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*The self-study  

Abstract: We all dream of quick loading. Quicker than it is now. So that 

it loads immediately. What is needed for this? There are a lot of things to 

do. The most important things in it are computations. To speed up 

loading, we need to speed up computations. If we will find the way to 

multiply large numbers quicker than we have, the loading will be much 

quicker. How to do that? We need to multiply large numbers in time 

O(log n). How is that possible? A new model of computation may solve 

this problem. These are the algorithms that require considerably less 

amount of resources to perform them. The time complexity of the 

algorithm is the main (key) resource that we need to reduce to get the 

desired complexity. It seems incredible, but it is possible. We will get this 

through the sorting array. Best, worst, and average cases of a given algorithm 

could be considered for each particular input instance of the problem when 

analyzing algorithms. The worst-case complexity is the most used in 

algorithm analysis, it gives an upper bound on the resources required by the 

algorithm. Thus, the discovery of better algorithms brings the upper bound on 

the worst-case running time down. This paper presents the new matrix model 

of computation, which is based on the concept of the new matrix 

computations for advanced computing. The paper intends to prove the 

existence of better algorithms for any given input instance of the worst-case 

time complexity M(n) = O(n2) that take O(log n) and provide extremely quick 

web pages loading and create a new topic in complexity.  
 

Keywords: Computational Complexity, Upper Bound, Web Load Time, 

Extremely Quick Web Loading, Large Numbers Multiplication 
 

Introduction 

Every time you engage in encrypted communication 

on the internet - for example, access your banking 

website or perform a web search – your device performs 

a head-spinning number of multiplications, involving 

numbers with hundreds or even thousands of digits. Very 

likely your device uses Karatsuba’s trick for this 

arithmetic. This is all part of the amazing software 

ecosystem that keeps our web pages loading as snappily 

as possible (TCMGL, 2019). 

 

“We have seen that sometimes computational 
problems have nonintuitive algorithms, which 
are quantifiably better (i.e., more efficient) than 
algorithms that were known for thousands of 
years. It would, therefore, be really interesting 

to prove for interesting computational tasks that 
the current algorithm is the best - in other 
words, no better algorithms exist. For instance, 
we could try to prove that the O(n log n)-step 
algorithm for multiplication can never be 
improved (thus implying that multiplication is 
inherently more difficult than addition, which 
does have an O(n)-step algorithm).” 
Sanjeev Arora and Boaz Barak, 2006.  

 

The web should be fast, Google says. A one-second 

delay in web page load time yields fewer page views, a 

decrease in customer satisfaction, and loss in 

conversions. The web users expect the web to load in 

two seconds, or less and will abandon a page that takes 

three or more seconds. A slow loading web is bad not 

only for the end-users but also for search engine, web 
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pages are indexed and ranked based on the experience 

have they provided users. How to make web load 

quicker? Here are ways to keep webpages quick, it 

needs to delete a cache, to evaluate plugins, to 

reconsider the content delivery network, to review a 

web hosting package, to use adaptive images, to 

improve a webpage’s design, to use the GZIP 

compression and AJAX requests, to use HTML, to 

minify CSS, JavaScript, and HTTP requests and other 

things that can make web slow. What makes web pages 

loading quicker? We need to speed up computations 

and for this, we need a faster way to multiply large 

numbers, as many computational problems may be 

reduced to integer multiplication. A new model of 

computation may solve this problem.  

“In computer science and more specifically in 

computational complexity, a model of computation is a 

model that describes how an output of a mathematical 

function is computed given an input. A model describes 

how units of computations, memories, and 

communications are organized. The computational 

complexity of an algorithm can be measured given a 

model of computation (Wikipedia, 2020b).” “One major 

choice of the theory of computation which is currently 

taken for granted is the choice of a model of computation 

and corresponding complexity measures and classes 

(Arora and Barak, 2009).” “Using a model allows 

studying the performance of algorithms independently of 

the variations that are specific to particular 

implementations and specific technology (Wikipedia, 

2020b).” “A central concept in algorithms is that of a 

reduction. A reduction is an algorithm that solves 

problem A by transforming any instance of A to an 

equivalent instance of a previously solved problem B 

(Du and Ko, 2000).” “The theory of computation is the 

branch that deals with how efficiently problems can be 

solved on a model of computation, using an algorithm… 

The field is divided into three major branches: Automata 

theory and languages, computability theory and 

computational complexity, which are linked by the 

question: “What are the fundamental capabilities and 

limitations of computers.” (Wikipedia, 2020a).” The 

computational complexity or simply the complexity of 

an algorithm is the number of resources required for 

running it. “A complexity class is a set of functions that 

can be computed within a given resource (Goldreich, 

2008).” As we know, the computational complexity of a 

problem is the minimum of the complexities of all 

possible algorithms for this problem, “Complexity 

theory considers not only whether a problem can be 

solved at all on a computer, but also how efficiently the 

problem can be solved, two major aspects are 

considered-time complexity and space complexity, 

which are respectively how many steps does it take to 

perform a computation and how much memory is 

required to perform that computation (Wikipedia, 

2020a).” “The scheduling problem seems to be much 

harder than the sorting problem (Van Leeuwen and 

Leeuwen, 1990).” “To perform a rigorous study of 

computation, computer science work with a mathematical 

abstraction of computers called a model of computation. 

Models of computations can be classified into three 

categories: Sequential models, functional models and 

concurrent models (Wikipedia, 2020a).” The various 

branches of computer science and mathematics study and 

work with various models of computation (the graph 

theory, the group theory (matrix group), discrete 

mathematics, automata theory, cluster computing, grid 

computing, cloud computing, finite fields, parallel and 

distributed computing, the ring theory, the set theory and 

other fields). Different models of computation can do 

different tasks. In this study is presented a quite new 

model of computation. Therefore, the content of the 

paper is specific, including notions, notations, and 

presentation and the style of the paper does not 

correspond to the reference style, as the new requires a 

new style. This new matrix model of computation solves 

the problem of web load time that needs a faster way to 

multiply large numbers. When reading the paper, you 

need to drop template thinking to understand and assess 

how to create a new and how it works. Significance of 

this work and the main point – the major measure of 

computational complexity the time complexity has been 

reduced. The upper bound on the worst-case running 

time M(n) = O(n2) of an algorithm for any given input 

instance of a problem has been improved significantly. 

The purpose of this paper is to prove that the fast Fourier 

transform to compute integer products in time O(n log n 

log log n) and recently submitted O(n log n) are not 

optimal and perfect for quick web load, that there exist 

the short paths, the quicker and easier algorithms for this 

problem that takes O(log n) complexity and are not 

based on the FFT. The paper does not compare the 

methods and properties of the new matrix model of 

computation with the fast Fourier transform directly, 

since the concept of the new matrix model of 

computation is not based on the FFT and the paper does 

not provides multiple additional clarifications in lemmas 

and proofs, instead speaks an algorithms language. The 

fast Fourier transform is an algorithm that computes the 

DFT of a sequence, or its inverse (IDFT) and the new 

matrix model of computation uses completely other 

methods and means in working with a sequence and its 

inverse, factorization, recursion, approximation, sparse 

matrix and matrix transformations that allows reducing 

the complexity of computations with considerably lower 

resource usage. Thus, the new matrix model of 

computation represents the new type of matrix 

computations that will reduce web pages load time 

through speeding up computations. The paper offers a 

solution of the new computational tasks, including the 

problems in computational chemistry, computational 

http://en.m.wikipedia.org/wiki/Theory_of_computation)
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biology and computational physics and allows to perform 

them rapidly, accurately and more easily (for instance, 

crystals, liquids, gases; atomic clusters, biomolecules, bio-

nano systems; metallic, organic, inorganic and biological 

nanomaterials; atomic clusters and nanoparticles; classical 

molecular dynamics simulation: Nanoscale phase and 

structural transitions; physical and chemical phenomena 

with solids, liquids and gases; elastic and plastic 

deformations, nanoindentation, dislocations; collisional 

processes involving clusters, nanoparticles and 

biomolecules; relativistic molecular dynamics simulation: 

Nano-processes and technologies; photon emission by 

particles; random walk dynamics of atoms, molecules, 

clusters, particles; multiscale modelling: charged 

Simulation of chemical reactions in molecular systems; 

molecular structures; molecular dynamics; DNA 

computing; RNA computing; proteins and nucleic acids). 

The high performance of computations and the high 

computational efficiency and accuracy of the new matrix 

model of computation will make it an attractive method 

(the advanced computing approach) for extremely quick 

web load and large systems, like listed above.  

Materials and Methods (Matrix Model 

Concept, Definition, Applications) 

The growth of digital technologies has an 

exponential trend. As a consequence, the need for 

information security increases more than before and 

many modern scientific computations require the 

multiplication of large numbers. The large systems that 

need to multiply numbers in the range of several 

thousand digits may employ Karatsuba’s multiplication 

algorithm and the fast Fourier transform, these are the 

most well-known algorithms for the multiplication of 

two large numbers. Karatsuba multiplication has a time 

complexity of  2log 3O n , making this algorithm 

significantly faster than long multiplication and the fast 

Fourier transform reduces the computational 

complexity to O(n log n log log n). Recently submitted 

an integer multiplication algorithm with a complexity 

of O(n log n) is not practically useful, as its advantages 

only appear when multiplying extremely large 

numbers, as the internet says.. Reducing the complexity 

of these multiplication algorithms to O[log n) will 

reduce the web pages loading time through speeding up 

computations and using fewer resources.  

Matrix multiplication has been introduced for making 

easier and clarifying computations in linear algebra, 

historically. “A major application of matrices is to 

represent linear transformations, that are, generalizations 

of linear functions (Wikipedia, 2020c).” “Applications of 

matrices are found in most scientific fields… A major 

branch of numerical analysis is devoted to the 

development of efficient algorithms for matrix 

computations, a subject that is centuries old and is today 

an expanding area of research. Matrix decomposition 

methods simplify computations (Wikipedia, 2020c).” 

“Matrix computations are used in the treatment of nearly 

all large-scale models of computation (ScienceDirect, 

2020)”. “The proper organization of the matrix 

computations is becoming more and more important 

when high-speed computers with hierarchical memory 

are used in the treatment of large computational tasks 

(ScienceDirect, 2020).” The importance of the 

computational complexity of a matrix multiplication 

relies on the fact that many algorithmic problems may be 

solved using matrix computations. 

Definition of the Matrix 

Matrix elements multiplication. Fundamental 

definition of the new matrix 1. Let us consider the basic 

notions, properties, and applications of a reference 

matrix that are numerous.  

Two numbers are given. Let the first be L and the 

second be E (denotes are taken conditionally). It is 

necessary to find the product of these two numbers (L∙E) 

using the new matrix. We generate a matrix that creates 

an array of options of the new matrix where we have 

inserted the (L∙E) option in an array to define the value 

of this target option and we will always consider this 

option as one of the array options, since all these 

options, working in one array, create the links we need 

that will sort the array and work to get the desired value 

faster and easier. Let us enter the corresponding 

variables from the initial pairwise: I to L and T to E. 

The values of I and T are 8 and 9, respectively. These 

values were selected to equal (10-L) and (10-E), that is 

(10-2) and (10-1), where 10 is the specific basis for the 

values of L and E. Here, the “sizes” of numbers L = 2 

and E = 1 are equal, they are numbers of the same 

position (or rank, order, place), regardless of the rank 

to which these numbers belong it is right. 

Given the matrix and the linear map of this matrix (1): 
 

2 1
,

8 9

L E
newMatrix

I T

   
    
   

  (1)  

 
the new matrix that bears in itself steady properties and 

the linear map of the new matrix were formed, the 

elements of the new matrix are L, E, I, and T and the 

options of the new matrix are (L∙E), (I∙E), (L∙T), and 

(I∙T). Let L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, the 

values of the new matrix elements I and T are the 

specific values, they were defined under the concept of 

the new matrix, where I = 10-L and T = 10-E, i.e., the I is 

the complement of L and the T is the complement of E 

and 10 is the specific basis to create the new matrix. The 

definition of the specific basis of the new matrix has 
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been entered (injected) as a new notion. The specific 

basis of the matrix can be any of this infinite set 10, 100, 

1000, 10000, 100000, 1000000, …, 10n, where n is equal 

to the number of digits in L, these new matrices may 

have (or use) a restricted or unrestricted specific basis. 

More precisely, the size of the restricted specific basis is 

equal to the size of 10 L, i.e., the number of zeroes in the 

specific basis is the same as the number of digits in L, 

for example, if L = 3, the restricted sbasis = 10, if L = 17, 

the restricted sbasis = 100, if L = 334, the restricted 

sbasis = 1000, if L = 2458, the restricted sbasis = 10000, 

etc and if L = n1, the restricted sbasis = 10n. Here, L>E, 

T>I, L<I, E<T, L + E<I + T, L<sbasis:2, I>sbasis:2 and L 

+ I = E + T = sbasis, the specific basis of the matrix is 

restricted that means that the sbasis is taken 

successively. The option (L∙E) = (2∙1), (I∙E) = (8∙1), 

(L∙T) = (2∙9), (I∙T) = (8∙9) and (L∙E) + (I∙E) + (L∙T) + 

(I∙T) = sbasis2 = (10n)2. The specifics of symbolic 

notation of a matrix are new (e.g., the matrix elements 

are represented by capital letters). The size of the new 

matrix is defined. The linear map of the elements of the 

new matrix is new and specific too, we have a reference 

matrix with two rows and two columns. All rules of 

using the matrix have been not simply updated, these 

rules were completely transformed. The properties of the 

new matrix and their applications are new and numerous. 

Let L-E = T-I = J = 1, I-E = T-L = W = 7, here, L + I 

= E + T = sbasis = 10, then Jsbasis = 10 and Wsbasis = 

70, further:  
 
1. (L∙E) + Wsbasis = (I∙T) = 72  

2. (I∙E) + Jsbasis = (L∙T) = 18  

3. (L∙E) + (I∙E) = Esbasis = 10  

4. (L∙E) + (L∙T) = Lsbasis = 20  

5. (I∙E) + (I∙T) = Isbasis = 80  

6. (L∙T) + (I∙T) = Tsbasis = 90  

7. (L∙T)-(I∙E) = Jsbasis = 18-8 = 10  

8. (I∙T)-(L∙E) = Wsbasis = 72-2 = 70  

9. (L∙E) + (I∙T) + (L∙T) + (I∙E) = sbasis2  

10. W-J = I-L = 6 

11. W + J = T-E = 8 
 

Matrix elements multiplication, or the matrix 

elements products of the new matrix model, is not an 

operation that produces a matrix from two matrices. The 

matrix elements’ products of the new matrix model 

represent a new computational tool. Therefore, the 

definition of the matrix elements products for the new 

matrix model of computation requires multiplication of 

elements of the new matrix: (L∙E), (I∙T), (I∙E), ( L∙T) and 

if one of these products is defined, the others are also 

defined, i.e., the matrix elements products are obtained 

by multiplying the elements of the new matrix, thus, 

computing matrix elements products is a central 

operation in all computational applications of the new 

matrix model of computation which provide the high 

performance (efficiency) and accuracy of computations 

and reduced significantly the computational complexity, 

since the total number of steps needed for multiplying 

has the new performing complexity.  

Notice, Matrix elements addition and Matrix 

elements subtraction and their properties are embedded 

in the new matrix and take new running times that are 

less than O(n).  

Matrix elements addition: L + E = sbasis-W, I + T = 

sbasis + W, I + E = sbasis-J, L + T = sbasis + J, L + E + I + 

T = 2sbasis, (I + T)-(L + E) = (W + J) + (W-J) = 2W, (L + 

T)-(I + E) = (W + J)-(W-J) = 2J, L + E + I + T = 2sbasis, 

at E<L<I<T and L + I = E + T = sbasis.  

Matrix elements subtraction: L-E = T-I = J, I-E = T-L 

= W, I-L = W-J, T-E = W + J, at E<L<I<T and L + I = E 

+ T = sbasis.  

Lemma 1 

Reference matrix with the unrestricted sbasis. It is 

sufficient to have the value of work of one of the options 

(L∙E), (L∙T), (I∙E), or (T∙L), so that other values define 

through subtraction and addition only. As a sbasis to an 

initial couple of elements, any sizes can be used.  

Proof 

Given the new matrix (2): 

 

2 1
,

9999999999998 9999999999999
newMatrix

 
  
 

  (2)  

 

and the linear map of the new matrix: 

 

,
L E

I T

 
 
 

 

 

let us take the specific basis equal to 10000000000000, 

is taken randomly, L = 2, E = 1, I = 10000000000000-2 

= 9999999999998,  

T = 10000000000000-1 = 9999999999999, J = 1, W = 

9999999999997, Jsbasis = 10000000000000, Wsbasis = 

99999999999970000000000000, here, L<I and E<T, 

E<L<I<T, L + I = E + T = sbasis, LE + IE = Esbasis, LE 

+ LT = Lsbasis, IE + IT = Isbasis, LT + ET = Tsbasis, LE 

+ Wsbasis = IT, IE + Jsbasis = LT, I-L = W-J, T-E = W + 

J, LE<IE<LT<IT, then: 

 LE = 2∙1 = 2,  

 IT = LE + Wsbasis = 

2+99999999999970000000000000 = = 

99999999999970000000000002,  

 IE = Esbasis-LE = 10000000000000-2 = 

9999999999998, 

 LT = IE + Jsbasis = 

9999999999998+10000000000000 = 19999999999998, 

etc.,  
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i.e., we have the sorted array that gives a short response 

time for a given piece of work, high throughput (rate of 

processing work), low utilization of computing resources, 

high availability of the computing system or application, 

fast (or highly compact) data compression and 

decompression, high bandwidth, short data transmission 

time. It follows from this that it is sufficient to have the 

value of work of one of the options LE, LT, IE, or IT so 

that other values define through subtraction and addition 

only that have a new and easy time complexity. 

Lemma 2 

Squaring of the new matrix. It is sufficient to have 

the value of the square of one of these elements L, E, I, 

or T so that other values of the squares of the elements 

define through this one value.  

Proof 

Given the new matrix (3): 

 

2 1
,

8 9
newMatrix

 
  
 

  (3)  

 

and the linear map of the new matrix: 

 

,
L E

I T

 
 
 

 

 

where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, sbasis = 

10, L + I = E + T, J = 1, W = 7, Jsbasis = 10, Wsbasis = 

70, E<L<I<T and the specific properties (L2-E2) + (T2-I2) 

= (Wsbasis + Jsbasis)-(Wsbasis-Jsbasis), (I2 + T2)-(L2 + 

E2) = (Wsbasis-Jsbasis) + (Wsbasis+Jsbasis), (T2 + L2)-

(I2 + E2) = (Wsbasis + Jsbasis)-(Wsbasis-Jsbasis), (T2-L2) 

+ (I2-E2) = (Wsbasis + Jsbasis) + (Wsbasis-Jsbasis), I2-L2 

= (Wsbasis-Jsbasis), T2-E2 = (Wsbasis + Jsbasis), let's 

define the values of the squares of the elements of the 

new matrix: L2, E2, I2, T2 using the properties of the 

squaring of the new matrix model of computation: 

 

1. L2 = I2- (Wsbasis-Jsbasis) = 64-60 = 4  

2. I2 = L2 + (Wsbasis-Jsbasis) = 4+60 = 64  

3. E2 = T2 - (Wsbasis+Jsbasis) = 81-80 = 1  

4. T2 = E2 + (Wsbasis+Jsbasis) = 1+80 = 81 

 

Lemma 3 

Fundamental definition of a reference matrix, 2. Let 

us divide all these options of pairs of numbers (L∙E), 

(L∙T), (I∙E), and (T∙L) into four main categories: (a), (A), 

(b), (B). Values of work of options of category (a)<(b) 

and (b)<(B), (B)<(A). It will be convenient to operate 

with the new matrix options and for perception.  

Proof 

Given the new matrix (4): 
 

,
L E

newMatrix
I T

 
  
 

  (4)  

 
where, E<L<I<T, let (L∙E) = a, (I∙T) = A, (I∙E) = b, (L∙T) 

= B, L + I = E + T = sbasis, then a + Wsbasis = A, b + 

Jsbasis = B, where L + I = E + T = sbasis = 10n and L-E 

= T-I = J, I-E = T-L = W, A>a, B>b, a<b<B<A.  

It follows that: 
 
1). A + a + B + b = (10n)2 = sbasis2 = a + (a + Wsbasis) 

+ b + (b + Jsbasis) 

2). a + b = Esbasis  

3). A+ B = Tsbasis  

4). A + b = Isbasis  

5). a + B = Lsbasis  

6). Aa = Bb  

7). B/a = A/b  

8). b/a = A/B  

9). a/b = B/A  
 
at L>E and I<T, T>I>L>E, a<b<B<A.  

Lemma 4 

Proof of lemma 3. One of the ways of factorization of 

the new matrix that sidesteps the need for reference 

multiplication, it has polynomial running time, is presented 

as an example of operations of a new matrix only. 

Proof 

Given the new matrix (5): 
 

2 1
,

8 9

L E
newMatrix

I T

   
    
   

  (5)  

 
where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, sbasis = 

10, J = L-E = T-I = 1, W = I-E = T-L = 7, Jsbasis = 10, 

Wsbasis = 70, L + I = E + T = sbasis, (L∙E) = a = 2, (I∙T) 

= A = 72, (I∙E) = b = 8, (L∙T) = B = 18, a + A + b + B = 

abasis2 = LE + IT + IE + LT = 100, a + Wsbasis = A, b + 

Jsbasis = B, Aa = Bb, a + b = Esbasis, a + B = Lsbasis, A 

+ b = Isbasis, A + B = Tsbasis. A>B>b>a, T>I>L>E, let 

us define the value LE using these properties: 

 

 
   , ,

10, 10 ,

Bb Aa b b Jsbasis a a Wsbasis

a b b a

     
 

    
 

 
2 2 70 10 ,

10 .

b a a b

b a

   


 
 

 (10−a)2−a2 = 70a-10(10-a) 

 100-20a + a2−a2 = 70a-100+10a 

 100-20a = 80a-100 
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 100a = 200 

 a = 2 

 A = a + Wsbasis = 2+70 = 72 

 B = Tsbasis-A = 90-72 = 18 

 b = Esbasis-a = 10-2 = 8 
 

Lemma 5 

Quick fractionation. This process demonstrates that 
all options, except options (1…∙1…), cannot be studied 
at all because any option rather easily becomes a 
category option (1…∙1…) – (a). For example, (2∙1) will 
pass in (12∙11). This means that we transferred (2∙1) 
from the (a) category of units to the (a) category of tens.  

Proof 

Given the new matrix (6): 
 

2 1
,

8 9

L E
newMatrix

I T

   
    
   

 (6)  

 
where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, J = L-E = 

T-I = 2-1 = 9-8 = 1, W = I-E = T-L = 8-1 = 9-2 = 7, 

Jsbasis = 10, Wsbasis = 70, sbasis = 10 = L + I = E + T, 

L>E, T>I, LE- category (a) option, let us consider the set 

of the new matrix elements specific transformations:  

Given the new matrix1 (6.1): 
 

12 11 1 1
1 ,

88 89 1 1

L E
newMatrix

I T

   
    
   

  (6.1)  

 
where, L1 = 12, E1 = 11, I1 = 88, T1 = 89, sbasis1 = 100, 
i.e., the new matrix and the new matrix1 are linked 
directly since the values of the elements of these 
matrices are specific and were obtained with the purpose 
to define the most efficient approach (for maximum 
efficiency we need to minimize resource usage). 
 

L1 = L + sbasis = 2+10 = 12 and E1 = E + 

sbasis = 1+10 = 11, I1 = sbasis1-L1 = 100-12 = 

88, T1 = sbasis1-E1 = 100-11 = 89, J1 = L1-E1 

= T1-I1 = 12-11 = 89-88 = 1, W1 = I1-E1 = T1-

L1 = 88-11 = 89-12 = 77, let us define the 

value LE - category (a) option using the value 

L1E1- category (a) option of the new matrix1: 
 

LE = L1E1-(2sbasis2-Wsbasis) = 132-(200-

70) = 132-130 = 2; 

given the new matrix2 (6.2): 
 

19 18 2 2
2 ,

81 82 2 2

L E
newMatrix

I T

   
    
   

  (6.2) 

 
where, L2 = 19, E2 = 18, I2 = 81, T2 = 82, sbasis2 = 100, 

L2 = T + sbasis = 9+10 = 19, E2 = I + sbasis = 8+10 = 18, 

I2 = sbasis2-L2 = 100-19 = 81, T2 = sbasis2-E2 = 100-18 

= 82, J2 = L2-E2 = T2-I2 = 19-18 = 82-81 = 1, W2 = I2-

E2 = T2-L2 = 81-18 = 82-19 = 63, J2sbasis2 = 100, 

W2sbasis2 = 6300, T2>I2>L2>E2, let us define the value 

IT-category (A) option of the new matrix using the value 

L2E2 - category (a) option of the new matrix2: 

 

IT = L2E2-(2sbasis2 + Wsbasis) = 342-

(200+70) = 342-270 = 72;  

given the new matrix3 (6.3): 

 

18 11 3 3
3 ,

82 89 3 3

L E
newMatrix

I T

   
    
   

  (6.3)  

 

where, L3 = 18, E3 = 11, I3 = 82, T3 = 89, sbasis3 = 100, 

L3 = I + sbasis = 8+10 = 18, E3 = E + sbasis = 1+10 = 

11, I3 = sbasis3-L3 = 100-18 = 82, T3 = sbasis3-E3 = 

100-11 = 89, J3 = L3-E3 = T3-I3 = 18-11 = 89-82 = 7, 

W3 = I3-E3 = T3-L3 = 82-11 = 89-18 = 71, J3sbasis3 = 

700, W3sbasis3 = 7100, T3>I3>L3>E3, let us define the 

value IE- category (b) option of the new matrix using the 

value L3E3 - category (a) option of the new matrix3:  

 

IE = L3E3-(2sbasis2-Jsbasis) = 198-(200-10) 

= 198-190 = 8;  

Given the new matrix4 (6.4): 

 

19 12 4 4
4 ,

81 88 4 4

L E
newMatrix

I T

   
    
   

  (6.4)  

 

where, L4 = 19, E4 = 12, I4 = 81, T4 = 88, sbasis4 = 100, 

L4 = T + sbasis = 9+10 = 19, E4 = L + sbasis = 2+10 = 12, 

I4 = sbasis4-L4 = 100-19 = 81, T4 = sbasis4-E4 = 100-12 

= 88, J4 = L4-E4 = T4-I4 = 19-12 = 88-81 = 7, W4 = I4-

E4 = T4-L4 = 81-12 = 88-19 = 69, J4sbasis4 = 700, 

W4sbasis4 = 6900, T4>I4>L4>E4, let us define the value 

LT-category (B) option of the new matrix using the value 

L4E4 - category (a) option of the new matrix4: 

 

LT = L4E4-(2sbasis2 + Jsbasis) = 228-

(200+10) = 228-210 = 18,  

 

i.e., the new matrix elements specific transformations are 

represented in the set of the new matrices 1, 2, 3, and 4 

and the values of these new matrices elements products 

were obtained by expanding the new matrix elements 

transformations. It works on only 1% of all possible 

options, which are options of the least category to which 

certain options are carried, as it simple to define values 

of 99% of the other options.  

Lemma 6 

Recursion of the new matrix. One of the operations of 

the new matrix to define the value of LE = (a) through 

the recursion of the new matrix. This recursion has a 

polynomial running time.  



Zulfia A. Chotchaeva / Journal of Computer Science 2020, 16 (11): 1610.1624 

DOI: 10.3844/jcssp.2020.1610.1624 

 

1616 

Proof 

Given the new matrix (7): 
 

2 1
,

1 2

L E
newMatrix

I T

   
    
   

  (7)  

 
where, L = 2, E = 1, I = E = 1, T = L = 2, L + I = E + T = 

sbasis = 3, J = L-E = T-I = 2-1 = 1, W = I-E = T-L = 1-1 = 

2-2 = 0, Jsbasis = 3·1 = 3, Wsbasis = 0·1 = 0, LE = a, IT = 

A, IE = b, LT = B, a + Wsbasis = A, b + Jsbasis = B, a + b 

= Esbasis = 1∙3 = 3, a + B = Lsbasis = 2∙3 = 6, A + b = 

Isbasis = 1∙3 = 3, A + B = Tsbasis = 2∙3 = 6, a + A + b + B 

= sbasis2 = 32 = 9, here, L = T, I = E, a = A, therefore: 
 

 sbasis2-b-B = a + A 

 9-12-22 = 4 = a + A 

 4:2 = a = A = 2 

 LE = ((L+E)2-E2-L2):2 = (32-22-12):2 = 2 = a 
 

It is sufficient to have the square of a given specific 

basis for each particular input instance of the new matrix 

and the values of the squares of elements L and E to 

define the value LE.  

Lemma 7 

A sequence of the new matrix. This specific process 

completely provides the quick fractionation of the new 

matrix model that allows defining the values of options 

LE, LT, IE, and IT at any point and any position of all 

these options in this sequence of the new matrix and its 

reverse. At each repeat iteration of the reverse of the 

sequence, we will divide by 2. It works like a looping, 

the complexity of a loop is considered as O(log n). The 

existence of such a new matrix model sequence allows 

reducing the volume of work that is necessary when 

searching for values of works for all possible options of 

categories (a), (b), (B), and (A) to a minimum of only 

1% of these options. 

Proof 

Given the new matrix (8):  
 

2 1
,

8 9

L E
newMatrix

I T

   
    
   

  (8)  

 
where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, sbasis = 

10, J = L-E = T-I = 2-1 = 9-8 = 1, W = I-E = T-L = 8-1 = 

9-2 = 7, Jsbasis = 10, Wsbasis = 70, LE = a, IT = A, IE = 

b, LT = B, A>B>b>a, a + Wsbasis = A, b + Jsbasis = B, 

a + A + b + B = sbasis2, L + I = E + T = sbasis (in the 

given data set, the ranks of the elements L and E are the 

same, this means that in this case we will not increase 

the one of these elements L or E on 10, 100,1000, etc. to 

balance L with E in ranks), let us create the sequence of 

the new matrix model, it is necessary to enter the new 

notions and therefore let (2∙1) = a1, (12∙11) = a2, (22∙21) 

= a3, (32∙31) = a4, etc., then: 
 

 a1 = a2-(2sbasis2-Wsbasis) = 132-(200-70) = 2 

 a2 = a3-(4sbasis2-Wsbasis) = 462-(400-70) = 132 

 a3 = a4-(6sbasis2-Wsbasis) = 992-(600-70) = 462, etc. 
 
and let (8∙1) = b1, (18∙11) = b2, (28∙21) = b3, (38∙31) = b4, 

etc., then: 
 

 b1 = b2-(2sbasis2-Jsbasis) = 198-(200-10) = 8 

 b2 = b3-(4sbasis2-Jsbasis) = 588-(400-10) = 198 

 b3 = b4-(6sbasis2-Jsbasis) = 1178-(600-10) = 588, etc. 
 
and let (8∙9) = A1, (18∙19) = A2, (28∙29) = A3, (38∙39) = 

A4, etc., then: 
 

 A1 = A2-(2sbasis2 + Wsbasis) = 342-(200+70) = 72 

 A2 = A3-(4sbasis2 + Wsbasis) = 812-(400+70) = 342 

 A3 = A4-(6sbasis2 + Wsbasis) = 1482-(600+70) = 812, 

etc. 
 
and let (2∙9) = B1, (12∙19) = B2, (22∙29) = B3, (32∙39) = 

B4, etc., then:  
 

 B1 = B2-(2sbasis2 + Jsbasis) = 228-(200+10) = 18,  

 B2 = B3-(4sbasis2 + Jsbasis) = 638-(400+10) = 228,  

 B3 = B4-(6sbasis2 + Jsbasis) = 1248-(600+10) = 

638, etc.  
 

Note that, for example, (331∙28) will pass in 

(1331∙1280), in which case we will increase 28 on 10 

before adding the sbasis equal 1000 to balance 28 with 

331 in “sizes”. This means that we transferred 28 from 

category ten to category hundred. After obtaining the 

result, we will simply divide what was received by 10, 

which will be the value of (321∙28).  

Lemma 8 

Mixed matrix of positive and negative numbers 1. Let 

us take a pair of positive and negative numbers. All the 

properties of a reference matrix are saved. An example 

of using a matrix. This operation of the new matrix 

proves that we can define the product of (L∙E), where 

one of these two numbers is a positive number and the 

other is a negative number, with the same efficiency as 

the product of two positive numbers.  

Proof 

Given the new matrix (9):  
 

1 2
,

9 12

L E
newMatrix

I T

   
    
   

  (9) 

 
where, L = 1, E = -2, I = 10-1 = 9, T = 10-(-2) = 12, 

T>I>L>E, sbasis = 10, sbasis-L = I, sbasis-E = T, L + I = 
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E + T = sbasis, J = L-E = T-I = 1-(-2) = 12-9 = 3, W = 9-

(-2) = 12-1 = 11, I-L = W-J, T-E = W + J, Jsbasis = 3∙10 

= 30, Wsbasis = 11∙10 = 110, let us define the values LE 

= a, IT = A, IE = b and LT = B, a<b<B<A, a + A + b + B 

= sbasis2 = 100, then:  

 

 a = 1∙(-2) = -2 

 A = a + Wsbasis = -2+110 = 108  

 b = Esbasis-a = -20-(-2) = -18  

 B = b + Jsbasis = -18+30 = 12  

 a + A + b + B = -2+108+(-18)+12 = 100 = sbsais²  

 

Lemma 9 

Mixed matrix 2. Set of positive and negative 

numbers. It works like a Mixed matrix 1. Let us consider 

the option (L∙E), where these numbers are negative. This 

operation of the new matrix proves that we can define 

the product of two negative numbers using the new 

matrix properties.  

Proof 

Given the new matrix (10): 

 

1 2
,

11 12

L E
newMatrix

I T

    
    
   

  (10)  

 

where, L = -1, E = -2, I = 10-(-1) = 11, T = 10-(-2) = 12, 

T>I>L>E, sbasis = 10, I = sbasis-L, T = sbasis-E, L + I = 

E + T = sbasis, J = L-E = T-I = -1-(-2) = 12-11 = 1, W = 

I-E = T-L = 11-(-2) = 12-(-1) = 13, Jsbasis = 1∙10 = 10, 

Wsbasis = 13∙10 = 130, let us define the values LE = a, 

IT = A, IE = b, LT = B, a + Wsbasis = A, b + Jsbasis = 

B, a + A + b + B = sbasis2, a<b<B<A, then: 

 

 a = -1∙(-2) = 2  

 A = a + Wsbasis = 2+130 = 132  

 b = Esbasis-a = -20-2 = -22  

 B = b + Jsbasis = -22+10 = -12  

 a + A + b + B = 2+132+(-22)+(-12) = 100  

 

Lemma 10 

Matrix of non-integers. All rules the creation of a 

reference matrix were respected. Let us review an 

example of using. This operation of the new matrix 

proves that not only the products of integers but also 

the products of non-integers can be defined using the 

new matrix.  

Proof 

Given the new matrix (11):  

 

2,1 1,1
,

7,9 8,9

L E
newMatrix

I T

   
    
   

  (11)  

where, L = 2,1, E = 1,1, I = 10-2, 1 = 7,9, T = 10-1,1 = 

8,9, sbasis = 10, I = sbasis-L, T = sbasis-E, T>I>L>E, J = 

L-E = T-I = 1, W = I-E = T-L = 6,8, Jsbasis = 10, 

Wsbasis = 68, let us define the values LE = a, IT = A, IE 

= b, LT = B, a<b<B<A, a + A + b + B = sbasis2, then: 
 

 a = 2,1∙1,1 = 2,31  

 A = a + Wsbasis = 2,31+68 = 70,31  

 b = Esbasis-a = 11-2,31 = 8,69  

 B = b + Jsbasis = 8,69+10 = 18,69  

 a + A + b + B = 2,31+70,31+8,69+18,69 = 100 
 

Lemma 11 

Matrix with the restricted sbasis. Clearly, a reference 

matrix, where the sbasis of a matrix is not taken 

randomly. Let us define the value of (L∙E) using this 

matrix. All properties are the same. Irrespective of the 

specific basis, more exactly is the sbasis restricted or 

unrestricted, we can define the value of (L∙E) using the 

new matrix properties and operations.  

Proof 

Given the new matrix (12):  
 

11 2
,

89 98

L E
newMatrix

I T

   
    
   

  (12)  

 
where L = 11, E = 2, I = 100-11 = 89, T = 100-2 = 98, 

sbasis = 100, L + I = E + T = sbasis, T>I>L>E, J = L-E = 

T-I = 11-2 = 98-89 = 9, W = I-E = T-L = 89-2 = 98-11 = 

87, Jsbasis = 9∙100 = 900, Wsbasis = 87∙100 = 8700, let 

us define the values LE = a, IT = A, IE = b, LT = B, a + 

A + b + B = sbasis2, a<b<B<A, then: 
 

 a = 11∙2 = 22  

 A = a + Wsbasis = 22+8700 = 8722  

 b = Esbasis-a = 200-22 = 178  

 B = b + Jsbasis = 178+900 = 1078  

 a + A + b + B = 22+8722+178+1078 = 10000 = sbasis²  
 

Lemma 12 

Matrix with the separate sbasis for L and E. Let us 

consider matrices where we will take the sbasis for L and 

E separately. Here, we will take 100 for E and 10 for L. 

The separate sbasis is not optimal to define the value of 

LE, there are additional steps in this operation that are 

not useful, therefore, using the separate specific basis for 

the new matrix is not perfect as an optimal.  

Proof 

Given the new matrix (13):  
 

2 11
,

8 89

L E
newMatrix

I T

   
    
   

  (13)  
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where, L = 2, E = 11, I = 10-2 = 8, T = 100-11 = 89, sbasis1 

= L + I = 10, sbasis2 = E + T = 100, L + I ≠ E + T and here, 

Jsbasis = (Tsbasis1-Esbasis1):2-(Isbasis2-Lsbasis2):2 = 90, 

Wsbasis = (Isbasis2-Lsbasis2):2 + (Tsbasis1-Esbasis1):2 = 

690, a + Wsbasis = A, b + Jsbasis = B, let us define the 

values LE = a, IT = A, IE = b, LT = B at a<A, b<B, a + A + 

b + B = sbasis1∙sbasis2 = 10∙100 = 1000, then: 
 

 a = 2∙11 = 22  

 b = Esbasis1-a = 110-22 = 88  

 A = Isbasis2-b = 800-88 = 712  

 a + A + b + B = 22+712+88+178 = 1000  

 a + Wsbasis = A = 22+690 = 712  

 b + Jsbasis = B = 88+90 = 178  
 

Lemma 13 

Options repositions. The position of the option of the 

new matrix is irrelevant. We can leave a matrix in its 

initial form or rearrange the new matrix elements to 

define the value of (L∙E) option, regardless of the option 

position, the matrix properties are keeping and the 

efficiency of operations does not decrease.  

Proof 

Given the new matrix (14): 

 

6 9
,

4 1

L E
newMatrix

I T

   
    
   

  (14)  

 

where, L = 6, E = 9, I = 10-6 = 4, T = 10-9 = 1, here 

T<I<L<E, therefore, J = E-L = I-T and W = E-I = L-T, 

a>A, b>B, A = a-Wsbasis, B = b-Jsbasis, the matrix has 

a non-working appearance and has to be turned, we can 

leave a matrix or rearrange the new matrix elements so 

that T>I>L>E, where a<A, b<B: 

 

4 1
,

6 9

L E
newMatrix

I T

   
    
   

 

 

we received the worker matrix, where a<A, b<B, 

a<b<B<A and A = a + Wsbasis, B = b + Jsbasis, i.e., 

(6∙9) is the (A) option of the worker matrix and the (a) 

option of the given matrix and (4∙1) is the (a) option of 

the worker matrix and the (A) option of the given 

matrix. If we do not rearrange places, the (6∙9) option 

remain in a position of the (a) option on an arrangement 

in a matrix that will overturn all of the functions and 

properties of a reference matrix, where 

(a)<(b)<(B)<(A). Therefore, it will be more convenient 

if we simply rearrange a matrix, having brought it into 

a working look, where E<L<I<T, because potentially 

(4∙9) is the option of a category (B), remaining on a 

position of a category (b) on an arrangement in a matrix 

it forces down the algorithm for a matrix, where 

E<L<I<T. If we leave a matrix and do not rearrange, the 

matrix will work in a new way, where (A)<(B)<(b)<(a) 

and this is true both at T<I<L<E and under other 

conditions, a position of the option is irrelevant. 

Lemma 14 

Equations in systems. Set 1. We define the value LE 

through (x) and (y) using the properties of the new 

matrix. This operation of the new matrix not only 

simplifies the multiplication process but practically 

abolishes it, has polynomial time complexity.  

Proof 

Given the new matrix (15):  

 

2 1
,

8 9

L E
newMatrix

I T

   
    
   

  (15)  

 

where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, sbasis = 

10, L + I = E + T = sbasis, I = sbasis-L, T = sbasis-E, J = 

L-E = T-I = 2-1 = 9-8 = 1, W = I-E = T-L = 8-1 = 9-2 = 7, 

Jsbasis = 10, Wsbasis = 70, LE = a, IT = A, IE = b, LT = 

B, a<b<B<A, let Esbasis:2-x = a, Esbasis:2 + x = b, 

Tsbasis:2-y = B, Tsbasis:2+y = A and Lsbasis:2-x1 = a, 

Lsbasis:2 + x1 = B, Isbasis:2-y1 = b, Isbasis:2 + y1 = A, 

where x + y = (Wsbasis-Jsbasis):2 = 30, y-x = (W2-J2):2 

= 24, x1 + y1 = (Wsbasis + Jsbasis):2 = 40, y1-x1 = y-x = 

24, let us define the value LE = a using the following:  

 

a} 
30, 30 ,

24, 24.

x y y x

y x y x

    
 

    
  

30-x-x = 24,  

2x = 6,  

x = 3.  

LE = Esbasis:2-x = 10:2-3 = 2. 

b} 
1 1 1 1

1 1 1 1

40, 40 ,

24, 24.

x y x y

y x y x

     
 

     
 

y1-(40-y1) = 24,  

2y1 = 24+40,  

y1 = 64:2,  

y1 = 32.  

LE = Lsbasis:2-x1 = 20:2-8 = 2 

Lemma 15 

Set of equations in systems 2. To define the value LE 

through (x2) and (y2). This operation of the new matrix 

eliminates the need for multiplication too, has 

polynomial running time, is presented as an example of 

operations only.  

Proof 

Given the new matrix (16): 
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2 1
,

8 9

L E
newMatrix

I T

   
    
   

  (16)  

 
where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, sbasis = 10, 

L+I = E + T = sbasis, I = sbasis-L, T = sbasis-E, J = L-E = 

T-I = 2-1 = 9-8 = 1, W = I-E = T-L = 8-1 = 9-2 = 7, Jsbasis 

= 10, Wsbasis = 70, I-L = W-J, T-E = W + J, LE = a, IT = A, 

IE = b, LT = B, a + Wsbasis = A, b + Jsbasis = B, a + A + 

b + B = sbasi𝑠2, a<b<B<A, let us define the value LE = a 

using the properties of the new matrix a + b = Esbasis = 

10, a + B = Lsbasis = 20, A + b = Isbasis = 80, A + B = 

Tsbasis = 90, let B-a = x2, A-b = y2 and x2+y2 = Wsbasis 

+ Jsbasis = 80, y2-x2 = W2-J2 = 72-12 = 48, we received 

the following: 
 

2 2 2 22 2

2 2

2 2 2 2 2 2

2 2

2

2

80, 80,,

48, 48 .

48 80

2 80 48,

16;

x y x yx y Wsbasis Jsbasis

y x W J y x y x

x x

x

x

         
  

          

  

 



 

 
further: 
 

2
16,,

20 .20,

20 16,

2 4,

2

2

B aB a x

B aa B

a a

a

a

LE a

    
 

   

  





 

 

 

Lemma 16 

Applications of properties of the new matrix in 

equations. Let us define the value LE through (x), (y), 

(x1), and (y1). This operation of the new matrix replaces 

the process of multiplication with a new path, it takes 

polynomial running time, is presented as an example of 

operations and properties of a matrix. 

Proof 

Given a new matrix (17): 
 

3 2
,

7 8

L E
newMatrix

I T

   
    
   

  (17)  

 
where, L = 3, E = 2, I = 10-3 = 7, T = 10-2 = 8, J = L-E = 

T-I = 1, W = T-L = I-E = 5, L+I = E+T = sbasis = 10, 

Wsbasis = 5∙10 = 50, Jsbasis = 1∙10 = 10, let LE = a, IT 

= A, IE = b and TL = B, (a + b) = Esbasis, (a + B) = 

Lsbasis, (A + b) = Isbasis, (A + B) = Tsbasis, (Wsbasis-

Jsbasis):2 = 20 = x + y, (Wsbasis+Jsbasis):2 = 30 = x1 + 

y1, x1-x = y1-y, x1 + y = y1 + x, y : x = T:E, y1 : x1 = I:L 

and Esbasis:2-x = a, Lsbasis:2-x1 = a, Isbasis:2-y1 = b, 

Tsbasis:2-y = B, Esbasis:2 + x = b, Lsbasis:2 + x1 = B, 

Isbasis:2 + y1 = A, Tsbasis:2 + y = A, a + A + b + B = 

sbasis2, a<b<B<A, A:b = B:a, b:A = a:B, a:b = B:A, Aa 

= Bb, let us define the values of x, y, x1, and y1 using 

these properties of the new matrix: 

 

a) x(A + B):2 = y(a + b):2, b) y1(a + B):2 = x1(A + b):2,  

 x(80:2) = y(20:2),   y1(30:2) = x1(70:2),  

 x = y(20:2):(80:2),   15y1 = 35x1,  

 x = 10y:40,   y1 = 35x1:15,  

 x = y:4;   y1 = 7x1:3;  

 further,   further,  

 x + y = 20,   x1 + y1 = 30,  

 x = 20-y;   y1 = 30-x1;  

 and   and,  

 20-y = y:4,   30-x1 = 7x1:3,  

 -y = y:4-20,   3(30-x1) = 7x1,  

 y = (-y +80):4,   90-3x1 = 7x1,  

 5y = 80,   10x1 = 90,  

 y = 80:5,   x1 = 90:10,  

 y = 16;   x1 = 9;  

 x = 20-y,   y1 = 30-x₁,  

 x = 20-16,   y1 = 30-9,  

 x = 4   y1 = 21.  

 

and further:  

 

 Esbasis:2-x = a = LE = 20:2-4 = 10-4 = 6 

 Tsbasis:2+y = A = IT = 80:2+16 = 40+16 = 56 

 Lsbasis:2+x1 = B = LT = 30:2+9 = 15+9 = 24 

 Isbasis:2-y1 = b = IE = 70:2-21 = 35-21 = 14, etc. 

(see the properties of x, y, x1, and y1 above) 

 

Lemma 17 

Defining the value LE through the decomposition of 

the new matrix. It is sufficient to divide. This operation 

of the new matrix sidesteps (replaces, eliminates) the 

need for multiplication, has a logarithmic time 

complexity O(log n) since at each step in an algorithm 

we remove half of the remaining options, hence it cuts 

the work in half at each step. As a specific basis of a 

reference matrix is always equal to 10n, where E<L<I<T, 

L + I = E + T = sbasis = 10n and a<b<B<A, the specific 

basis of a matrix is taken successively, when n in 10n is 

equal to the number of digits in the L, thus, the sbasis of 

this matrix is restricted, irrespective of the restricted 

sbasis or unrestricted, the complexity of 10n is not 

considered as a complexity, we can multiply and divide 

by constant factors (the constant factors are always 

dropped from big O analysis, we can ignore them in the 

analysis of algorithm).  

Proof 

Given the new matrix (18): 
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2 1
,

8 9

L E
newMatrix

I T

   
    
   

  (18) 

 
where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, J = L-

E = T-I = 1, W = T-L = I-E = 7, L+I = E+T = sbasis = 

10, Esbasis = 10, Lsbasis = 20, Isbasis = 80, Tsbasis = 

90, Jsbasis = 10, Wsbasis = 70, I-L = W-J, T-E = W+J, 

let LE = a, IT = A, IE = b, LT = B, a + A + b + B = 

sbasis2, Esbasis:2-x = a, x + y = (Wsbasis-Jsbasis):2 = 

30, let us define the value LE = a using these 

properties of a new matrix that are presented in the 

following algorithm, then: 
 

LE = Esbasis:2-(Esbasis:2:(sbasis2:(Isbasis-

Lsbasis))) = 10:2-(10:2:(100:(80-20))) = 5-

(5:(100:60)) = 2 = LE = a  
 
or we can define the value of LE using the simplified 

version of the above algorithm where we are inversing 

the exponent of a constant that is sbasis2 = (10n)2: 
 

LE = (E:2-(E:2:(sbasis:(I-L))))∙sbasis = (1:2-

(1:2:(10:(8-2))))∙10 = (0,5-(0,5:(10:6))∙10 = 

0,2∙10 = 2 = LE = a  
 

Keep in mind that we are not raising 10 to the n-th 

power every time to define the sbasis, we need only to 

add the L and I elements of a matrix that will be the 

value of 10n.  

Lemma 18 

Sparse matrix. We will consider the option where, for 

definition LE, we will take a sbasis equal to L. This 

operation is presented as an example of a possible 

factorization path only. It works like a recursion matrix 

and has polynomial time.  

Proof 

Given the new matrix (19): 
 

3 1
,

0 2

L E
newMatrix

I T

   
    
   

  (19)  

 
where, L = 3, E = 1, I = 3-3 = 0, T = 3-1 = 2, L + I = E + 

T, here, sbasis = L + I = E + T = 3, J = L-E = T-I = 3-1 = 

2-0 = 2, W = E-I = L-T = 1-0 = 3-2 = 1, LE = a, IT = A, 

IE = b, LT = B, a + A + b + B = sbasis2 = 32 = 9, a + b = 

Esbasis, A + b = Isbasis, a + B = Lsbasis, A + B = 

Tsbasis, J = T, W = E, L = sbasis, E<L<10n:2, let us 

define the value LE using the following: 

 

 a + A + b + B = sbasis2 = 9  

 A = 0  

 b = 0  

 a + B = sbasis2-A-b = 9-0-0 = 9  

then: 
 

 a = sbasis2-J(W + J) = 32-2(1+2) = 9-6 = 3 = LT  

 B = sbasis2-a = 32-3 = 6 = LT 27  
 

It is necessary to have the values of the squares of L 

and T and the product of JW = ET to define the value of 

LE and we have (or get) a reference multiplication.  

Lemma 19 

Approximation of the new matrix and a sorted array 

of options of a matrix. Let us take a reference matrix 

with a restricted sbasis, which is taken successively. This 

operation of the new matrix takes a logarithmic running 

time and will provide a short path to O(log n).  

Proof 

Given the new matrix (20):  
 

2 1
,

8 9

L E
newMatrix

I T

   
    
   

  (20)  

 
where, L = 2, E = 1, I = 10-2 = 8, T = 10-1 = 9, L + I = E 

= T = sbasis = 10, J = L-E = T-I = 1, W = I-E = T-L = 7, 

W-J = I-L, W + J = T-E, Jsbasis = 1∙10 = 10, Wsbasis = 

7∙10 = 70, LE = a, IE = b, LT = B, IT = A, E<L<I<T, a + 

A + b + B = sbasis2 = 102, a<b<B<A, let us define the 

values of options (a), (b), (B), and (A) using the 

approximate values of these options that will sort the 

array of options of a new matrix (it is like to arrange a 

quick indices, or the bounds of limits, or the reference 

points), we will denote them as a≈, b≈, B≈, A≈, then: 
 

 a≈ = Esbasis:4 = 10:4 = 2,5  

 b≈ = 3Esbasis:4 = 30:4 = 7,5  

 A≈ = 3Tsbasis:4 = 270:4 = 67,5  

 B≈ = Tsbasis:4 = 90:4 = 22,5  
 
and further, let us define the values of (a), (b), (A), (B) 

using these approximate values of these options and the 

properties of the new matrix: 
 

 a = a≈ + x≈ = 2,5 + (-0,5) = 2  

 b = b≈ - x≈ = 7,5 – (-0,5) = 8  

 A = A≈ - y≈ = 67,5 – (-4,5) = 72  

 B = B≈ + y≈ = 22,5 + (-4,5) = 18 
 
where: 
 

(x≈ + y≈) = (sbasis2: 2-(Isbasis – Lsbasis)): 2 = 

(100: 2-(80-20)): 2 = (50 - 60): 2 = - 5 
 
and further we are targeting half of half to find x≈: 
 

x≈ = Esbasis: 2: (sbasis2: 2: ((sbasis2: 2- 

(Isbasis-Lsbasis)): 2) = 10: 2: (100: 2: (100: 2-

(80-20): 2) = 5: (50: ((50-60): 2) = -0,5 
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y≈ = -5-(-0,5) = -4,5 
 
and: 
 

 A≈ - a≈ = Wsbasis≈  

 B≈ - b≈ = Jsbasis≈  

 a≈ + A≈ + b≈ + B≈ = sbasis²  

 

We received a sorted array of options of the new 

matrix therefore we don’t need to check all possible 

options of an array to define the target value LE. 

Lemma 20 

Big O notation of the new matrix. Analysis of 

algorithms of the new matrix. Asymptotic analysis of the 

runtime of an algorithm. A new definition of an upper 

bound on the worst-case running time of M{n) = O(n2). The 

new matrix model multiplication has a time complexity of 

O(log n), making this algorithm significantly faster than 

O(n log n log log n) and O(n log n). Run-time analysis of 

the main algorithm of the new matrix model that takes a 

constant number of steps for any input of size n. 

Proof 

Suppose we need to estimate the complexity of input 

of size n in the asymptotic sense.  

Given an array of positive integers in matrix form: 

 

1 2

3 4

,
n n

n n

 
 
 

 

 

where, n₁, n₂, n₃, n₄ are the elements of an array, n₃ = 

10n-n1, n4 = 10n-n2, i.e., the n3 element is the complement 

of the n1 element and the n4 element is the complement 

of the n2 element, n1-n2 = n4-n3 = n5, n3-n2 = n4-n1 = n6, n1 

+ n3 = n2 + n4 = sbasis = 10n, where the exponent of 10n 

is equal to the number of digits in the n1, n2<n1<n3<n4 

and the options of an array are: (n1n2), (n3n4), (n3n2), 

(n1n4), (n1n2)<(n2n3)<(n1n4)<(n3n4), (n1n2) + (n2n3) + 

(n1n4) + (n3n4) = sbasis2 = (10n)2. Let us define an upper 

bound for the worst-case running time of an algorithm to 

define the value of (n1n2) = n option.  

Run-time analysis: Prove that Esbasis:2-

(Esbasis:2:(sbasis2:(Isbasis-Lsbasis) = O(log n), (see 

lemma 18 to clarify), let T(n) be the execution time for 

this input of size n, where lim
n

, there exist positive 

constants and lower order terms that are not considered 

and can be ignored (omitted), then:  

 

 T(n) = Esbasis:2-(Esbasis:2:(sbasis2:(Isbasis-

Lsbasis))) = n₂sbasis:2-(n₂sbasis:2:(sbasis2:(n₃sbasis-

n₁sbasis))) = (n2:2-(n2:2:(sbasis:(n3-n1))))∙sbasis  

 T(n) = T1(n)+ T2(n) + T3(n) + T4(n) + T5(n) + T6(n) 

+ T7(n) + T8(n) = f(n)  

 T1(n) = sbasis-n1 = n3 = 10n- n1⇒ O(n)  

 T2(n) = n₂sbasis = 10n∙n2⇒can be ignored  

 T3(n) = n₂sbasis:2 = (10n∙n2):2⇒ O(log n)  

 T4(n) = sbasis2 = (10n)2⇒can be ignored  

 T5(n) = (n₃sbasis-n₁sbasis) = (10n∙n3)-(10n∙n1)⇒O(n)  

 T6(n) = sbasis2:(n3sbasis-n1sbasis) = (10n)2:((10n∙n3)-

(10n∙n1))⇒O(log n)  

 T7(n) = n3sbasis = 10n∙n3⇒can be ignored  

 T8(n) = n1sbasis = 10n∙n1⇒can be ignored  

 

Let f and g be functions from positive numbers to 

positive numbers, where f(n) = (n2:2-(n2:2:(10n:(n3-

n1))))∙10n = O(n) and g(n) = O(log n). Prove the claim 

that f(n) is O(g(n)) if there exist positive constants c>0 

and no>0 such that: 

 

f(n)≤c⁎g(n) for all n≥no. 

 

To prove big-O, we choose values for c and n₀ and 

prove n>1 implies f(n)≤c⁎g(n): 

 

1. Choose n₀ = 1,  

2. Assuming n>1, find/derive a c such that: 

 

 

 

 

 

f n cg n
c

g n g n
   

 

that proves that n>1 implies f(n)≤c⁎g(n). This means that 

function f(n) does not grow faster than g(n), or that 

function g(n) is an upper bound for f(n) for all 

sufficiently large 𝑛→∞.  

An algorithm asymptotic running time is O(log n), 

using Random Access Memory and on a Turing 

Machine, the complexity is O(n), concerning the rate of 

growth. The worst-case time complexity W(n) then 

defined as W(n) = max(T1(n), T2(n), …).  

Notice. The complexity of addition is considered as 

O(log n) and the complexity of subtraction we also 

consider as O(log n), since we can use Random Access 

Memory addressing to speed up lookup. Addition can be 

executed very quickly, it runs in O(log n) if n is the 

value of the sum. Subtraction n1 from 10n to find n3 that 

is the complement of n1 has easy running time, it’s like 

we need to find the 10’s complement of a number and 

the time complexity of log10 is roughly constant time on 

most modern processors, it doesn’t matter the base of 

log. An algorithm takes a constant number of steps for 

any value of n larger than 1.  

 

Comparing the asymptotic running time: 

 

an algorithm that runs in O(n) time is better than one that 

runs in O(n log n) and O(log n) is better than O(n).  
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Lemma n 

Verifying instance n. Defining the product of two large 

numbers that are taken arbitrarily. It is tedious enough to 

multiply large numbers by hand even using the new matrix 

when the sizes of the numbers are more than 1012. 

Proof 

Given the new matrix: 

 
8724311093647731827 75683119214541796

,
1275688906352268173 9924316880785458204

L E
newMatrix

I T

   
    
   

 

 

where, L = 8724311093647731827, E = 

75683119214541796, I = 1275688906352268173, T = 

9924316880785458204, J = L-E = T-I = 

8648627984433190031, W = T-L = I-E = 

1200005787137726377, sbasis = L + I = E + T = 

10000000000000000000, this sbasis is taken successively, 

therefore is restricted, Jsbasis = 

864862798443319003100000000000000000000, Wsbasis 

= 12000057871377263770000000000000000000, here, 

L>I, E<T, E<L>I<T and the matrix has to be turned, or we 

can leave a matrix, further, LE = a, IT = A, IE = b, LT = B, a 

+ Wsbasis = A, b + Jsbasis = B, a + A + b + B = Asbasis² 

= 100000000000000000000000000000000000000, a<A, 

b<B, A<B, a + b = Esbasis, a + B = Lsbasis, b + A = 

Isbasis, A + B = Tsbasis, let us define the values of 

options (a), (b), and (B) using the value of (A) option 

and these properties of the new matrix, then: 
 

 A = 1275688906352268173 ∙ 

9924316880785458204 = 

12660340947942554572836836990490941292  

 a = A-Wsbasis = 

12660340947942554572836836990490941292-

12000057871377263770000000000000000000 =  

 = 660283076565290802836836990490941292  

 b = Isbasis-A = 

12756889063522681730000000000000000000-

12660340947942554572836836990490941292 = 

96548115580127157163163009509058708  

 B = Tsbasis-A = 

99243168807854582040000000000000000000-

12660340947942554572836836990490941292 = 

86582827859912027467163163009509058708  
 

Results 

It is possible to multiply large numbers in time O(log 

n), with Random Access Memory.  

Discussion 

The paper has answered the following great thoughts 

and statements of complexity, refuting or confirming 

them that is obvious to all who read this work, since 

everything changes in complexity now: “Complexity 

theory is still an infant science. Thus, we still do not 

have complete answers for any of these questions 

(Papadimitriou, 1993).” “Computational complexity is 

one of the most beautiful fields of modern mathematics, 

and it is increasingly relevant to other sciences ranging 

from physics to biology, but this beauty is often buried 

underneath layers of unnecessary formalism, and exciting 

recent results…are usually considered too “advanced” 

(Moore and Mertens, 2011).” “…there never was an 

agreement over what kinds of topics should be included in 

the discipline, and it was very difficult to come up with a 

common understanding of how research in computing 

should ideally be done (Tedre, 2014).” “…practical 

computational tasks require the ironclad quantities that 

only mathematics provides (Lewis and Papadimitriou, 

1998).” “…we are interested in finding the most 

“efficient” algorithm for solving a problem…However, by 

the “most efficient” one normally means the fastest 

(Garey and Johnson, 1979).” “For many problems, no 

polynomial-time algorithms are known (Arora and Safra, 

1998).” “The advantage of having only a finite number 

of states is that we can implement the system with a 

fixed set of resources (Hopcroft and Ulman, 1979).” 

Algorithms whose running times are n² in the size of their 

inputs can be implemented to execute efficiently even for 

fairly large values of n, but algorithms that require an 

exponential running time can be executed only for small 

values of n (Homer and Selman, 2011).” “The most 

notable practical algorithm that has an exponential worst-

case running time is the simplex algorithm for linear 

programming (Cook, 1983).” “Indeed, I believe that 

virtually every important aspect of programming arises 

somewhere in the context of sorting or searching (Knuth, 

1997)!” “A search problem consists of a specification of a 

set of valid solutions (possibly an empty one) for each 

possible instance (Goldreich, 2010).” “…the set of 

sequences can be partitioned into computable and 

noncomputable sequences (Hartmanis and Stearns, 

1965).” “…maturing understandings constantly lead to 

new insights and questions about existing models 

(Denning, 2012).” “We need a different theory: a theory 

of analog computation, where states and processes are 

inherently continuous, and which treats real numbers not 

as sequences of digits but as quantities in themselves 

(Moore, 1999).” “The reduction consists of computing 

O(n²) linear combinations of pairs of rows in the manner 

of standard Gaussian elimination except that now we get 

an additive term of the first kind at each step (Valiant, 

1979).” “Computer problems come in different varieties; 

some are easy, and some are hard. For example, the 

sorting problem is an easy one (Sipser, 2012).” “Usually 

there are several possible algorithms for solving a 

problem such as evaluation of an algebraic expression, 
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sorting a file, or parsing a string of symbols (Rabin, 

2012).” “…one of the outstanding problems in computer 

science is determining whether questions exist whose 

answer can be quickly checked, but which require an 

impossibly long time to solve by any direct procedure 

(CMI, 2020).” “NP is in PP by adding a larger number of 

dummy accepting paths… PP is the prototypical 

counting class, classes defined in terms of the number of 

accepting and rejecting paths (Fortnow, 2002).” 

Conclusion 

A major measure of computational complexity the 

time complexity of M(n) = O(n2) has been reduced to 

O(log n), with Random Access Memory and not only 

this problem has been solved, but we have also solved 

the problem of redundant computations that means 

that the computations are only required on a quarter of 

the inputs instead of all the input set (the amount of 

resources needed for running an algorithm varies with 

the input and the size of the input, for example, when 

the input size n goes to infinity), i.e., there are at least 

three redundant computations at each step, which can 

increase the runtime of the code significantly that 

makes web pages loading slow, therefore these steps 

have been reduced. 
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