w bits are created from range [0: 2w -1]. Then these

quantities are transformed into random real variables du and

dv as follows. At each half-open intervals BMU and BMV

there are N = 2s segments of length:

1
du dvd d d

N
   (18)

The first initial segment corresponds to the

subinterval du1 = dv1 = (0: 1 d], the next one to du2 = dv2

= (1 d: 2 d] and the last to duN = dvN = [(N - 1) d: N d]

accordingly. Note that index k on the right side of each

subinterval duk = dvk is the marker of all subintervals

1, 1,2wk N    
   

. The main thing here is that k  0 and

this is perfectly suitable for the further calculations in (17).

Below is class cDeonYuliBMNormalTwist32D, in

which the random normal variables are created on the

random half-open plane BMU×BMV = (0: 1]×(0: 1], for

which a square grid with step d (18) contains the

twisting random variables. Class

cDeonYuliBMNormalTwist32D is derived over the base

class of twisting planes cDeonYuliPlaneTwist32D

(Deon and Menyaev, 2018). An example of generation

of the random normal variables is given later in

program P050301:

using nsDeonYuliPlaneTwist32D;

namespace nsDeonYuliBMNormalTwist32D

{ class cDeonYuliBMNormalTwist32D :

cDeonYuliPlaneTwist32D

 { public double d; //interval length

 public uint u; //integer random number along U

 public uint v; //integer random number along V

 public double bmu;//real random number along BMU

 public double bmv;//real random number along BMV

 public double z; //random normal number

//---

 public cDeonYuliBMNormalTwist32D () {}

//---

 public void Start()

 { base.Start();

 d = 1.0 / ((double)base.N1 + 1.0); //number step

 }

//---

 public double Next()

 { base.Next(ref u, ref v); //a point on plane U x V

 bmu = ((double)u + 1.0) * d; //in (0,1]

 bmv = ((double)v + 1.0) * d; //in (0,1]

 z = Math.Sqrt(-2.0 * Math.Log(bmu)) *

 Math.Cos(2.0 * Math.PI * bmv);

 return z; //random normal number

 }

//=======================================

 }

}

To verify the correct calculation of parameters of the

mathematical expectation and variance using the

cDeonYuliBMNormalTwist32D generator, let’s apply

code P050301 below, which generates the random

normal variables using the Box-Muller model. The

random twisting plane utilizes a grid for uniform random

whole variables of length w = 3. Other values for the bit

length w could be specified directly in the program. The

total amount of the random normal variables z is N2 =

(2w)2 = 22w = 223 = 64. Only the calculations of the

amounts of negative values kn, then zero meanings k0 and

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

7

after that positive values kp of z variables (17) are printed

out on monitor together with mathematical expectation Mz

= E1(Z) and dispersion Dz = E2(z) = E1(z2).

using nsDeonYuliBMNormalTwist32D;

 //twister normal numbers

namespace P050301

{ class cP050301

 { static void Main(string[] args)

 { cDeonYuliBMNormalTwist32D GN =

 new cDeonYuliBMNormalTwist32D();

 int w = 3; //bit length of integer number

 GN.SetW(w); //set bit length

 GN.Start(); //generator starts

 uint N1 = GN.N1; //maximal integer number

 uint N = N1 + 1;

 uint N2 = N * N;

 Console.WriteLine("w = {0} N = {1} N2 = {2}",

 w, N, N2);

 int kn = 0, k0 = 0, kp = 0;

 double d = 1.0/(double)N;

 double Mz = 0.0; //first moment

 double Dz = 0.0;

 for (int k = 0; k < N2; k++)

 { double z = GN.Next(); //random normal number

 if (-d < z && z <d) k0++;

 else if (z >= d) kp++; else kn++;

 Mz += z;

 Dz += z * z;

 }

 Console.WriteLine(

 "kn = {0} k0 = {1} kp = {2}",

 kn, k0, kp);

 Mz/= (double)N2; //mathematical expectation

 Console.WriteLine("Mz = {0,12:E4}", Mz);

 Dz = Dz/(double)N2 - Mz * Mz; //dispersion

 Console.WriteLine("Dz = {0,6:F4}", Dz);

 Console.ReadKey(); //result viewing

 }

 }

}

After executing the program P050301, the next

listing appears on the monitor:

w = 3 N = 8 N2 = 64

kn = 21 k0 = 22 kp = 21

Mz = -4.5653E-017

Dz = 0.7539

This result shows that N2 = 64, which means that the

following random normal variables are generated: 21

positive and 21 negative numbers and then 22 zero ones.

The meaning of the mathematical expectation is very

close to zero, i.e. Mz = E1(z) = -4.56531017. With such

a small bit length w = 3, i.e. in case of numbers

0,1,2,3,4,5,6 and 7, the dispersion of the real normal

variables is      2

2 1 1 1() 0.7539Dz E z E z E z E z     .

The following next program code allows tracing the

convergence of moments E1(z) and E2(z) as a function of bit

length w of the initial whole uniform random variables.

using nsDeonYuliBMNormalTwist32D;

 //twister normal numbers

namespace P050302

 { class cP050302

 { static void Main(string[] args)

 { cDeonYuliBMNormalTwist32D GN =

 new cDeonYuliBMNormalTwist32D();

 for (int w = 3; w <= 14; w++)

 { GN.SetW(w); //set bit length

 GN.Start(); //generator starts

 uint N1 = GN.N1; //maximum integer number

 uint N = N1 + 1;

 uint N2 = N * N;

 Console.Write(

 "w = {0,2} N = {1,5} N2 = {2,9}", w, N, N2);

 double Mz = 0.0; //mathematical expectation

 double Dz = 0.0; //dispersion

 for (int k = 0; k < N2; k++)

 { double z = GN.Next(); //random normal number

 Mz += z;

 Dz += z * z;

 }

 Mz /= N2; //mathematical expectation

 Console.Write(" Mz = {0,12:E4}", Mz);

 Dz = Dz / (double)N2 - Mz * Mz; //dispersion

 Console.WriteLine(" Dz = {0,6:F4}", Dz);

 }

 Console.ReadKey(); //result viewing

 }

 }

}

After starting this program, the following strings appear:

w = 3 N = 8 N2 = 64 Mz = -4.5653E-017
Dz = 0.7539
w = 4 N = 16 N2 = 256 Mz = -7.0256E-017
Dz = 0.8556
w = 5 N= 32 N2 = 1024 Mz = -7.6978E-017
Dz = 0.9170
w = 6 N = 64 N2 = 4096 Mz = -5.1716E-017
Dz = 0.9531
w = 7 N = 128 N2 = 16384 Mz = 2.1413E-018
Dz = 0.9739
w = 8 N = 256 N2 = 65536 Mz = -6.2992E-017
Dz = 0.9856
w = 9 N = 512 N2 = 262144 Mz = -4.6107E-017
Dz = 0.9921
w = 10 N = 1024 N2 = 1048576 Mz = -7.3673E-017
Dz = 0.9957

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

8

w = 11 N = 2048 N2 = 4194304 Mz = -5.8537E-017
Dz = 0.9977
w = 12 N = 4096 N2 = 16777216 Mz = -4.5401E-017
Dz = 0.9988
w = 13 N = 8192 N2 = 67108864 Mz = -4.6954E-017
Dz = 0.9993
w =14 N =16384 N2 = 268435456 Mz = -3.6657E-017
Dz = 0.9996

These results confirm that if a grid of the twisting

uniform plane is increasing then the mathematical

expectation within the error of computations is very close

to 0 and the dispersion tends to 1. This corresponds to the

basic parameters of the standard normal distribution

having E1() = 0 and E2() = E1(2) = 1.

Discussion

In evaluating the transformation of stochastic

processes the methods of mathematical statistics are used

broadly (Wackerly et al., 2008). Particularly, the

widespread one is Pearson's 2 test, which provides the

possibility in an estimation of proximity between two

things: the probability distribution of the observed

random variables z and the probability distribution of the

assumed (hypothetical) random variables . The essence

of this correspondence lies in the analysis of the

considerably rare random variables z and .

With the help of expression (17), grid nodes in

uniform plane BMUBMV = (0: 1](0: 1] are mapped to

the random normal variables z with the probability

distribution function F() (1). To confirm this hypothesis,

let’s divide interval L from min to max values L = [zmin,

zmax] into several subintervals di. The length L of all

subintervals di is understood as the difference between

max and min values of the observed random variables z 

[zmin, zmax]. All values of di could be chosen arbitrarily, but

usually uniform length d is applied, provided that:

max min

1

Ln

i L

i

z z L d n d


    (19)

Now, it follows from this expression (19) that:

max min

L

z z
d

n


 (20)

The value of nL in (20) could be calculated from the

conventional approach of binary multiplicity when

estimating the sufficiency of observations:

*

2log 1Ln N    (21)

Expression (21) is applied when value N* isn’t a

multiple of the power function 2x of some whole variable

x. In the proposed implementation of model (17), a grid

on the random plane BMUBMV is used, which contains

the complete uniform sequences U and V with the

number of grid nodes  
2

2 22 2w wN   . In this case, the

value of log2 N2 has no remainder. Thus, expression (21)

could be reduced to the following form:

* 2

2 2log log 2 2w

Ln N w   (22)

On each subinterval
  min min1,2

(1) ,
i w

d z i d z i d


        ,

there are the random normal variables in amount vi. The

observed probability g(z  di) is given by the ratio of the

total number N2 = 22w of observations:

  i

2i

ν
g z d

N
  (23)

The values of the theoretical hypothetical

probabilities h(  di) on the same intervals are

calculated as the local integral values:

 
 

2
min

min 1

2
1

2
i d

z i d x

i

z

h d e dx


 

 


   (24)

The ideal normal generator (23) has to be such that

computations (23) and (24) coincide, i.e.

  ()i ig z l h l   . For evaluation of such a coincidence,

Pearson proposed using the test of criterion of

significance (Cramer, 1999).

This significance test is based on the observation

results, i.e. the differences between observed g(z  di)

and hypothetical h(  di) probabilities at the

corresponding subintervals di are calculated. These

differences are considered as joint random events < gi, hi

>. It should be noted that the events of these probabilities

are really independent, since they are formed by random

independent real and hypothetical trials. Because the

differences of probabilities i = gi = hi can be either

positive or negative, that suggests evaluating their square

meanings  
22

i i ig h   since they are positive only.

Thus, it is possible to obtain an analytical value of 2 for

the sum of squares of the joint random variables 2

i :

 
2 2

22 2

1 1

L Ln w n w

i i i

i i

g h 
 

 

    (25)

Summarizing the squares of the probability

differences (25) having the weighting coefficients cj, a

numerical estimation of the Pearson’s criterion appears

as follows:

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

9

 
2

2

1

w

i i i

i

Q c g h


  (26)

The proposal is that choice of coefficients ci is carried

out as inversely proportional to the significance of

hypothetical probabilities:

i

i

N
c

h
 (27)

With this selection of coefficients ci (27) the Pearson’s

significance criterion (26) takes the following form:

   
2 2

2 2

1 1

w w
i i i i

i ii i

g h v N h
Q N

h N h 

  
 


  (28)

Pearson's proof is that the criterion of significance Q

(28) can be related to the distribution 2 of the sum of

squares of the random variables:

 
 

2

1
2 2 2

2

0

1

2 2

L x

L
F x e dx

L




 


 (29)

Designation  (L/2) in (29) is obviously a gamma-

function:

 
1

2

0

/ 2
L

xL x e dx



    (30)

In expressions (29) and (30), parameter L is the

number of degrees of freedom which is associated with

the amount of subintervals nL as follows:

LL n m  (31)

Usually parameter m is defined as the number of

superimposed links. As the first such a connection, it

usually distinguishes the classical condition of

probability theory:

1i

i I

p


 (32)

If this condition is taken into account, then m = 1 and

= nL - 1. It is forced to do so if nothing is known about

the completeness of the observations. To

superimposed links also often include the coincidence

of mathematical expectations and the coincidence of

variances. In the last case m = 3, although this is

clearly not obvious and, possibly, doubtful. However,

generator cDeonYuliBMNormalTwist32D proposed

above generates the normal values for the complete

sequences of the twisting whole plane, i.e. all the

arguments about superimposed links are already fully

taken into account in the used generation of the

complete twisting plane. Therefore, there is no need to

adjust (31), i.e. using m = 0 and L = nL.

So, implementation of the significance criterion 2

consists in using the following expression:

 
 

2

1
2 2 2

2
0

1
1

2 / 2

L

L

n x

n
F x e dx

L



 
 

  


 (33)

Solving this integral expression with respect to 2

 , a

value which is possible to compare with the criterion of

significance Q (28) is obtained. The significance level,

i.e. parameter α is usually chosen as 0.05 or 0.1 or 0.15.

If 2Q  , then the hypothesis of correspondence

between the investigated distributions is accepted. This

means that the observed random values correspond to a

given hypothetical distribution with a probability of at

least 1 -, i.e. hypothetical extra-large deviations could

be ignored. This assumption is usually made by

researchers when they determine the insignificance of

the level of possible meaningful deviations. If the

significance level is assumed to be  = 0.05, then the

observed statistics have a given distribution with a

probability not worse than 1- = 1– 0.05=0.95.

Below is the program code, which verifies the result

of testing cDeonYuliBMNormalTwist32D generator for

compliance with the standard normal distribution of the

received random variables. The calculation of the exact

integrals is performed absolutely accurate according to a

given error by using Darboux-Riemann technique in

function DarbouxRiemann().

using nsDeonYuliBMNormalTwist32D;

 //normal number generator

namespace P050401

 { delegate double delF(double x);

//---

 class cP050401

 { static void Main(string[] args)

 { cDeonYuliBMNormalTwist32D GN =

 new cDeonYuliBMNormalTwist32D();

 int w = 13; //bit length of integer random numbers

 GN.SetW(w); //set bit length

 GN.Start(); //generator starts

 uint N1 = GN.N1; //maximal integer number

 uint N = N1 + 1; //twister sequence length

 uint N2 = N * N; //point quantity on twister plane

 Console.WriteLine("w = {0} N = {1} N2 = {2}",

 w, N, N2);

 int nL = 2 * w; //interval quantity in hi-square

 Console.WriteLine("nL = {0}", nL);

 double zmin = 0.0, zmax = 0.0;

 double[] z = new double[N2]; //normal numbers

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

10

 double MZ = 0.0; //first moment E1

 double DZ = 0.0; //second moment E2

 for (int k = 0; k < N2; k++) //all points on plane

 { double zz = GN.Next(); //random normal number

 if (zz < zmin) zmin = zz;

 else if (zmax < zz) zmax = zz;

 z[k] = zz; //random normal number

 MZ += zz; //mathematical expectation

 DZ += zz * zz; //dispersion

 }

 Console.WriteLine(

 "zmin = {0,7:F4} zmax = {1,7:F4}", zmin, zmax);

 double d = (zmax - zmin)/nL; //interval length

 Console.WriteLine("d = {0:F4}", d);

 int[] gnu = new int[nL]; //quantity under intervals

 for (int i = 0; i < nL; i++) gnu[i] = 0;

 for (int k = 0; k < N2; k++)

 for (int i = 1; i <= nL; i++)

 if (((zmin +(i-1) * d) <= z[k]) &&

 (z[k] <= (zmin + i*d)))

 { gnu[i - 1]++;

 break;

 }

 MZ/= N2; //mathematical expectation

 Console.WriteLine("MZ = {0:E5}", MZ);

 DZ = DZ/(double)N2 - MZ * MZ; //dispersion

 Console.WriteLine("DZ = {0:F5}", DZ);

 double[] g = new double[nL]; //viewing probability

 double[] h = new double[nL]; //hypoth. probability

 int[] hnu = new int[nL]; //hypothetical frequencies

 double sh = 0.0; //hypothetical probability sum

 int sgnu = 0; //random number quantity in interval

 Console.Write(" i gnu hnu h");

 Console.WriteLine(" a b");

 for (int i = 0; i < nL; i++)

 { g[i] = (double)gnu[i]/(double)N2;

 double a = zmin + i * d; //interval left edge

 double b = a + d; //interval right edge

 h[i] = DarbouxRiemann(fx, a, b, 0.001); //integral

 hnu[i] = (int)(h[i] * N2); //quantity of numbers

 sh += h[i]; //hypothetical probability sum

 sgnu += gnu[i]; //all intervals sum

 Console.Write("{0,2} {1,7} {2,7} {3,8:F5}",

 i, gnu[i], hnu[i], h[i]);

 Console.WriteLine(" {0,8:F4} {1,8:F4}", a, b);

 }

 Console.WriteLine("sgnu = {0}", sgnu);

 Console.WriteLine("sh = {0:F5}", sh);

 double Q = 0.0; //Pearson’s significance criterion

 for (int i = 0; i < nL; i++)

 { double dp = g[i] - h[i];

 Q += dp * dp/h[i];

 }

 Q *= (double)N2; //Pearson’s significance criterion

 Console.WriteLine("Q = {0:F5}", Q);

 Console.ReadKey(); //result viewing

 }

//--

 static double fx(double x)

 { return Math.Exp(-x * x / 2.0)/

 Math.Sqrt(2.0 * Math.PI);

 }

//---

 static double DarbouxRiemann(delF f, double a,

 double b, double e)

 { double f1 = 0.0; //function on left square edge

 double f2 = 0.0; //function on right square edge

 double S1 = 0.0; //Darboux lower sum

 double S2 = 0.0; //Darboux upper sum

 double dx = (b - a)/100.0;

 do

 { S1 = 0.0; S2 = 0.0; //initial value of sums

 double dxR = dx;

 for (double x = a; x < b - dx/2.0; x += dx)

 { f1 = f(x); //left edge value

 if (x > b - 1.4 * dx) dxR = b - x; //last

 f2 = f(x + dxR); //right edge value

 if (f1 <= f2)

 { S1 += f1 * dx; //Darboux lower sum

 S2 += f2 * dx; //Darboux upper sum

 }

 else //descending area

 { S1 += f2 * dx; //Darboux lower sum

 S2 += f1 * dx; //Darboux upper sum

 }

 }

 dx/= 2.0; //reduce the area by half

 } while (Math.Abs(S2 - S1) > e); //Riemann cond-n

 return (S1 + S2) / 2.0; //value in the middle

 }

//=======================================

 }

}

After running the program P050401, the following

listing appears on the monitor:

w = 13 N = 8192 N2 = 67108864

nL = 26

zmin = -4.2452 zmax = 4.2452

d = 0.3266

MZ = -4.6954E-17

DZ = 0.99934

i gnu hnu h a b

0 2213 2255 0.00003 -4.2452 -3.9187

1 7853 8018 0.00012 -3.9187 -3.5921

2 25565 25652 0.00038 -3.5921 -3.2655

3 73708 73829 0.00110 -3.2655 -2.9390

4 191021 191163 0.00285 -2.9390 -2.6124

5 445232 445308 0.00664 -2.6124 -2.2859

6 933149 933259 0.01391 -2.2859 -1.9593

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

11

7 1759559 1759673 0.02622 -1.9593 -1.6328

8 2984954 2985055 0.04448 1.63280 -1.3062

9 4555737 4555813 0.06789 -1.3062 -0.9797

10 6255547 6255678 0.09322 -0.9797 -0.6531

11 7728140 7728218 0.11516 -0.6531 -0.3266

12 8595850 8589771 0.12800 -0.3266 0.00000

13 8587658 8589771 0.12800 0.00000 0.32660

14 7728140 7728218 0.11516 0.32660 0.65310

15 6255547 6255678 0.09322 0.65310 0.97970

16 4555737 4555813 0.06789 0.97970 1.30620

17 2984954 2985055 0.04448 1.30620 1.63280

18 1759559 1759673 0.02622 1.63280 1.95930

19 933149 933259 0.01391 1.95930 2.28590

20 445232 445308 0.00664 2.28590 2.61240

21 191021 191163 0.00285 2.61240 2.93900

22 73708 73829 0.00110 2.93900 3.26550

23 25565 25652 0.00038 3.26550 3.59210

24 7853 8018 0.00012 3.59210 3.91870

25 2213 2255 0.00003 3.91870 4.24520

sgnu = 67108864

sh = 0.99998

Q = 14.54771

This listing shows that the tests are carried out on

the twisting plane of whole random variables having

w = 13 bits length. The plane contains a grid with the

amount of  
2

2 2 262 2 2 2 67108864w wN N     nodes.

So, in program P050401 a total of 22w = 67108864

random normal values are generated. The minimum

meaning of values zmin is zmin = -4.2452; the

maximum one zmax turned out to be symmetrical is

zmax = 4.2452. According to expression (22), it is

recommended using nL = 2w = 26 subintervals from

zmin = -4.2452 to zmax = 4.2452. By using (22) it

follows that all the subintervals have the same length
 max min / 8.4904 / 26 0.3266Ld z z n    . The mathematical

expectation of the created normal values is very close to 0

and it is   171 4.6954 10MZ E z     . Dispersion is

0.99934 and it approaches to 1. Then in this listing there

are lines of all the subintervals, each of them indicates

quantity gnu of the generated normal values in this

subinterval; then follows quantity hnu of the

hypothetical random variables; after that appears the

hypothetical probability of subinterval (24); at last, this

listing closes beginning a and ending b of this

subinterval. Controlling the strict correspondence of the

total amount of generations N2 = N2 = 67108864 and

generation by the intervals provides the total number

sgmu = 67108864 of all the random variables in

subintervals. These values are the same and they are

multiples of the distribution over the subintervals

without a remainder, keeping the degree of freedom

equal to the number of subintervals 2

2log 2 26w

LL n   .

The sum of the hypothetical interval probabilities is sh =

0.99998, which confirms the basic identity of probability

theory. The Pearson’s significance criterion according to

(28) is Q = 14.54771.

To draw conclusions using criterion Q regarding the

correspondence of the generated random variables to the

normal standard distribution (1), it is necessary to

calculate 2

 for a given significance level  in

accordance to expression (33). It uses gamma-function

(30), for which one of the important properties is its

factorial character:

   1

0

1 !xx e dx 


     (34)

If  is an integer-numbered, then there is no need to

calculate this integral directly. In the tests of program

P050401, it is used gamma-function

     λ 2 26 2 13 1 ! 479001600Ln       . Taking into

account the factorial properties of gamma-function, the

transformation of integral (29) has the following form:

 
   

2 2

2 2

1
2 122 2 2

2 13

0 0

12 122 2
13

0 0

1 1
, 26

2 2 2 13

1 1

2 12! 8192 479001600

L

L

n x x

n

L

x x

F nL x e dx x e dx
n

x e dx x e dx

 

 


  

 

   
 

 
 

 

 

 (35)

With the significance level  = 0.05, the last integral

in (35) has to ensure the following:

 
2

2 12 2

0

1
, 26, 0.05

8192 479001600

1 0.95

x

F r x e dx


 





   


  

 (36)

This expression is satisfied with an accuracy of

0.00001 for 2 38.8859  . Comparing value 2

 with

Pearson's significance criterion Q obtained earlier in

program P050401, it is obvious that
214.5477 38.8859Q    . It means that with a

probability of at least 0.95, generator

cDeonYuliBMNormalTwist32D creates indeed the

random values with a standard normal distribution

according to the Box-Muller model, having the

mathematical expectation
1() 0M E z  and dispersion

   2

2 1 1D E z E z   .

Conclusion

Analysis of the source materials shows that

algorithms of the modern generators used for the

random normal variables do not have a sufficient

evaluation level according to the statistical criterion

2 of significance. In order to increase the

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

12

approximation of the generated random normal

variables to the standard normal distribution with zero

mathematical expectation and singular dispersion, we

propose the use of generators with the model of Box-

Muller transformation based on a technique of

absolutely complete uniform twisting planes.

However, their direct application is limited by the

required properties of half-open single Descartes

uniform planes. This is taken into account in designed

special class nsDeonYuliBMNormalTwist32D, which

combines the technology of twisting half-open

Descartes planes and Box-Muller transformation

algorithm. The experiments confirm undoubtedly the

notable level 1- of Pearson's criterion of significance
2

 . Moreover, the variety of initial twisting planes

provides a possibility obtaining many different

generations of twisters for each pair of congruential

constants. In the future, the obtained results of this

work could be implemented in a large number of

applied tasks which use the random normal numbers.

Acknowledgment

The authors are thankful to Matthew Vandenberg,

Jacqueline Nolan, J. Alex Watts and Walter Harrington

(University of Arkansas for Medical Sciences, Little

Rock, AR, USA) for the proofreading.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

Both authors equally contributed to this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript.

No ethical issues were involved and the authors have no

conflict of interest to disclose.

References

Box, G.E.P. and M.E. Muller, 1958. A note on the

generation of random normal deviates. Annals Math.

Stat., 29: 610-611. DOI: 10.1214/aoms/1177706645

Cramer, H., 1999. Mathematical Methods of Statistics.

1st Edn., Princeton University Press,

 ISBN-10: 0691005478, pp: 575.

Deon, A. and Y. Menyaev, 2016a. The complete set

simulation of stochastic sequences without repeated

and skipped elements. J. Univ. Comput. Sci., 22:

1023-1047. DOI: 10.3217/jucs-022-08-1023

Deon, A. and Y. Menyaev, 2016b. Parametrical tuning

of twisting generators. J. Comput. Sci., 12: 363-378.

DOI: 10.3844/jcssp.2016.363.378

Deon, A. and Y. Menyaev, 2017. Twister generator of

arbitrary uniform sequences. J. Univ. Comput. Sci.,

23: 353-384. DOI: 10.3217/jucs-023-04-0353

Deon, A. and Y. Menyaev, 2018. Uniform twister plane

generator. J. Comput. Sci., 14: 260-272.

 DOI: 10.3844/jcssp.2018.260.272

Deon, A. and Y. Menyaev, 2019. Poisson twister

generator by cumulative frequency technology.

Algorithms, 12: 114-118. DOI: 10.3390/a12060114

Feller, W., 2008. An Introduction to Probability Theory

and its Applications. 3rd Edn., WSE Press,

 ISBN-10: 8126518057, pp: 528.

Gnedenko, B., 1998. Theory of Probability. 6th Edn.,

CRC Press, ISBN-10: 9056995855, pp: 520.

Halim, Z.A., N.C. How and S.J.J. Ong, 2012. FPGA

based RNG for random WOB method in unit cube

capacitance calculation. Proceedings of the IEEE

Asia-Pacific Conference on Applied

Electromagnetics, Dec. 11-13, IEEE Xplore Press,

Melaka, Malaysia, pp: 11-16.

 DOI: 10.1109/APACE.2012.6457622

Kolmogorov, A.N. and S.V. Fomin, 1999. Elements of the

Theory of Functions and Functional Analysis. 1st Edn.,

Mineola NY, ISBN-10: 0486406830, pp: 128.

Kolmogorov, A.N., 1968. Three approaches to the

quantitative definition of information. Int. J.

Comput. Math., 2: 157-168.

 DOI: 10.1080/00207166808803030

Lee, D.U., J.D. Villasenor, W. Luk and P.H.W. Leong,

2006. A hardware gaussian noise generator using the

box-muller method and its error analysis. IEEE Trans.

Comput., 55: 659-671. DOI: 10.1109/TC.2006.81

Malik, J.S., J.N. Malik, A. Hemani and N.D. Gohar,

2011. An efficient hardware implementation of high

quality AWGN generator using box-muller method.

Proceedings of the 11th International Symposium on

Communications and Information Technologies,
Oct. 12-14, IEEE Xplore Press, Hangzhou, China,

pp: 449-454. DOI: 10.1109/ISCIT.2011.6090035

Martino, L., D. Luengo and J. Miguez, 2012. Efficient

sampling from truncated bivariate Gaussians via

box-muller transformation. Electron. Lett., 48:

1533-34. DOI: 10.1049/el.2012.2816

Menyaev, Y.A. and V.P. Zharov, 2005. Phototherapeutic

technologies for oncology. Proc. SPIE, 5973: 271-278.

DOI: 10.1117/12.640217

Menyaev, Y.A. and V.P. Zharov, 2006a. Experience

in development of therapeutic photomatrix

equipment. Biomed. Eng., 40: 57-63.

 DOI: 10.1007/s10527-006-0042-6

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2020, 16 (1): 1.13

DOI: 10.3844/jcssp.2020.1.13

13

Menyaev, Y.A. and V.P. Zharov, 2006b. Experience

in the use of therapeutic photomatrix equipment.

Biomed. Eng., 40: 144-147.

 DOI: 10.1007/s10527-006-0064-0

Menyaev, Y.A., D.A. Nedosekin, M. Sarimollaoglu,

M.A. Juratli and E.I. Galanzha, et al., 2013.

Optical clearing in photoacoustic flow cytometry.

Biomed. Opt. Express, 4: 3030-41.

 DOI: 10.1364/BOE.4.003030

Menyaev, Y.A., K.A. Carey, D.A. Nedosekin, M.

Sarimollaoglu and E.I. Galanzha et al., 2016.

Preclinical photoacoustic models: Application for

ultrasensitive single cell malaria diagnosis in large

vein and artery. Biomed. Opt. Express, 7: 3643-58.

DOI: 10.1364/BOE.7.003643

Neugebauer, F., I. Polian and J.P. Hayes, 2019. On the

limits of stochastic computing. Proceedings of the

IEEE International Conference on Rebooting

Computing, Nov. 6-8, IEEE Xplore Press, San

Mateo, CA, USA, pp: 1-8.

 DOI: 10.1109/ICRC.2019.8914706

Paraskevakos, I. and V. Paliouras, 2011. A flexible high-

throughput hardware architecture for a gaussian

noise generator. Proceeding of the International

Conference on Acoustics, Speech and Signal

Processing, May 22-27, IEEE Xplore Press, Prague
Czech Republic, pp: 1673-1676.

 DOI: 10.1109/ICASSP.2011.5946821

Sauer, T., 2012. Numerical solution of stochastic

differential equations in finance. Handbook

Computat. Finance Chapter, 19: 529-550.

 DOI: 10.1007/978-3-642-17254-0_19

Sukajaya, I.N., A.V. Vitianingsih, S.N.S. Mardi, K.E.

Purnama and M. Hariadi et al., 2012. Multi-

parameter dynamic difficulty game's scenario using

box-muller of gaussian distribution. Proceedings of

the 7th International Conference on Computer

Science and Education, Jul. 14-17, Melbourne VIC

Australia, pp: 1666-1671.

 DOI: 10.1109/ICCSE.2012.6295384

Wackerly, D., W. Mendenhall and R.L. Scheaffer,

2008. Mathematical Statistics with Applications.

7th Edn., Thompson Brooks/Cole,

 ISBN-10: 0495110817, pp: 944.

Wikipedia. Box-Muller transform.

https://en.wikipedia.org/wiki/Box-Muller_transform

Zhou, Y., N. Wang and X. Jiang, 2014. Parallel gaussian

white noise generator based on cellular automaton

theory and box muller algorithm. Proceedings of the

International Conference on Wireless

Communication and Sensor Network, Dec. 13-14,

IEEE Xplore Press, Wuhan China, pp: 143-147.

DOI: 10.1109/WCSN.2014.36

https://en.wikipedia.org/wiki/Box-Muller_transform

