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Abstract: Twisting generators of the pseudorandom normal variables can 

use uniform random sequences as a basis. However, such technique could 

provide poor quality result in cases where the original sequences have 

insufficient uniformity or skipping of random values. This work offers a 

new approach for creating the random normal variables using the Box-

Muller model as a basis together with the twisting generator of uniform 

planes. The simulation results confirm that the random variables obtained 

have a better approximation to normal Gaussian distribution. Moreover, 

combining this new approach with the tuning algorithm of basic twisting 

generation allows for a significantly increased the length of created sequences 

without using any additional random access memory of the computer. 
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Introduction  

The direction of Gaussian Random Number 

Generator (GRNG) realizes the process of creating the 

random variables   Z with the function of normal 

distribution FZ (). Since the random variable z  

Z(m,) with arbitrary first moments m = E1(Z), D = 

E2(Z) = E1(2) could be reduced to the standard 

random normal variable   (m = 0,  = 1), then 

standard GRNGs are usually used to ensure a normal 

Gaussian probability distribution: 
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Normal GRNGs are widely used in mathematical 

studies (Halim et al., 2012; Neugebauer et al., 2019), 

systems of message communication (Lee et al., 2006; 

Martino et al., 2012; Zhou et al., 2014), designing of 

computer games (Sukajaya et al., 2012), complicated 

technical systems (Malik et al., 2011; Paraskevakos and 

Paliouras, 2011), models for financial analysis (Sauer, 

2012), biological studies (Menyaev et al., 2013; 2016), 

development of medical devices (Menyaev and Zharov, 

2005; 2006a; 2006b) and as well as in many other 

applied fields. 

There are many different ways to implement GRNG. 

Among all of them the generators using the Box-Muller 

model (Box and Muller, 1958) are applied widely. In this 

type of generation the random variables R are created 

using uniformly distributed random values u and v by 

one of the following two expressions: 

 

   , 2ln cos 2R u v u v   (2) 

  

   , 2ln sin 2R u v u v   (3) 

 

In the most accessible and widespread form of use for 

this generator is given in Wikipedia 

(Wikipedia.org/wiki/Box-Muller_transform), in which 

the program code of generator is presented in the 

programming language C. This code contains the main 

generation cycle in the following form: 

 

 if (!generate) 

 return z1 * sigma+mu; 

 double u1, u2; 

 do 

 { 

 u1 = rand() * (1.0/RAND_MAX); 

 u2 = rand() * (1.0/RAND_MAX); 

 } 

 while ( u1 <= epsilon ); 

 z0 = sqrt(-2.0 * log(u1)) * cos(two_pi * u2); 

 z1 = sqrt(-2.0 * log(u1)) * sin(two_pi * u2); 
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Here the random variables z0 and z1 correspond to 

expressions (2) and (3). As a generator of uniform 

random variables the standard function rand() is used, 

which might be applied, for example, in any version of 

Microsoft Visual Studio. Directly checking the 

uniformity of function rand() shows that the random 

variables obtained do not have sufficient quality in 

terms of uniqueness properties, i.e. both skipping and 

repeating of the generated variables is present. 

Therefore, the randomness of z0 and z1 is far from 

perfect. Let’s consider the uniformity quality of 

function rand() more in detail in accordance with 

simple a two-stage algorithm. 

At the first stage, it is necessary to determine 

experimentally the minimum and maximum (min and 

max respectively) values of function rand() in the 

range of the generated whole random variables. At the 

second stage, let’s perform the simplest one-time 

generation in this range of [min, max] and that is 

together with counting how many times each value is 

created by using counters. If generator rand() is 

uniform, then it has to demonstrate in counters a 

single generation for each random variable, since the 

size of [min, max] range exactly corresponds to the 

amount of the single-valued generation of random 

variables. If the values of the counters are different, it 

means that function rand() isn’t uniform. In this case, 

the generator of normal values, which follows 

expressions (2) or (3), provides insufficient quality of 

distribution of the random normal variables. 

Below is the program code for the first 

aforementioned stage which is written in Microsoft 

Visual Studio. The programming language uses C# 

dialect. Similar results can be obtained in the language of 

historical C or object-oriented C++ one. The function 

rand() in historical C produces the random values in the 

range [0: 0x7FFF]. Compare to this, the range of 

function Random.Next() in C# is extended significantly. 

This could be obtained experimentally using the 

following code below. 

 

namespace P050101 

{ class cP050101 

 { static void Main(string[] args) 

 { for (int w = 16; w <= 31; w++)            // bit length 

 { uint N1 = 0xFFFFFFFF >> (32 - w);      // max 

 Console.Write("w = {0} N1 = {1,12} ", w, 

 N1); 

 uint min = 0xFFFFFFFF; 

 uint max = 0; 

 Random r = new Random(); 

 for (uint i = 0; i <= N1; i++) 

 { uint v = (uint)(r.Next()); 

 if (v < min) min = v; 

 else if (max < v) max = v; 

 } 

 Console.WriteLine( 

 "min = {0,9:X} max = {1,9:X}", min, max); 

            } 

            Console.WriteLine("The test is over"); 

            Console.ReadKey();                      //result viewing 

 } 

 } 

} 

 

After starting program P050101, the following result 

appears on the monitor. Parameter w specifies the bit 

length of the random variables. The value of N1 

determines the maximum whole decimal number in the 

corresponding range. The min and max values are in 

hexadecimal form. They show the real values achieved 

in each phase of the experiment: 

 

w = 16  N1 =   65535  min = 11EC4   max = 7FFEEDD5 

w = 17  N1 = 131071   min = 11EA5  max = 7FFFDBA1 

w = 18  N1 = 262143  min =    142C   max = 7FFFF0A0 

w = 19  N1 = 524287  min =     1293   max = 7FFFFC07 

w = 20  N1 = 1048575  min =     877   max = 7FFFFC07 

w = 21  N1 = 2097151  min =    2A7   max = 7FFFF7C1 

w = 22  N1 = 4194303  min =     309   max = 7FFFFF4D 

w = 23  N1 = 8388607  min =      54   max = 7FFFFFCD 

w = 24  N1 = 16777215 min =    A4    max = 7FFFFF7A 

w = 25  N1 = 33554431 min =       3    max = 7FFFFFB7 

w = 26  N1 = 67108863 min =    1A    max = 7FFFFFEC 

w = 27  N1 = 134217727     min = 1    max = 7FFFFFF9 

w = 28  N1 = 268435455     min = 3    max = 7FFFFFEE 

w = 29  N1 = 536870911     min = 1    max = 7FFFFFFC 

w = 30  N1 = 1073741823   min = 1    max = 7FFFFFFE 

w = 31  N1 = 2147483647   min = 0    max = 7FFFFFFE 

 

This listing experimentally confirms that integers 

with a bit length up to 31 bits long, for example, are 

generated from the range [0: 0x7FFFFFFF]. So, 

function Random.Next() provides a sequence of the 

random variables having a length of 31 bits. 

The second stage of the uniformity check has to 

contain the counters that take into account the issue of 

how many times each number from range [0: 

0x7FFFFFFF] is generated. However, this can’t be done 

directly on a computer with a 32-bit data bus, since in this 

case there is no space in the computer's Random Access 

Memory (RAM) for the operating system and this 

program itself. So, in order to perform the second stage, 

the presented below program P050102 uses an array of 227 

counters for each of the intervals of random variables [0: 

1 227-1], then [1227: 2227-1] and so on until 24 = 16 

times to the interval [15227: 24  227-1] is reached. Thus, 

based on this it would be possible to consider in detail the 

values for counters in the range [0: 231-1] = [0: 

0x7FFFFFFF - 1] of random variables. At each of the 16 
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iterations, the generation of 231 random numbers is 

carried out together with adding the amount of the 

corresponding generations in counters of the next 

subband with length 227 of random variables: 
 
namespace P050102 

{ class cP050102 

  { static void Main(string[] args) 

 { int w = 31;                         //generation for bit length 

 uint N1 = 0xFFFFFFFF >> (32 - w);              //max 

 Console.WriteLine("w = {0} N1 = {1}", w, N1); 

 int cw = 27;                                 //interval bit length 

 int nc = 1 << cw;   //amount of numbers & counters 

 Console.WriteLine( 

 "cw = {0} nc = {1} nc = 0x{1:X}", cw, nc); 

 int[] c = new int[nc];                    //array of counters  

 Random r = new Random();        //generation object 

 int m = 1 << (w - cw);            // quantity of intervals 

 for (int i = 0; i < m; i++) 

 { Console.Write("i = {0,2} ", i);                  //interval 

 int n1 = i * nc;                      //bottom counter edge 

 int n2 = (i + 1) * nc - 1;                           //top edge 

 Console.WriteLine( 

 "n1 = {0,10:X} n2 = {1,10:X} ", 

 n1, n2); 

 for (int j = 0; j < nc; j++) c[j] = 0; 

 for (uint k = 0; k <= N1; k++) 

 { uint v = (uint)r.Next(); 

 if (n1 <= v && v < n2) c[v - n1]++; 

 } 

 int q0 = 0, q1 = 0, q2 = 0, q3 = 0; 

 for (int j = 0; j < nc; j++) 

 { if (c[j] == 0) q0++; 

 else if (c[j] == 1) q1++; 

 else if (c[j] == 2) q2++; 

 else q3++; 

 } 

 Console.Write("        "); 

 Console.Write( 

"q0 = {0,10} q1 = {1,10} ", q0, q1); 

 Console.WriteLine( 

 "q2 = {0,10} q3 = {1,10}", q2, q3); 

 } 

 Console.ReadKey();                           //result viewing 

 } 

 } 

 } 
 

After running the program P050102, the following 

listing appears on the monitor: 

 

w = 31 N1 = 2147483647 

cw = 27 nc = 134217728 nc 0x8000000 

i = 0 n1 = 0  n2 = 7FFFFFF  q0 = 49382360 q2 = 24682358  q3 = 10778132 

i = 1 n1 = 8000000  n2 = 7777777  q0 = 49380286 q2 = 24693721  q3 = 10770790 

i = 2 n1 = 10000000  n2 = 17FFFFFF  q0 = 49372134  q2 = 24684975  q3 = 10783667 

i = 3 n1 = 18000000  n2 = 1FFFFFFF  q0 = 49379005  q2 = 24692946  q3 = 10779396 

i = 4 n1 = 20000000  n2 = 27FFFFFF  q0 = 49375891 q2 = 42688306  q3 = 10777756 

i = 5 n1 = 28000000  n2 = 2FFFFFFF  q0 = 49391391  q2 = 24685803  q3 = 10774012 

i = 6 n1 = 30000000  n2 = 37FFFFFF  q0 = 49376688  q2 = 24693261  q3 = 10777766 

i = 7 n1 = 38000000  n2 = 3FFFFFFF  q0 = 49381811  q2 = 24687840 q3 = 10773706 

i = 8 n1 = 40000000  n2 = 47FFFFFF  q0 = 49368176  q2 = 24689824  q3 = 10777062 

i = 9 n1 = 48000000 n2 = 4FFFFFFF  q0 = 49369637  q2 = 24691240  q3 = 10775962 

i = 10 n1 = 50000000  n2 = 57FFFFFF  q0 = 49380081  q2 = 24682605  q3 = 10770596 

i = 11 n1 = 58000000  n2 = 5FFFFFFF  q0 = 49378595  q2 = 24680123  q3 = 10784203 

i = 12 n1 = 60000000  n2 = 67FFFFFF q0 = 49376383  q2 = 24689112  q3 = 10779434 

i = 13 n1 = 68000000  n2 = 6FFFFFFF q0 = 49368619  q2 = 24689890  q3 = 10772054 

i = 14 n1 = 70000000  n2 = 77FFFFFF q0 = 49381570  q2 = 24683658  q3 = 10775170 

i = 15 n1 = 78000000  n2 = 7FFFFFFF  q0 = 49376263  q2 = 24690133  q3 = 10779016 
 

An analysis of counters in this listing shows that in 

each interval there is the following: some random 

variables are missed (counter q0), others are generated once 

(q1), the remaining variables are repeated twice or more 

times (q2+q3). These results allow for a conclusion that 

generator Random.Next() from C# language and its 

predecessor rand() from historical C one for which the 

printouts are the same, unfortunately they are unable to 

provide a sufficient quality of uniformity for generation of 

random normal variables in accordance with (2) or (3) 

using the Box-Muller technique. 

In connection with all this above, the purpose of this 

article is to create a novel high-quality generator based 

on the Box-Muller transformation together with a 

technique of an absolutely uniform random number 

generation which we proposed and explored recently. 

Theory 

In modern probability theory, the Kolmogorov's 

axiomatics (Kolmogorov, 1968) uses the fact of one-to-

one correspondence between the random variable and the 
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probability distribution function. In the continual domain 

(Kolmogorov and Fomin, 1999) of finding the random 

variable , the distribution function F() is bounded 

by the range [0,1]. From the fact of uniqueness it follows 

that if any value h of the distribution function F(h) is 

given, then the value of the random variable h can be 

obtained as the inverse transformation of function 
1( )h F h 

 . By the definition of distribution function, 

the continuity property guarantees a strict ordering of 

values of the random variables. Consequently, by 

specifying uniform complete random (even continual) 

values of the distribution function, it is possible to obtain 

identically the random values of this distribution. So, this 

main mathematical model contains the bases for 

constructing the generators of random variables in 

correspondence with given functions of their 

distribution. Let’s take this statement into account for 

developing a generator of the random normal variables. 

By the definition, function F() of normal 

distribution of the random variables  has the form 

as it is presented in expression (1) above. This 

expression allows calculating directly the random 

variable  using well-known methods of integrating, 

among of which the Darboux-Riemann technique is 

standing out as most accurate. However, this approach 

may result in the increase of calculation time, which is 

proportional to the given accuracy of integrating. In 

some tasks of the substantial trials, such a time limit 

could be a significant restriction. 

The distinctive solution was proposed in the famous 

work by Box and Muller (1958), which uses an approach 

analogous to the Rayleigh distribution algorithm (Feller, 

2008; Gnedenko, 1998). In this technique it is given the 

joint random variable  =< s, t > of independent 

variables sS and tT with the same normal distribution 

functions. Assuming that both random variables s and t 

are coincide with the random variable , then their 

normal distribution density in accordance with 

expression (1) has the following form: 
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The probability distribution of the joint random 

variable  =< s, t > on the Descartes plane S×T is 

defined by the following expression: 
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Taking into account the independence of the random 

variables s and t in (4), the joint probability density f(s, 

t) is determined by the following multiplication: 
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2 2 2 2
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Substituting (6) into (5), the following expression 

appears: 
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Direct calculation of the probability function F(S,T) 

by expression (7) could be performed by any methods of 

the numerical integrating. However, this might take a 

long time. At the same time, it is possible to reduce 

the amount of calculations because expression (7) 

may be redirected to polar coordinates. Formally, the 

sum 2 2 2r s t    corresponds to the length of the 

radius-vector  =< s, t >: 

 
2 2r s t    (8) 

 

In this case, to each radius-vector  =< s, t > in space 

S×T corresponds a vector rR at an angle  = [0: 2] 

in the polar coordinates of space R×. Their lengths r 

and r are equal and the coordinates of vectors  and r 

are interrelated: 

 

sin

cos

r r

s r

t r









 

 

 (9) 

 

This geometric representation allows interpreting 

expression (7) as a distribution function for the length of 

the radius-vector  in the Descartes space S×T. The same 

corresponds to the distribution function Fr(R,) of 

vector r in the polar space R×. The transition Fr(R,) = 

F(S,T) could be performed with the help of Jacobian J, 

which allows replacing the multiplication of differentials 

dsdt by analogues drd: 
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The form of Jacobian J is defined as follows: 
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  (11) 
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Substituting (11) into (10) allows getting this: 
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An important result of expression (12) is the fact that 

using two random variables S and T, it is possible to 

calculate explicitly in polar coordinates the normal 

distribution 
2 /21 Re  and that is without applying the 

methods of the numerical integrating like it is in 

expression (1) for the rectangular Descartes coordinates. 

In this case, the Kolmogorov's axiomatics main property 

(Gnedenko, 1998) of one-to-one correspondence of a 

random variable to its distribution function can be 

applied. Exactly this property is used in the generator of 

the random normal variables, which uses the Box-Muller 

technique. The point here is: it might take a complete 

generator of uniform random variables for the specific 

generations of values of a function of the random normal 

variables and then, for each value, the random normal 

variables will be calculated using the inverse function. 

The uniqueness of Kolmogorov's axiomatics guarantees 

the correct result. For this technology the result (12) is 

best suited, since the vector length in form of the random 

variable is the same in both spaces, i.e. S×T and R×. 

In (1) the centered random variable  in space S×T 

can take both positive and negative values. However, in 

the polar space R× the random variable r has only a 

positive value. To somehow smooth this insoluble 

contradiction, the Box-Muller model uses an artificial 

technique, which introduces the second uniform 

generator for angle  on the circular interval [0: 2] 

having radius r = R. For this, the elementary 

trigonometric transformations are suitable, for example, 

like form cos  in (2) or form sin  in (3). The error is 

negligible in this case, but positive and negative random 

normal variables are obtained perfectly. This approach is 

close to the different decisions used in probability theory 

in case of situation when an error of the modeling isn’t 

important significantly for applied tasks. 

Let’s demonstrate the model of such a technique. 

First of all, it is necessary to point out now that by 

property of any distribution function, its cumulative 

value for all the random variables is singular: 
 

 
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2,2 1 1rF R e
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Since sequence of the generated random variables is 

random but contains all the random variables u' for 

Fr(R,2), the complete sequence of corresponding 

realizations of the distribution function Fr(u',2) is the 

random sequence as well. It contains both, values 

Fr(u',2) and values Fr(u = 1-u', 2) because of 

accordance to property (13). It is obvious that order of an 

enumeration of the random variables u and u' in 

functions (12) is not of significant importance because of 

their randomness and cumulativity. 

Now with the help of the complete uniform generator 

it is necessary to obtain uniform random variable u for 

expression (12) on interval [0: 1]. Since the axiomatics 

of probability theory provides the appearance of all the 

random variables in complete sequences of the 

observed events, then the following variant for 

expression (12) could be used: 

 
2

21 1 .
R

u u e


     (14) 

 

Expression (14) allows calculating the inverse 

function  1 ,2rR F u  : 

 

 1 ,2 2lnrR F u u    (15) 

 

At this step, it is required to introduce a technological 

correction uU = (0: 1]. It means that random variable u 

= 0 has to be excluded from (15) since ln0 is not a 

subject to calculation. 

Further, it is necessary to determine the sign of the 

random variable R, since both values of 2lnR u    

are permissible. For this purpose, in the Box-Muller 

model the sign-factor of trigonometric functions (2) and 

(3) is used. For the angular random variable  to have 

uniform distribution on the circular interval [0, 2], it is 

proposed to use the second complete uniform generator 

of the random variable v. However, on the circular 

interval the points 0 and 2 coincide, therefore one of 

them should be abandoned. Since in generator (15) the 

random variable u = 0 isn’t used, it is preferable to 

choose the half-open circular interval (0, 2]. 

Assuming that the second generator creates the 

random variables v  (0: 1], the value of the random 

angle is obtained as the following: 

 

2 v    (16) 

 

Collecting together the generators in expressions (15) 

and (16), the final views of generator for the random 

normal variable z look as follows: 

 

 cos 2ln cos 2z R u v       (17) 

 

Or the same in similar form:  

 

 sin 2ln sin 2z R u v       
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At this point, let’s finish the theoretical 

considerations. Forms of expression (17) with taking into 

account the random Descartes plane S×T allows creating 

the required generator of the random normal variables 

according to the Box-Muller model. 

Construction and Results 

In expression (10), plane R× = [0,R]×[0,2] is used 

to calculate the distribution function Fr(R,2). According 

to (13), the maximum value is Frmax(,2) = 1. 

Consequently, in the model (17) there is uBMU = (0: 

1]. At the same time, according to (16) another 

independent complete uniform generator creates the 

random variables vBMV = (0: 1]. To realize the 

coordinated work of these generators, it is necessary to 

use some complete generator of the real random plane. 

In our previous work (Deon and Menyaev, 2016a), 

we simulated absolutely all possible uniform sequences, 

but the problems of designing the generator itself 

weren’t considered there. In continuation of that work, 

then in (Deon and Menyaev, 2016b) we proposed a 

twister generator of the complete uniform random 

variables using the technology of a twisting array. In 

order to exclude the influence of the twisting array on 

the computer RAM, we have perfected the previous 

development by proposing a generator of uniform 

twisting sequences of arbitrary size but without twisting 

array (Deon and Menyaev, 2017; 2019). The technology 

of this generator is the basis of generator 

cDeonYuliPlaneTwist32D (Deon and Menyaev, 2018), 

which creates the random planes 

2 2 0 : 2 1 0 : 2 1w w w wN N      


   
  

 using whole 

random variables of length w bits. Now the resulting 

random whole points on the Descartes plane N×N should 

be transformed into random real points on plane U×V = 

(0: 1]×(0: 1]. For every such point <u, v> there is a 

correspondence of the random normal variable z 

according to (17). Now let's figure out how it all works. 

In the base class cDeonYuliPlaneTwist32D (Deon and 

Menyaev, 2018) two variables u and v having the length 

of w bits are created from range [0: 2w -1]. Then these 

quantities are transformed into random real variables du and 

dv as follows. At each half-open intervals BMU and BMV 

there are N = 2s segments of length: 

 

1
du dvd d d

N
     (18) 

 

The first initial segment corresponds to the 

subinterval du1 = dv1 = (0: 1 d], the next one to du2 = dv2 

= (1 d: 2 d] and the last to duN = dvN = [(N - 1) d: N d] 

accordingly. Note that index k on the right side of each 

subinterval duk = dvk is the marker of all subintervals 

1, 1,2wk N    
   

. The main thing here is that k  0 and 

this is perfectly suitable for the further calculations in (17). 

Below is class cDeonYuliBMNormalTwist32D, in 

which the random normal variables are created on the 

random half-open plane BMU×BMV = (0: 1]×(0: 1], for 

which a square grid with step d (18) contains the 

twisting random variables. Class 

cDeonYuliBMNormalTwist32D is derived over the base 

class of twisting planes cDeonYuliPlaneTwist32D 

(Deon and Menyaev, 2018). An example of generation 

of the random normal variables is given later in 

program P050301: 

 

using nsDeonYuliPlaneTwist32D; 

namespace nsDeonYuliBMNormalTwist32D 

{ class cDeonYuliBMNormalTwist32D :             

cDeonYuliPlaneTwist32D 

 { public double d;                                  //interval length  

 public uint u;           //integer random number along U 

 public uint v;           //integer random number along V 

 public double bmu;//real random number along BMU 

 public double bmv;//real random number along BMV 

 public double z;                    //random normal number 

//------------------------------------------------------------------- 

 public cDeonYuliBMNormalTwist32D () {} 

//------------------------------------------------------------------- 

 public void Start() 

 { base.Start(); 

 d = 1.0 / ((double)base.N1 + 1.0);    //number step 

 } 

//------------------------------------------------------------------- 

 public double Next() 

 { base.Next( ref u, ref v);    //a point on plane U x V 

 bmu = ((double)u + 1.0) * d;                     //in (0,1] 

 bmv = ((double)v + 1.0) * d;                     //in (0,1] 

 z = Math.Sqrt(-2.0 * Math.Log(bmu)) * 

 Math.Cos(2.0 * Math.PI * bmv); 

 return z;                           //random normal number 

 } 

//======================================= 

 } 

} 

 

To verify the correct calculation of parameters of the 

mathematical expectation and variance using the 

cDeonYuliBMNormalTwist32D generator, let’s apply 

code P050301 below, which generates the random 

normal variables using the Box-Muller model. The 

random twisting plane utilizes a grid for uniform random 

whole variables of length w = 3. Other values for the bit 

length w could be specified directly in the program. The 

total amount of the random normal variables z is N2 = 

(2w)2 = 22w = 223 = 64. Only the calculations of the 

amounts of negative values kn, then zero meanings k0 and 
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after that positive values kp of z variables (17) are printed 

out on monitor together with mathematical expectation Mz 

= E1(Z) and dispersion Dz = E2(z) = E1(z2).  

 

using nsDeonYuliBMNormalTwist32D;  

  //twister normal numbers 

namespace P050301 

{ class cP050301 

 { static void Main(string[] args) 

 { cDeonYuliBMNormalTwist32D GN = 

 new cDeonYuliBMNormalTwist32D(); 

 int w = 3;                     //bit length of integer number 

 GN.SetW(w);                                       //set bit length 

 GN.Start();                                       //generator starts 

 uint N1 = GN.N1;             //maximal integer number 

 uint N = N1 + 1; 

 uint N2 = N * N; 

 Console.WriteLine("w = {0} N = {1} N2 = {2}", 

 w, N, N2); 

 int kn = 0, k0 = 0, kp = 0; 

 double d = 1.0/(double)N; 

 double Mz = 0.0;                                  //first moment 

 double Dz = 0.0; 

 for (int k = 0; k < N2; k++) 

 { double z = GN.Next();      //random normal number 

 if (-d < z && z <d) k0++; 

 else if (z >= d) kp++; else kn++; 

 Mz += z; 

 Dz += z * z; 

  } 

  Console.WriteLine(  

 "kn = {0}   k0 = {1} kp = {2}", 

 kn, k0, kp); 

 Mz/= (double)N2;              //mathematical expectation 

 Console.WriteLine("Mz = {0,12:E4}", Mz); 

 Dz = Dz/(double)N2 - Mz * Mz;                //dispersion 

 Console.WriteLine("Dz = {0,6:F4}", Dz); 

 Console.ReadKey();                             //result viewing 

 } 

 } 

} 
 

After executing the program P050301, the next 

listing appears on the monitor: 
 
w = 3 N = 8 N2 = 64 

kn = 21 k0 = 22 kp = 21 

Mz = -4.5653E-017 

Dz = 0.7539 
 

This result shows that N2 = 64, which means that the 

following random normal variables are generated: 21 

positive and 21 negative numbers and then 22 zero ones. 

The meaning of the mathematical expectation is very 

close to zero, i.e. Mz = E1(z) = -4.56531017. With such 

a small bit length w = 3, i.e. in case of numbers 

0,1,2,3,4,5,6 and 7, the dispersion of the real normal 

variables is      2

2 1 1 1( ) 0.7539Dz E z E z E z E z     . 

The following next program code allows tracing the 

convergence of moments E1(z) and E2(z) as a function of bit 

length w of the initial whole uniform random variables.  
 
using nsDeonYuliBMNormalTwist32D;  

      //twister normal numbers 

namespace P050302 

 { class cP050302 

 { static void Main(string[] args) 

 { cDeonYuliBMNormalTwist32D GN = 

 new cDeonYuliBMNormalTwist32D(); 

 for (int w = 3; w <= 14; w++) 

 { GN.SetW(w);                                  //set bit length 

 GN.Start();                                   //generator starts 

 uint N1 = GN.N1;       //maximum integer number 

 uint N = N1 + 1; 

 uint N2 = N * N; 

 Console.Write( 

 "w = {0,2} N = {1,5} N2 = {2,9}", w, N, N2); 

 double Mz = 0.0;         //mathematical expectation 

 double Dz = 0.0;                                 //dispersion 

 for (int k = 0; k < N2; k++) 

 { double z = GN.Next(); //random normal number 

 Mz += z; 

 Dz += z * z; 

 } 

 Mz /= N2;                  //mathematical expectation 

 Console.Write(" Mz = {0,12:E4}", Mz); 

 Dz = Dz / (double)N2 - Mz * Mz;     //dispersion 

 Console.WriteLine(" Dz = {0,6:F4}", Dz); 

 } 

 Console.ReadKey();                      //result viewing 

 } 

 } 

} 
 

After starting this program, the following strings appear: 
 
w =  3   N = 8         N2 = 64              Mz = -4.5653E-017  
Dz = 0.7539 
w =  4   N = 16       N2 = 256            Mz = -7.0256E-017  
Dz = 0.8556 
w =  5   N= 32        N2 = 1024          Mz = -7.6978E-017  
Dz = 0.9170 
w =  6   N = 64       N2 = 4096          Mz = -5.1716E-017  
Dz = 0.9531 
w =  7   N = 128     N2 = 16384        Mz =  2.1413E-018  
Dz = 0.9739 
w =  8   N = 256     N2 = 65536        Mz = -6.2992E-017  
Dz = 0.9856 
w =  9   N = 512     N2 = 262144       Mz = -4.6107E-017  
Dz = 0.9921 
w = 10  N = 1024   N2 = 1048576     Mz = -7.3673E-017  
Dz = 0.9957 
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w = 11  N = 2048   N2 = 4194304     Mz = -5.8537E-017  
Dz = 0.9977 
w = 12  N = 4096   N2 = 16777216   Mz = -4.5401E-017  
Dz = 0.9988 
w = 13  N = 8192   N2 = 67108864   Mz = -4.6954E-017  
Dz = 0.9993 
w =14  N =16384 N2 = 268435456 Mz = -3.6657E-017 
Dz = 0.9996 

 

These results confirm that if a grid of the twisting 

uniform plane is increasing then the mathematical 

expectation within the error of computations is very close 

to 0 and the dispersion tends to 1. This corresponds to the 

basic parameters of the standard normal distribution 

having E1() = 0 and E2() = E1(2) = 1. 

Discussion 

In evaluating the transformation of stochastic 

processes the methods of mathematical statistics are used 

broadly (Wackerly et al., 2008). Particularly, the 

widespread one is Pearson's 2 test, which provides the 

possibility in an estimation of proximity between two 

things: the probability distribution of the observed 

random variables z and the probability distribution of the 

assumed (hypothetical) random variables . The essence 

of this correspondence lies in the analysis of the 

considerably rare random variables z and . 

With the help of expression (17), grid nodes in 

uniform plane BMUBMV = (0: 1](0: 1] are mapped to 

the random normal variables z with the probability 

distribution function F() (1). To confirm this hypothesis, 

let’s divide interval L from min to max values L = [zmin, 

zmax] into several subintervals di. The length L of all 

subintervals di is understood as the difference between 

max and min values of the observed random variables z  

[zmin, zmax]. All values of di could be chosen arbitrarily, but 

usually uniform length d is applied, provided that: 
 

max min

1

Ln

i L

i

z z L d n d


     (19) 

 
Now, it follows from this expression (19) that: 

 

max min

L

z z
d

n


  (20) 

 
The value of nL in (20) could be calculated from the 

conventional approach of binary multiplicity when 

estimating the sufficiency of observations: 
 

*

2log 1Ln N     (21) 

 
Expression (21) is applied when value N* isn’t a 

multiple of the power function 2x of some whole variable 

x. In the proposed implementation of model (17), a grid 

on the random plane BMUBMV is used, which contains 

the complete uniform sequences U and V with the 

number of grid nodes  
2

2 22 2w wN   . In this case, the 

value of log2 N2 has no remainder. Thus, expression (21) 

could be reduced to the following form: 

 
* 2

2 2log log 2 2w

Ln N w    (22) 

 

On each subinterval 
  min min1,2

( 1) ,
i w

d z i d z i d


        , 

there are the random normal variables in amount vi. The 

observed probability g(z  di) is given by the ratio of the 

total number N2 = 22w of observations: 

 

  i

2i

ν
g z d

N
   (23) 

 

The values of the theoretical hypothetical 

probabilities h(  di) on the same intervals are 

calculated as the local integral values: 

 

 
 

2
min

min 1

2
1

2
i d

z i d x

i

z

h d e dx


 

 


    (24) 

 

The ideal normal generator (23) has to be such that 

computations (23) and (24) coincide, i.e. 

  ( )i ig z l h l   . For evaluation of such a coincidence, 

Pearson proposed using the test of criterion of 

significance (Cramer, 1999). 

This significance test is based on the observation 

results, i.e. the differences between observed g(z  di) 

and hypothetical h(  di) probabilities at the 

corresponding subintervals di are calculated. These 

differences are considered as joint random events < gi, hi 

>. It should be noted that the events of these probabilities 

are really independent, since they are formed by random 

independent real and hypothetical trials. Because the 

differences of probabilities i = gi = hi can be either 

positive or negative, that suggests evaluating their square 

meanings  
22

i i ig h    since they are positive only. 

Thus, it is possible to obtain an analytical value of 2 for 

the sum of squares of the joint random variables 2

i : 

 

 
2 2

22 2

1 1

L Ln w n w

i i i

i i

g h 
 

 

     (25) 

 

Summarizing the squares of the probability 

differences (25) having the weighting coefficients cj, a 

numerical estimation of the Pearson’s criterion appears 

as follows: 
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 
2

2

1

w

i i i

i

Q c g h


   (26) 

 
The proposal is that choice of coefficients ci is carried 

out as inversely proportional to the significance of 

hypothetical probabilities: 
 

i

i

N
c

h
  (27) 

 
With this selection of coefficients ci (27) the Pearson’s 

significance criterion (26) takes the following form: 

 

   
2 2

2 2

1 1

w w
i i i i

i ii i

g h v N h
Q N

h N h 

  
 


   (28) 

 

Pearson's proof is that the criterion of significance Q 

(28) can be related to the distribution 2 of the sum of 

squares of the random variables: 

 

 
 

2

1
2 2 2

2

0

1

2 2

L x

L
F x e dx

L




 


  (29) 

 

Designation  (L/2) in (29) is obviously a gamma-

function: 

 

 
1

2

0

/ 2
L

xL x e dx



     (30) 

 

In expressions (29) and (30), parameter L is the 

number of degrees of freedom which is associated with 

the amount of subintervals nL as follows: 

 

LL n m   (31) 

 

Usually parameter m is defined as the number of 

superimposed links. As the first such a connection, it 

usually distinguishes the classical condition of 

probability theory: 

 

1i

i I

p


  (32) 

 

If this condition is taken into account, then m = 1 and 

= nL - 1. It is forced to do so if nothing is known about 

the completeness of the observations. To 

superimposed links also often include the coincidence 

of mathematical expectations and the coincidence of 

variances. In the last case m = 3, although this is 

clearly not obvious and, possibly, doubtful. However, 

generator cDeonYuliBMNormalTwist32D proposed 

above generates the normal values for the complete 

sequences of the twisting whole plane, i.e. all the 

arguments about superimposed links are already fully 

taken into account in the used generation of the 

complete twisting plane. Therefore, there is no need to 

adjust (31), i.e. using m = 0 and L = nL. 

So, implementation of the significance criterion 2 

consists in using the following expression: 

 

 
 

2

1
2 2 2

2
0

1
1

2 / 2

L

L

n x

n
F x e dx

L



 
 

  


  (33) 

 

Solving this integral expression with respect to 2

 , a 

value which is possible to compare with the criterion of 

significance Q (28) is obtained. The significance level, 

i.e. parameter α is usually chosen as 0.05 or 0.1 or 0.15. 

If 2Q  , then the hypothesis of correspondence 

between the investigated distributions is accepted. This 

means that the observed random values correspond to a 

given hypothetical distribution with a probability of at 

least 1 -, i.e. hypothetical extra-large deviations could 

be ignored. This assumption is usually made by 

researchers when they determine the insignificance of 

the level of possible meaningful deviations. If the 

significance level is assumed to be  = 0.05, then the 

observed statistics have a given distribution with a 

probability not worse than 1- = 1– 0.05=0.95.  

Below is the program code, which verifies the result 

of testing cDeonYuliBMNormalTwist32D generator for 

compliance with the standard normal distribution of the 

received random variables. The calculation of the exact 

integrals is performed absolutely accurate according to a 

given error by using Darboux-Riemann technique in 

function DarbouxRiemann().  

 

using nsDeonYuliBMNormalTwist32D;  

   //normal number generator 

namespace P050401 

 { delegate double delF(double x); 

//------------------------------------------------------------------- 

 class cP050401 

 { static void Main(string[] args) 

 { cDeonYuliBMNormalTwist32D GN = 

 new cDeonYuliBMNormalTwist32D(); 

 int w = 13;    //bit length of integer random numbers 

 GN.SetW(w);                                       //set bit length 

 GN.Start();                                       //generator starts 

 uint N1 = GN.N1;             //maximal integer number 

 uint N = N1 + 1;                  //twister sequence length 

 uint N2 = N * N;      //point quantity on twister plane 

 Console.WriteLine("w = {0} N = {1} N2 = {2}",  

 w, N, N2); 

 int nL = 2 * w;            //interval quantity in hi-square 

 Console.WriteLine("nL = {0}", nL); 

 double zmin = 0.0, zmax = 0.0; 

 double[] z = new double[N2];        //normal numbers 
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 double MZ = 0.0;                            //first moment E1 

 double DZ = 0.0;                        //second moment E2 

 for (int k = 0; k < N2; k++)         //all points on plane 

 { double zz = GN.Next();   //random normal number 

 if (zz < zmin) zmin = zz; 

 else if (zmax < zz) zmax = zz; 

 z[k] = zz;                           //random normal number 

 MZ += zz;                      //mathematical expectation 

 DZ += zz * zz;                                       //dispersion 

 } 

 Console.WriteLine( 

 "zmin = {0,7:F4} zmax = {1,7:F4}", zmin, zmax); 

 double d = (zmax - zmin)/nL;            //interval length 

 Console.WriteLine("d = {0:F4}", d); 

 int[] gnu = new int[nL];      //quantity under intervals 

 for (int i = 0; i < nL; i++) gnu[i] = 0; 

 for (int k = 0; k < N2; k++) 

 for (int i = 1; i <= nL; i++) 

 if (((zmin +(i-1) * d ) <= z[k]) && 

 (z[k] <= (zmin + i*d))) 

 { gnu[i - 1]++; 

 break; 

 } 

 MZ/= N2;                        //mathematical expectation 

 Console.WriteLine("MZ = {0:E5}", MZ); 

 DZ = DZ/(double)N2 - MZ * MZ;           //dispersion 

 Console.WriteLine("DZ = {0:F5}", DZ); 

 double[] g = new double[nL];   //viewing probability 

 double[] h = new double[nL];    //hypoth. probability 

 int[] hnu = new int[nL];    //hypothetical frequencies 

 double sh = 0.0;          //hypothetical probability sum 

 int sgnu = 0;     //random number quantity in interval 

 Console.Write(" i gnu hnu h"); 

 Console.WriteLine(" a b"); 

 for (int i = 0; i < nL; i++) 

 { g[i] = (double)gnu[i]/(double)N2; 

 double a = zmin + i * d;               //interval left edge 

 double b = a + d;                        //interval right edge  

 h[i] = DarbouxRiemann(fx, a, b, 0.001);     //integral 

 hnu[i] = (int)(h[i] * N2);          //quantity of numbers 

 sh += h[i];                  //hypothetical probability sum 

 sgnu += gnu[i];                              //all intervals sum 

 Console.Write("{0,2} {1,7} {2,7} {3,8:F5}", 

 i, gnu[i], hnu[i], h[i]); 

 Console.WriteLine(" {0,8:F4} {1,8:F4}", a, b); 

 } 

 Console.WriteLine("sgnu = {0}", sgnu); 

 Console.WriteLine("sh = {0:F5}", sh); 

 double Q = 0.0;       //Pearson’s significance criterion 

 for (int i = 0; i < nL; i++) 

 { double dp = g[i] - h[i]; 

 Q += dp * dp/h[i]; 

 } 

 Q *= (double)N2;     //Pearson’s significance criterion 

 Console.WriteLine("Q = {0:F5}", Q); 

 Console.ReadKey();                             //result viewing 

 } 

//------------------------------------------------------------------ 

 static double fx(double x) 

 { return Math.Exp(-x * x / 2.0)/ 

 Math.Sqrt(2.0 * Math.PI); 

 } 

//------------------------------------------------------------------- 

 static double DarbouxRiemann(delF f, double a,  

 double b, double e) 

 { double f1 = 0.0;            //function on left square edge 

 double f2 = 0.0;           //function on right square edge 

 double S1 = 0.0;                         //Darboux lower sum 

 double S2 = 0.0;                         //Darboux upper sum 

 double dx = (b - a)/100.0;  

 do 

 { S1 = 0.0; S2 = 0.0;                 //initial value of sums 

 double dxR = dx; 

 for (double x = a; x < b - dx/2.0; x += dx) 

 { f1 = f(x);                                         //left edge value 

 if (x > b - 1.4 * dx) dxR = b - x;                       //last 

 f2 = f(x + dxR);                             //right edge value 

 if (f1 <= f2)  

 { S1 += f1 * dx;                      //Darboux lower sum 

 S2 += f2 * dx;                       //Darboux upper sum 

   } 

 else                                                  //descending area 

 { S1 += f2 * dx;                        //Darboux lower sum 

 S2 += f1 * dx;                        //Darboux upper sum 

 } 

 } 

 dx/= 2.0;                               //reduce the area by half 

 } while (Math.Abs(S2 - S1) > e);  //Riemann cond-n 

 return (S1 + S2) / 2.0;                //value in the middle 

 } 

//======================================= 

 } 

} 
 

After running the program P050401, the following 

listing appears on the monitor: 
 
w = 13 N = 8192 N2 = 67108864 

nL = 26 

zmin = -4.2452 zmax = 4.2452 

d = 0.3266 

MZ = -4.6954E-17 

DZ = 0.99934 

i gnu hnu h a b 

0 2213 2255 0.00003 -4.2452 -3.9187 

1 7853 8018 0.00012 -3.9187 -3.5921 

2 25565 25652 0.00038 -3.5921 -3.2655 

3 73708 73829 0.00110 -3.2655 -2.9390 

4 191021 191163 0.00285 -2.9390 -2.6124 

5 445232 445308 0.00664 -2.6124 -2.2859 

6 933149 933259 0.01391 -2.2859 -1.9593 
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7 1759559 1759673 0.02622 -1.9593 -1.6328 

8 2984954 2985055 0.04448  1.63280 -1.3062 

9 4555737 4555813 0.06789 -1.3062 -0.9797 

10 6255547 6255678 0.09322 -0.9797 -0.6531 

11 7728140 7728218 0.11516 -0.6531 -0.3266 

12 8595850 8589771 0.12800 -0.3266 0.00000 

13 8587658 8589771 0.12800 0.00000 0.32660 

14 7728140 7728218 0.11516 0.32660 0.65310 

15 6255547 6255678 0.09322 0.65310 0.97970 

16 4555737 4555813 0.06789 0.97970 1.30620 

17 2984954 2985055 0.04448 1.30620 1.63280 

18 1759559 1759673 0.02622 1.63280 1.95930 

19 933149 933259 0.01391 1.95930 2.28590 

20 445232 445308 0.00664 2.28590 2.61240 

21 191021 191163 0.00285 2.61240 2.93900 

22 73708 73829 0.00110 2.93900 3.26550 

23 25565 25652 0.00038 3.26550 3.59210 

24 7853 8018 0.00012 3.59210 3.91870 

25 2213 2255 0.00003 3.91870 4.24520 

sgnu = 67108864 

sh = 0.99998 

Q = 14.54771  
 

This listing shows that the tests are carried out on 

the twisting plane of whole random variables having 

w = 13 bits length. The plane contains a grid with the 

amount of  
2

2 2 262 2 2 2 67108864w wN N      nodes. 

So, in program P050401 a total of 22w = 67108864 

random normal values are generated. The minimum 

meaning of values zmin is zmin = -4.2452; the 

maximum one zmax turned out to be symmetrical is 

zmax = 4.2452. According to expression (22), it is 

recommended using nL = 2w = 26 subintervals from 

zmin = -4.2452 to zmax = 4.2452. By using (22) it 

follows that all the subintervals have the same length 
 max min / 8.4904 / 26 0.3266Ld z z n    . The mathematical 

expectation of the created normal values is very close to 0 

and it is   171 4.6954 10MZ E z     . Dispersion is 

0.99934 and it approaches to 1. Then in this listing there 

are lines of all the subintervals, each of them indicates 

quantity gnu of the generated normal values in this 

subinterval; then follows quantity hnu of the 

hypothetical random variables; after that appears the 

hypothetical probability of subinterval (24); at last, this 

listing closes beginning a and ending b of this 

subinterval. Controlling the strict correspondence of the 

total amount of generations N2 = N2 = 67108864 and 

generation by the intervals provides the total number 

sgmu = 67108864 of all the random variables in 

subintervals. These values are the same and they are 

multiples of the distribution over the subintervals 

without a remainder, keeping the degree of freedom 

equal to the number of subintervals 2

2log 2 26w

LL n   . 

The sum of the hypothetical interval probabilities is sh = 

0.99998, which confirms the basic identity of probability 

theory. The Pearson’s significance criterion according to 

(28) is Q = 14.54771. 

To draw conclusions using criterion Q regarding the 

correspondence of the generated random variables to the 

normal standard distribution (1), it is necessary to 

calculate 2

  for a given significance level  in 

accordance to expression (33). It uses gamma-function 

(30), for which one of the important properties is its 

factorial character: 
 

   1

0

1 !xx e dx 


       (34) 

 

If  is an integer-numbered, then there is no need to 

calculate this integral directly. In the tests of program 

P050401, it is used gamma-function 

     λ 2 26 2 13 1 ! 479001600Ln       . Taking into 

account the factorial properties of gamma-function, the 

transformation of integral (29) has the following form: 
 

 
   

2 2

2 2

1
2 122 2 2

2 13

0 0

12 122 2
13

0 0

1 1
, 26

2 2 2 13

1 1

2 12! 8192 479001600

L

L

n x x

n

L

x x

F nL x e dx x e dx
n

x e dx x e dx

 

 


  

 

   
 

 
 

 

 

 (35) 

 

With the significance level  = 0.05, the last integral 

in (35) has to ensure the following: 

 

 
2

2 12 2

0

1
, 26, 0.05

8192 479001600

1 0.95

x

F r x e dx


 





   


  

  (36) 

 

This expression is satisfied with an accuracy of 

0.00001 for 2 38.8859  . Comparing value 2

  with 

Pearson's significance criterion Q obtained earlier in 

program P050401, it is obvious that 
214.5477 38.8859Q    . It means that with a 

probability of at least 0.95, generator 

cDeonYuliBMNormalTwist32D creates indeed the 

random values with a standard normal distribution 

according to the Box-Muller model, having the 

mathematical expectation 
1( ) 0M E z   and dispersion 

   2

2 1 1D E z E z   . 

Conclusion 

Analysis of the source materials shows that 

algorithms of the modern generators used for the 

random normal variables do not have a sufficient 

evaluation level according to the statistical criterion 

2 of significance. In order to increase the 
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approximation of the generated random normal 

variables to the standard normal distribution with zero 

mathematical expectation and singular dispersion, we 

propose the use of generators with the model of Box-

Muller transformation based on a technique of 

absolutely complete uniform twisting planes. 

However, their direct application is limited by the 

required properties of half-open single Descartes 

uniform planes. This is taken into account in designed 

special class nsDeonYuliBMNormalTwist32D, which 

combines the technology of twisting half-open 

Descartes planes and Box-Muller transformation 

algorithm. The experiments confirm undoubtedly the 

notable level 1- of Pearson's criterion of significance 
2

 . Moreover, the variety of initial twisting planes 

provides a possibility obtaining many different 

generations of twisters for each pair of congruential 

constants. In the future, the obtained results of this 

work could be implemented in a large number of 

applied tasks which use the random normal numbers. 
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