

© 2020 Meena Veeraiyan, S. Kousika, J. Senthilkumar and Joy Christy Antonysami. This open access article is distributed

under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

An Optimized Mobile Cloud Computational Offloading

Framework using K-Means Algorithm

1Meena Veeraiyan, 2S. Kousika, 3J. Senthilkumar and 1Joy Christy Antonysami

1Deparment of Computer Science Engineering, SASTRA Deemed University, India
2Deparment of Information Technology, SASTRA Deemed to be University, India
3Department of Computer Science Engineering,

Srinivasa Ramanujam Centre Kumbakonam, SASTRA Deemed to be University, India

Article history

Received: 02-07-2019

Revised: 21-08-2019

Accepted: 30-01-2020

Corresponding author:

Joy Christy Antonysami

Department of Computer

Science Engineering, SASTRA

Deemed University, India
Email: joychristy001@gmail.com

Abstract: Offloading the execution of heavy computational modules from
mobile devices to Mobile Cloud Computing (MCC) is inevitable in today’s
era as it mainly focuses in consuming less battery power and execution
time. But, the problem incurred with identifying the most optimal cloud
device to map each module still remains a challenge in cloud computing
environment. In this paper, a novel MCC offloading framework is proposed
to fasten the allocation and execution of high computational modules that
runs in the mobile device, effectively on the cloud. The framework employs
K-Means clustering algorithm to group the nearest cloud virtual machines
that best suits for executing modules of software running in the mobile. The
objective of the paper is to maximize the energy savings by extending the
battery life and execution speed of mobile device when executing heavy
computational modules. The optimal selection of cloud device is attained
by grouping the requirements of each module with the nearest cloud
devices offering the same requirements using K-Means Algorithm. The
proposed framework is compared with the existing mobile computation
offloading frameworks with respect to energy saving, execution time and
energy consumption. The results show that the proposed work executes the
modules of computationally intensive modules in minimum time span with
maximized energy savings than the existing frameworks.

Keywords: Offloading, K-Means, Cloud Virtual Machines, Euclidean

Distance

Introduction

Extensive use of smart phones encourages

programmers to build plenty of software applications that

cope up our day to day life. Some popular applications

installed in smart phones include Car Remote Control, 2D

Bar-Code Reader, Mobile Environmental Sensors, Mobile

Security and Authentication, Cost Considerations,

Medical Microscope and so on. These applications

demand smart phone to act as a computing device as they

evolve heavy computational modules (Kuang et al., 2018).

But, the constraints with memory, processing power and

battery life of smart phones degrades its performance

down in terms of speed, battery power and efficiency. A

technological solution to this issue is called offloading.

The evolution of wireless communication and cloud

computing allows smart phones to offload its high

computational modules to be executed in a remote

infrastructure through wireless communications.

Many researchers have proposed different kinds of

offloading frameworks (Mazouzi et al., 2019; Zhang et al.,

2019; Elgendy et al., 2019) While some offload the entire

application, others select only heavy computational

modules. The number of factors that needs to be considered

for offloading the modules is network bandwidth,

transmission cost, computational cost, available memory

and latency. A decision engine in these frameworks

randomly executes all the modules in both local and remote

environment to decide whether to run in local device or in

the cloud by taking into account of all the above factors. If

a module is to be executed on cloud, it is more

advantageous only when the remote execution saves

energy without worsening the normal response time. The

existing frameworks do not attempt to optimize the

offloading with all these five factors. There are still

number of aspects that energize global optimization in

offloading task. This paper postulates yet another heavy

computational module offloading framework through

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

203

machine learning approach. The novelty of the paper is to

offload the heavy computational modules of the software

on cloud virtual machines through descriptive analysis

technique in data mining. The module that requires similar

types of resources are grouped into one cluster and the

node that is nearest to the module requirements has been

selected for offloading. The results have proven that the

proposed framework will efficiently identify the modules

that should run on local and remote machines.

The remaining section of the paper is organized as

follows: Section 2 presents the literature review, section

3 denotes the proposed methodology (MCCO

framework), section 4 depicts the experimentation and

result analysis and finally section 5 discusses the

findings and conclusion of the paper.

Review of Literature

Computational offloading has serious attention by

industrialist and academician to find optimal offloading

in mobile cloud computing in order to improve the

performance of resource constraint devices. The existing

works used optimization algorithm has provide the

solutions for optimal mapping between intensive jobs

and executing servers. Achary et al. (2015) proposed

dynamic job scheduling to offload the intensive modules

in cloud server using ant colony optimization in order to

improve throughput and quality of services and also

addressed the problem when mobile is used in remote

server and Hadoop environment. Ramezani et al.

(2015) proposed Multi-Objective Particle Swarm

Optimization (MOPSO) and Multi-Objective Genetic

Algorithm (MOGA) to find optimal offloading in cloud

in order to decrease job response time, makespan and

the cost of the service providers. Guo et al. (2012)

proposed a heuristic algorithm called particle swarm

optimization for task scheduling in cloud environments

with minimum cost of processing with less focus on

energy saving and service level agreement.

Table 1: Denotes the review of similar works along with its advantages and disadvantages in brief

No. Title Authors Technique used Datasets Metrics Advantages Drawbacks

1 Computation Offloading Chourasiya and Ternary Decision Standard Android Time, Energy ✓ Reducing computation Not concentrate on
 in Hand-Held Devices Singh (2018) Marker Cloud power in mobile cloud Heterogeneous
 Using Ternary Decision ✓ Providing security offloading
 Maker in Accountance to offloaded data
 with Time and Energy
2 Energy-Efficient You and Multiuser Mobile Dedicated Dataset Energy ✓ Considered both finite, Diminished
 Resource Allocation for Huang (2017) Edge Computation infinite clod capacity for Performance due to
 Mobile-Edge Offloading resource allocation higher power saving
 Computation Offloading ✓ Depends on energy
 consumption and channel
 gains deriving offloading
 priority function
3 A fast hybrid multi-site Goudarzi et al. Optimized DB, RayTrace, Cost, energy, ✓ Reduces search space Energy consumption
 computation offloading (2017) multisite PSO JESS, R4 Time for optimal offloading is more not suitable
 for mobile cloud solution for battery operated
 computing devices
4 A Heuristic Algorithm for Enzai and Synthetic data Time, energy, ✓ Minimizes energy Scalability
 Multi-site Computation Tang (2016) Cost consumption
 Offloading in Mobile ✓ Minimizes computation
 Cloud Computing time
 Hill Climbing ✓ Minimizes total
 computation cost
5 A hybrid heuristic queue Rashidi and Ant-Colony Video Encoding Time, Energy Decreasing mean -
 based algorithm for task Sharifian (2017) genetic completion time, total
 assignment in mobile energy consumption
 cloud Decreasing number of
 dropped tasks
6 Modeling multi-factor Wu and Multifactor- Dedicated Dataset Time, Energy ✓ Aggregate overall ✓ Diminished
 multi-site risk-based Huang (2014) Multisite Risk offloading benefits Performance
 offloading for mobile based offloading and risks ✓ Non-optimized
 cloud computing resource handling
7 An energy-efficient Niu et al. Multi-way graph Established the Time, Energy ✓ Minimizing energy -
 multisite offloading (2013) partitioning Random Graphs consumption and
 algorithm for mobile execution time
 devices ✓ Better adaptability to
 wireless networks
8 Task scheduling Guo et al. Particle swarm Established Time ✓ Minimize cost of Not addressing
 optimization in cloud (2012) optimization random tasks processing Energy saving and
 computing based on service level
 heuristic algorithm agreement.
9 Evolutionary algorithm- Ramezani et al. Multi-Objective Service time, ✓ Reduces job response -
 based multi-objective (2015) Particle Swarm service cost, time and makespan
 task scheduling Optimization QOS ✓ Decrease cost to
 optimization model in (MOPSO) and providers
 cloud environments Multi-Objective
 Genetic Algorithm
 (MOGA)
10 Dynamic job scheduling Achary et al. Ant Colony Random generation Throughput, ✓ Dynamically scheduling
 using ant colony (2015) optimization of wireless nodes QOS the tasks
 optimization for mobile ✓ Improve throughput and
 cloud computing quality of service

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

204

Merits and demerits of the existing mobile offloading
frameworks is shown in Table 1.

Many authors focused on executing intensive jobs on
multiple cloud servers. Niu et al. (2013) proposed a novel
scheme multi-way graph partitioning to have energy
efficient multi-site offloading in MCC by generating
random graphs that provides solution with minimized
energy consumption. The authors claimed that the proposed
work is more adaptable to wireless networks. Wu and
Huang (2014) proposed a multifactor multisite risk based
offloading in MCC to select suitable nodes for offloading
by analyzing the overall benefits and risks of the system.
Rashidi and Sharifian (2017) proposed a novel scheme of
hybrid heuristic queue based algorithm for task assignment
by implementing ant colony and genetic optimization
algorithms with decreased mean completion time, total
energy consumption by evaluation the factors such as time
and energy incurred in the video encoding system.

Enzai and Tang (2016) implemented hill climbing

algorithm to offload computational task in multisite cloud

servers with decreased energy consumption, computation

time and total computational cost without considering the

scalability factor. Mohammad Goudarzi et al. (2017)

proposed fast hybrid multisite computational offloading

(FHMCO) by implementing particle swarm optimization

algorithm to obtain near optimal offloading solution with

decreased cost, energy and time factors. They proved their

solutions on applications like JESS, DB and RayTrace.

You and Huang (2016) proposed energy efficient resource

allocation scheme for mobile edge computational

offloading with the considerations of finite and infinite

capacity of cloud resources. Here channel is gained by

using priority function. Chourasiya and Singh (2018)

proposed novel scheme Ternary Decision Maker (TDM)

to select appropriate target device either phone or cloud

for offloading process in order to obtain reduced

computing power in mobile devices.

Proposed Methodology

Graph Construction

Each heavy computation application is viewed as
weighted directed graph G = (Ve, Ed) in which vertices
Ve contains computation cost of each module in
application and edges Ed contains transmission data cost
among the application units. In each vertex has set of
weights (wI, mi) in which wi represents computation cost
of the component ‘i’ on the mobile device, m I represents
memory consumption of the component ‘i’. Figure 1
depicts the sample weighted graph for multi cluster
offloading problem.

Each cluster is configured with their CPU capacity,
memory usage, memory available, Speedup factor etc.
Group of clusters are represented as C = (c1, c2,…..cm). In
each cluster is represented as (CPUi, MCi). Figure 2 depicts
an example of group of clusters with their configuration.

Multi Cluster Computation Offloading Problem

Formulation

In this section we formulate multi cluster offloading
problem based on computation time requirement of
individual module and memory requirement of
individual module.

Execution Cost Model

The execution time application model aims at finding
the best clustering of an application graph Z satisfying Y
= min(TE(Z)). Execution time for ith module is given in
following formula:

        _ _ /E i T i Num of inst i Sf j  (1)

where, T(i) denote the transmission cost of ith module

and Sf(j) denote the jth cloud capacity.

Fig. 1: Weighted directed graph of heavy computation application

W1, M1

V1

V2
V4

V3

W4, M4 W2, M2

W3, M3

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

205

Fig. 2: Cluster configuration for effective offloading

Fig. 3: MCCO architecture

Multi Cluster Computation Offloading Architecture

In this section we propose a Multi cluster
Computation Offloading Solution called MCCO,
Which finds appropriate cluster to deploy the offloaded
module in timely manner. The proposed solution
includes two methods based on computation time and
memory of the individual module. In order to achieve

optimal deployment, we proposed Input: Available
resources in CVM Output: Clusters that maps user
requirements with cloud resources Pre: Computational
cost and storage requirements of each module in the
application 1. Set k to number of modules 2. Set module
requirements as initial centroids 3. Do Compute

distance between initial centroids and CVM resources
Group the nearest cloud resources into the cluster with
minimum distance Recompute centroids 4. Until there
is no change in the cluster group or cluster centroids.

MCCO Architecture

MCCO takes the partitioned modules of high
computational software from mobile device and passes
them to an optimum offload planner (OOP). OOP
process the modules under three stages splitter, local
queue and optimal deployment Decider. Figure 3
denotes the components of the proposed framework and
their relationships.

The splitter is responsible for partitioning the

applications as two major sections namely local queue

and optimal deployment decider, where, the first section

contains a list of modules that are executed in mobile

device. The next section contains a list of heavy

computational modules for computation offloading. The

local queue sends the locally executable modules to

mobile for their execution. The optimal deployment

planner of the proposed work employs K-Means

C1
CPU1, MC1

CPU2, MC2 C2

C3 CPU3, MC3

C4

CPU4, MC4

Very high computational

intensive application (e.g:

face recognition application)

Create module

based partition

Optimum offload planner

Splitter

Local queue Execute locally

Optimal deployment

decider

Locally executed

results

Compare and

execute
Offload

modules

Send results

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

206

clustering algorithm (Meilă, 2019; Heil et al., 2019;

Gan and Ng, 2017) for the efficient allocation of

modules over multiple Cloud Virtual Machines (CVMs).

The algorithm maps individual module requirements

with available cloud resources. K-Means takes the

requirements of individual module as initial cluster

centroids, such as computational time and storage

capacity and tries to find the appropriate cloud virtual

machine to execute them. The distance between the

module requirements and the available services are

computed using Euclidean distance. Finally, the CVMs

that are offering similar types of services in par with the

requirements of a module are grouped into one cluster.

The modules are then assigned into the nearest cloud

virtual machine for execution. Algorithm 1 denotes the

clustering process of the proposed work.

Algorithm 1: Cloud Service Selection

Input: Available resources in CVM

Output: Clusters that maps user requirements with cloud

resources

Pre: computational cost and storage requirements of each

module in the application

 1. Set k to number of modules

 2. Set module requirements as initial centroids

 3. Do

 Compute distance between initial centroids

and CVM resources

 Group the nearest cloud resources into the

cluster with minimum distance

 Recompute centroids

 4. Until there is no change in the cluster group or

cluster centroids

In this work, optimization of offloading task is highly

concerned with reduced transmission cost. Thus, a

module with reduced number of instructions that

occupies less memory space is sent as a relay to each

virtual machine in the cloud. The time taken to transmit

the relay module is used to compute the time taken for

transmitting all modules to the available cloud virtual

machines. Among the several cloud virtual machines in

the cluster, a device with reduced transmission cost is

chosen for running that module. Algorithm 2 is proposed

to select the best virtual machines by considering the

transmission cost discussed in Algorithm 3.

Algorithm 2: vmSelect

Input: Modules with their computation time, memory

requirement Cloud service with cpu capacity

Output: Optimal mapping of modules with suitable

virtual machine in suitable cloud server.

1. res = 0;vm[1,…no of modules];map[1,…..no of

modules];

2. min=inf;

3. while i=1 to number of modules
4. while j=1 number of cluster

5. while k= number of vm’s in j

6. calculate E[i] using eq 1

7. if(min<E[i])

8. map[i]=j

9. vm[i]=k

10. min=E[i]

11. end if

12. end for

13. end for

14. E[i]=min

15. end for

Algorithm 3: tcCost

Input: Total number of modules (m1,m2,m3…..mn) in

M; Total number of Virtual machines in suitable cloud

server, VM; Computation time required for each module

E(i);

Output: calculating transmission cost for one module on

every virtual machines in cloud server.

1. while j=1 to VM

2. E[1][j]=m1 is executed in vmj

3. tr[1][j]=transmission cost is calculated

 end

4. while i=2 to M

5. for j=1 to VM

6. diff=size[i]/size[1];

 tr[i][j]=tr[1][j]*diff;

 E[i][j]=E[1][j]*diff;

11. end

12. end

Experimentation and Results Discussions

The experimentation is conducted over face

recognition software with 20 modules each of which

is different from size, number of instructions, CPU

and memory usages. Table 2 depicts name,

computational and memory usage of each module in

the experimental software. The software has been

repeatedly executed on Ubuntu 14.04LTS and the

average values of each parameter have been taken for

multi-site offloading. The CPU clock frequency of the

cloud devices is set from 1.5 GHz to 2 GHz. The

bandwidth between cloud virtual machines and mobile

device is ranging from 200 Kbps to 1000 kbps and the

total bandwidth varies from 5Mbps to 20 Mbps.
The section demonstrates the advantages of the

proposed MCCO framework in mobile cloud

computing offloading scheme by comparing the

execution time and energy consumption with two

most popular existing approaches namely Dynamic

Programming Mobile Offloading Framework and

Greedy Mobile Offloading Framework algorithms.

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

207

From the twenty modules of experimental software, a

module that requires minimum storage with reduced

number of instructions has been chosen as a relay

module and transmitted over the CVMs to examine

the execution time and transmission cost. The outputs

are then used to compute the execution time and

transmission for the remaining 19 modules. Having

the requirements of the modules as cluster centroids,

the information gained from CVMs are clustered to

find the nearest optimal VM to execute the module.

The modules are mapped to the nearest cloud agent so

as to ensure the minimum execution time and

maximum energy saving.

Energy Saving

The modules are sent through different network
bandwidths ranging from 5000 Kbps to 15000 Kbps for
analyzing the energy saving capacity of MCCO
framework. Figure 4 shows the performance of the
proposed work with respect to energy consumption.
From the results it has been observed that the proposed
MCCO framework consumes less energy when the
bandwidth increases (i.e.,) more the bandwidth increases
more energy is saved. In addition, when the total number
of bandwidth B is assigned, there are more suitable
devices found in CVM clusters that meet the
requirements of the module.

Table 2: Description of experimental software

S. no Module (function) name Computational time(ns) Memory (KB)

1 Main 117535194 2300

2 Add Widgets 44254512 3190

3 FaceRwcView 175646814 3543

4 SimpleController 26371082 3750

5 propertyChange 21943 6015

6 getIcon 132694629 6311

7 ActionPerformed 58124143844 188148

8 SetImage 26947 124918

9 ValidateTextField 105480 124918

10 ValidateFileSelection 3307213 124918

11 ValidateFolderSelection 103555 124918

12 SimpleValidator 3651368 124918

13 ImageDistanceInfo 1540 157879

14 CheckImageSizeCompatibility 3448494 153947

15 getImageData 5898010 153947

16 Matrix2D 3711808 157879

17 getDistance 50815 157879

18 MatchResult 19404032 41905087

19 HandleUserInputs 428910526 157898

20 SimpleButtonListener 430443061 157898

Fig. 4: MCCO Energy saving analysis

5000Kbps

8000Kbps

10000Kbps

12000Kbps

15000Kbps

E
n

er
g

y
 s

av
in

g
/m

j

7000

6000

5000

4000

3000

2000

1000

0

2 5 10 15 20

Offloading task count

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

208

Execution Time

Figure 5 denotes the execution time analysis of

MCCO framework with varying bandwidths. The results

explicit an inverse correlation in the output as the

execution time of the proposed algorithm is minimum

when the module is passed through higher bandwidths.

However, according to the size and bandwidth, the

execution time of the MCCO may vary. For instance, the

smallest module offloading tasks given in the scenario is

50, which is sent through 20000Kbps is comparatively

low than the other bandwidths in terms of execution

time. The pace of the execution time is increasing

gradually even with higher bandwidths and the persistent

level of execution time is hardly achieved.

Figure 6 shows the analysis on the energy

consumption over the execution of face recognition

software in remote and MCCO frameworks. From the

results, it is observed that the local execution of all

modules consumes more energy as the device has

limited capacities in terms of processor and battery life.

When, all modules are offloaded onto remote machines,

the energy saving is quite high than executing all

modules in local machine which is unrealistic. The

MCCO framework based execution of software has

shown a significant improvement in energy saving as it

runs the modules that require minimum resources in the

local devices and energy consuming modules in the

remote machines, thus saving the transmission cost.

Fig. 5: MCCO execution time analysis

Fig. 6: MCCO energy consumption analysis on remote machines

GMOF

DPAF

MCCO

A
lg

o
ri

th
m

 e
x
ec

u
ti

o
n

 t
im

e/
se

co
n
d

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

2 5 10 15 20

Offloading tasks

GMOF

DPAF

MCCO

E
n

er
g

y
 s

av
in

g
/m

j

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
2 5 10 15 20

Offloading tasks

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

209

Conclusion

The paper proposes a cloud virtual machines based

computation offloading framework for outsourcing the

modules of software that runs in the mobile platform to

cloud environment. The framework considers minimum

completion time as a major constraint to ensure offloading

realistic. The framework also employs K-Means clustering

algorithm to identify suitable VMs in cloud environment

based on the requirements of each module such as time

and storage. The optimized allocation is then achieved by

selecting a VM with minimum transmission cost from the

cluster. Simulation results discloses that the proposed

offloading framework outperforms the traditional LDR

and DPAF offloading optimization algorithms and also

with all local execution schemes in terms of fast

execution and energy savings. In future, this work can be

extended to explore complicated offloading of modules

from multiple software in real time environment.

Acknowledgment

The authors would like to thank SASTRA Deemed to

be University for the facilities used in this work.

Author’s Contributions

All authors equally contributed to the final version of

the manuscript.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Achary, R., V. Vityanathan, P. Raj and S. Nagarajan,

2015. Dynamic Job Scheduling using Ant Colony

Optimization for Mobile Cloud Computing. In:

Intelligent Distributed Computing, Buyya, R. and S.

Thampi (Eds.), Springer, Cham, pp: 71-82.

Chourasiya, N.L. and T.P. Singh, 2018. Computation

offloading in hand-held devices using ternary

decision maker in accountance with time and

energy. Proceedings of International Conference on

Recent Advancement on Computer and

Communication, (ACC’ 18), Springer, Singapore,

pp: 595-607. DOI: 10.1007/978-981-10-8198-9_62

Elgendy, I.A., W. Zhang, Y.C. Tian and K. Li, 2019.

Resource allocation and computation offloading

with data security for mobile edge computing.

Future Generat. Comput. Syst., 100: 531-541.

 DOI: 10.1016/j.future.2019.05.037

Enzai, N.I.M. and M. Tang, 2016. A heuristic algorithm

for multi-site computation offloading in mobile cloud

computing. Proc. Comput. Sci., 80: 1232-1241.

 DOI: 10.1016/j.procs.2016.05.490

Gan, G. and M.K.P. Ng, 2017. K-means clustering with

outlier removal. Patt. Recog. Lett., 90: 8-14.

 DOI: 10.1016/j.patrec.2017.03.008

Goudarzi, M., M. Zamani and A.T. Haghighat, 2017. A

fast hybrid multi-site computation offloading for

mobile cloud computing. J. Netw. Comput. Applic.,

80: 219-231. DOI: 10.1016/j.jnca.2016.12.031

Guo, L., S. Zhao, S. Shen and C. Jiang, 2012. Task

scheduling optimization in cloud computing based

on heuristic algorithm. J. Netw., 7: 547-547.

 DOI: 10.4304/jnw.7.3.547-553

Heil, J., V. Häring, B. Marschner and B. Stumpe, 2019.

Advantages of fuzzy k-means over k-means clustering

in the classification of diffuse reflectance soil spectra:

A case study with West African soils. Geoderma, 337:

11-21. DOI: 10.1016/j.geoderma.2018.09.004

Kuang, Z., S. Guo, J. Liu and Y. Yang, 2018. A quick-

response framework for multi-user computation

offloading in mobile cloud computing. Future

Generat. Comput. Syst., 81: 166-176.

 DOI: 10.1016/j.future.2017.10.034

Mazouzi, H., K. Boussetta and N. Achir, 2019.

Maximizing mobiles energy saving through tasks

optimal offloading placement in two-tier cloud: A

theoretical and an experimental study. Comput.

Commun., 144: 132-148.

 DOI: 10.1016/j.comcom.2019.05.017

Meilă, M., 2019. Good (K-means) clusterings are unique

(up to small perturbations). J. Multivariate Anal.,

173: 1-17. DOI: 10.1016/j.jmva.2018.12.008

Niu, R., W. Song and Y. Liu, 2013. An energy-efficient

multisite offloading algorithm for mobile devices.

Int. J. Distributed Sensor Netw., 9: 518-518.

 DOI: 10.1155/2013/518518

Ramezani, F., J. Lu, J. Taheri and F.K. Hussain, 2015.

Evolutionary algorithm-based multi-objective task

scheduling optimization model in cloud

environments. World Wide Web, 18: 1737-1757.

DOI: 10.1007/s11280-015-0335-3

Rashidi, S. and S. Sharifian, 2017. A hybrid heuristic

queue based algorithm for task assignment in mobile

cloud. Future Generat. Comput. Syst., 68: 331-345.

DOI: 10.1016/j.future.2016.10.014

Wu, H. and D. Huang, 2014. Modeling multi-factor

multi-site risk-based offloading for mobile cloud

computing. Proceedings of the 10th International

Conference on Network and Service Management

(CNSM) and Workshop, Nov. 17-21, IEEE Xplore

Press, Rio de Janeiro, Brazil, pp: 230-235.

 DOI: 10.1109/CNSM.2014.7014164

Joy Christy Antonysami et al. / Journal of Computer Science 2020, 16 (2): 202.210

DOI: 10.3844/jcssp.2020.202.210

210

You, C. and K. Huang, 2016. Multiuser resource

allocation for mobile-edge computation offloading.

Proceedings of the IEEE Global Communications

Conference, Dec. 4-8, IEEE Xplore Press,

Washington, DC, USA, pp: 1-6.

 DOI: 10.1109/GLOCOM.2016.7842016

Zhang, F., J. Ge, C. Wong, C. Li and X. Chen et al.,

2019. Online learning offloading framework for

heterogeneous mobile edge computing system. J.

Parallel Distributed Comput., 128: 167-183.

 DOI: 10.1016/j.jpdc.2019.02.003

