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Abstract: In this article, we propose a tangent estimation method for discrete 
object based on isothetic covers. We introduce a concept of maximal isothetic 
straight segments as a maximal segment of isothetic covers that are linearly 
separable. A new tangent estimator is proposed as a function of maximal 
isothetic straight segments. Upper bound for the tangent estimator are derived 
and show that it tends toward the directions of the tangents of the underlying 
real curve as we reduce the grid size. We show how consecutive isothetic 
tangents are related to the convexity of the isothetic covers. The new tangent 
estimator is optimal i.e., linear to the number of given points and shows good 
performance in the presence of noise. 
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Introduction 

Estimation of geometric properties of discrete objects 
plays an important role in computer vision and image 
processing. Tangent is one of the fundamental but often 
neglected geometrical properties of discrete objects and 
found use in a number of applications ranging from 
perimeter, shape estimation to convexity analysis, object 
recognition, etc. (Šukilović, 2015; An et al., 2011; 
Coeurjolly and Klette, 2004; Prasad and Leung, 2012; 
Lenoir et al., 1996; Stojmenovic and Žunić, 2008). For 
example, the rate of change of the directions of 
tangents is used to approximate the curvature of discrete 
curves (Vialard, 1996; Worring and Smeulders, 1993; 
Asada and Brady, 1986). Tangent are also used in the 
estimation of the length of the perimeter of a digital 
object (Ellis et al., 1979), description of curves (Özuysal, 
2019), structure estimation (Marin et al., 2015). 
Tangential covers are also used to extract countours from 
noisy images (Ngo et al., 2017). 

One of the problems in determining the geometrical 
properties of discrete objects is that a discrete object has 
an infinite number of euclidian counterparts. Therefore, 
it is needed to make assumptions about the shapes of the 
underlying euclidean objects before determining the 
geometrical properties. 

One way to approximate tangents is to fit a continuous 
curve around the point of interest and find the derivative 
of the curve. However, such a method put restrictions on 
the type of underlying curves and shapes and the size of 
the local region. Lewiner et al. (2005) used the least-

square method to fit parametric curves around the discrete 
points. Coeurjolly et al. (2001), use osculating circles to 
describe discrete curves and the curvature at a point is 
given by the inverse of the radius of the circle associated 
with the local region to which the point belongs. 
Smoothening techniques like gaussian filter can be applied 
to discrete curves and tangents are estimated from the 
smoothened continuous curves (Mokhtarian and 
Mackworth, 1986). Another method is to use global 
optimization techniques to approximate discrete curves 
with one of the continuous curves from a family of 
various types (Kerautret and Lachaud, 2008). Discrete line 
segments are also used in the estimation of tangents of a 
curve. Kim et al. (2002), in their article divides curves into 
small segments and each of the sub-curves is 
approximated by line segments. A tangent at a point on 
the curve is given by the slope of line segment associated 
with the region. Matas et al. (1995), select 2M 
neighbours around the point of interest and tangent is 
estimated as the median direction of the vectors directing 
from the 2M neighbours to the point of interest. Some of 
the methods for determining the derivative of discrete 
curves are based on the integral invariants. It involves 
moving an appropriate kernel along the curves and 
finding the integrals of the curve inside the kernel 
(Coeurjolly et al., 2013; Lin et al., 2010). Prasad et al. 
(2011), propose a tangent estimation based on the 
geometrical properties of elliptic curves and the method 
can be extended to other conic sections (Prasad et al., 
2014). Lachaud et al. (2007), in their articles fits discrete 
line segments around the point of interest and tangent is 
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calculated as the weighted average of the slopes of the 
lines around the point. 

In this article, we propose a tangent estimating 
method based on isothetic covers of discrete objects. 
Isothetic covers provide a simple yet useful abstraction 
of objects. Information content of the isothetic covers are 
a function of grid size and can be adapted based on the 
applications. Our tangent estimator is based on the 
properties of line segments that can be fitted between the 
isothetic covers of discrete objects and show that the 
tangent estimator is multi-grid convergent and linear to 
the number of discrete points in the object. The 
abstraction of boundaries of the objects by isothetic 
covers makes our tangent estimator robust and less 
vulnerable to noise distortion. 

Isothetic Cover 

Deftnition 1 

 {Isothetic Polygon} Isothetic polygon is a simple 
polygon whose alternating sides are from two disjoint 
sets, one containing a collection of horizontal lines, H 

and the other containing a collection of vertical lines, V. 
If the lines in H and V are equally spaced then the 

isothetic cover is called a regular isothetic polygon 
otherwise it is called an irregular isothetic polygon. 
Here, we will be dealing with only regular isothetic 
polygons and by isothetic polygon, we refer to a regular 
isothetic polygon. The distance between two 
consecutive lines in H or V is called grid size, denoted 
by g and intersection point between a line in H and a 
line in V is called a grid point. Such grid point forms 
the vertex of isothetic polygons. A grid cell, µ, is 
formed by intersections of pairs of consecutive lines 
from H, (hi, hi+1) and V, (vj, vj+1) and we use grid 
centre, µc, to denote the centre of the grid cell µ. 

Isothetic cover is a minimum area isothetic polygon 
which covers a digital object S. It can be defined as a 
union of grid cells which either partially or fully 
intersect S. Depending upon whether each grid cell lies 
completely within S, isothetic cover I can be classified as 
an outer isothetic cover or an inner isothetic cover. 

Deftnition 2 

{Outer Isothetic cover} Outer Isothetic cover, I (S), is 
an isothetic polygon where each grid cell, µi, belonging to 
the cover either fully or partially lies inside S: 
 

( ) { } :
i i

I S µ µ S= ∩ ≠ ∅∪  

 
Deftnition 3 

{Inner Isothetic cover} Inner isothetic cover, I(S) is 
an isothetic polygon where each grid cell, µi, belonging 
to the cover lies completely inside S: 

( )  { : }
i i i

I S µ µ S µ= ∩ =∪  

 
It can be shown that only grid cells with partial 

intersection lie between the inner isothetic cover and the 
outer isothetic cover of objects: 

 

( ) ( ) { : }
i i i

I S I S µ µ S or µ− = ∩ ≠ ∅  ∪  

 
We assume grid cells between the isothetic covers are 

ordered in an anti-clockwise order and use Ii,j to denote a 
segment of outer isothetic cover along with its 
corresponding inner isothetic cover segment where i and 
j are the first and the last indexes of the grid cells that lie 
between them. 

Deftnition 4  

{Isothetically Straight Segment} A pair of outer 
isothetic cover and inner isothetic segment, Ii,j, is said 
to be isothetically straight if there exists a euclidean 
line that can lie between the two covers without 
intersecting them. 

Our definition of isothetic straight segments is 
equivalent to the notion of digital straightness as given in 
Kovalevsky (1990), which states that a discrete curve is 
digitally straight if the centres of pixels on either of the 
curve are separable by a straight line. Equivalently 
digital lines are defined as a set of integer points 
satisfying η ≤ Mx − Ny < η  + |M | + |N | with slope given 
as /M N  where M, N, η are integers (Debled-Rennesson 
and Reveilles, 1995). In the view of the digital 
straightness, isothetically straight segment can be 
redefined as below. 

Deftnition 5 

A pair of outer isothetic cover and inner isothetic 
cover segment Ii,j is said to be isothetically straight with 

slope 
M

N
 and shift η if the grid centres between the 

isothetic covers satisfy the inequalities 
yx

g g
M N M Nη η≤ − < + +  where η, M, N are integers 

and g is the grid size. 
The real lines which bound the grid centres in 

isothetically straight segments from above are called 
upper leaning lines and similarly, the real lines which 
bound the grid centre from below are called lower 

leaning lines. In the first quadrant, yx

g g
M N y η− =  and 

1
yx

g g
M N M Nη− = + + −  are the upper leaning line and 

the lower leaning line. The grid centres on the leaning 
lines are called the leaning points. We use PB and QB to 
denote the leftmost and the rightmost leaning points on 
the lower leaning line. Similarly, PU and QU denote the 
leftmost and the rightmost upper leaning points. 
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Deftnition 6 

{Maximal Segment} An Isothetic segment, Ii,j, is 
called a maximal isothetic straight segment iff the 
following properties hold (i) Ii,j is isothetically straight 
(ii) There are no euclidean lines that can fit in the 
isothetic segments Ii−1,j and Ii,j+1. 

Tangent Istimator 

Our tangent estimator is based on the maximal 
isothetic straight segments that passed through a grid cell 
that lies between the isothetic covers of an object. It is 
possible for successive grid cells that lie between the 
isothetic covers to have the same set of maximal 
isothetic segments. Therefore, it is necessary to take into 
consideration the position of the grid cell in each 
maximal segment. We use relative positioning to take 
into account of the position of the grid cell within a 
maximal segment. The tangent at a point, c

k
µ , where c

k
µ  

is the centre of the grid cell, µk, is given by the linear 
combination of the slope of the maximal segments that 
pass through the grid cell scaled by the relative position 
of the grid cell within each segment. 

All the maximal segments defined around the object 
are indexed in anti-clockwise order, Li = Imi,ni where Imi,ni 
is the ith maximal straight isothetic segment in anti-
clockwise order. It can be seen that there is a minimum 
of one maximal isothetic segment passing through each 
grid cell of the isothetic covers. Let ( )kµL be the set of 

maximal segments that go through a grid cell µk and αi 

be the slope of the ith isothetic segment Li. The relative 
position of a grid cell, µk, in a maximal segment, Li, is 
calculated as (Lachaud et al., 2007): 
 

( )
( )

1

1

|| ||
,   

0

i

i i

c c

k m c ci

i i n m

i i i

µ µ k m
L k where l µ µ

r k l l

otherwise

 − −
=   ∈ = −

= 



L
 

 
Deftnition 7 

The Isothetic Tangent direction at point c

k
µ  is given 

by the linear combination of the slope of the maximal 
isothetic segments that pass through grid cell µk: 
 

( )
( )( )

( )

( )( )
( )

ˆ
i

i

i iL k

iL k

r k

k
r k

∈

∈

Λ

=
Λ

∑

∑

α

α
L

L

 (1) 

 

where, Λ is a triangular function with maximum at 
1

2
: 

 

( )

1

2

1

2

0

1 1

0

x x

x x x

otherwise

 ≤ ≤


Λ = − < ≤



 

Since the set of maximal isothetic segments for a grid 
cell is never empty, the isothetic tangent is always defined 
for a given point. Though the Equation (1) estimates slope 
of the tangent at each grid centre that lies between the 
isothetic covers, it can be extended to include any real 
points on the line joining the grid centres. Isothetic covers 
and the corresponding maximal isothetic segments of a 
disk are illustrated in Fig. 1. 

Isothetically Convex 

An object is said to be isothetically convex if the 
convex hull of its isothetic cover does not contain any 
grid points which are not part of the cover. Since our 
tangent estimator is based on grid centres, we adapted 
the definition of isothetic convexity so that it is based on 
grid centres. Object S is isothetically convex if the 
convex hull of the grid centres of the isothetic cover does 
not contain any grid centres which are not part of the 
isothetic cover. It can be seen that convexity of grid 
centres of an isothetic cover is same as the convexity of 
the grid points of the isothetic cover. In other words, if 
the grid centres of an isothetic cover form a convex set 
then the grid points of the isothetic cover also form a 
convex set. An object, S, is isothetically convex if it 
satisfies the following Equation: 

 

( ) '( )i j

c c

i i

µ I S µ I S

H µ µ
∈ ∈

 
= ∅  

 
∪ ∩ ∪  (2) 

 
where, H (P) is the convex hull of the points set P and I' 
(S) is the complement of the isothetic cover of S. The 
following lemmas relate the isothetic convexity and the 
successive slopes of the maximal isothetic segments 
around an object. 

We use Bi (or Ui) to denote the lower leaning line (or 
the upper leaning line) of ith maximal isothetic segment 
Li and PBi, QBi (or PUi, QUi) to denote the first and the last 
grid centres on Bi (or Ui). 

Lemma 1 

Let the slopes of maximal isothetic segments, L1, 
L2, ..., Lm defined for object S be non-decreasing. 
Then we have 

1

 
BBi i

pQx x
+

≤ in the lower half of the 

isothetic covers where 
Bi

Qx and 
1Bi

p
x

+

are the x- 

coordinates of 
1

 and
i i

B B
Q P

+

. 

Proof 

Let Bi and Bi+1 be the lower leaning lines of Li and 
Li+1 and V be the intersection point between the two. 
Since the lower leaning lines bounds grid centres in 
the lower half of the isothetic covers from below and 
have non decreasing slopes, we have 

1BBi i
v PQx x x

+

≤ ≤ . 
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 (a) (b) 
 
Fig. 1: (a) Outer isothetic cover and inner isothetic of a disk, S, of radius 20 and grid size 4 (b) Maximal isothetic straight segments 

are shown as the bounding boxes of its grid centres 
 

Lemma 2 

Let ( )I S and ( )I S be the isothetic covers of object S 

and L1, L2, ..., Lm be the maximal isothetic segments 
defined in the lower half of the region ( ) ( )I S I S− with 

non-decreasing slope. If 
,

k k
k m nL I= , then there is no grid 

centres between the maximal isothetic segments, Li and 
Li+1 and the polygonal curve π with successive edges: Bi, 
the line through 

1
1

, and and
i i

B B i
Q P B

+
+

. 

Proof 

Since Bi and Bi+1 are lower leaning lines of maximal 
isothetic segments, all the grid centres in ( )I S lie above 

them. Hence, showing that there are no grid centres in the 
triangle formed by the vertices: 

1

,

i i
B B

Q P
+

and V is enough 

to show that the polygonal curve π bounds grid centres in 
( )I S from below. They are illustrated in Fig. 2. 

If there is a grid centre V ' in the triangle, then it is 
possible to construct isothetic straight segment L' such 
that V ' is on its lower leaning line and the intersection of 
L' and Li or L' and Li+1 is not empty. Thus there exists a 
maximal isothetic segment between Li and Li+1 with the 
grid centre V ' on its lower leaning line, contradicting the 
fact that Li and Li+1 are consecutive. 

Theorem 1 

S is isothetically convex if and only if the slopes of 
its maximal isothetic segments arranged in an anti-
clockwise order (clockwise order), are non decreasing 
(non increasing). 

Proof 

We will consider only the lower half of the isothetic 
covers in the proof and the result can be easily extended 
to the upper half of the isothetic cover. 

L1, L2,...,Lm are the maximal isothetic segments defined 
for the lower half of the region ( ) ( )I S I S−  and let us 

assume that isothetic segments have non decreasing slopes. 
π is a polygonal curve made up of the vertices of the lower 
envelope of the convex hull of L1 after 

1
B
P , point of 

intersection between Bi and Bi+1 where I = 2,3,...,m−1 and 
vertices of the lower envelope of the convex hull of Lm 

before 
m

B
Q . From Lemma 1, we have 

1 
 

Bi Bi
Q Px x

+

≤ for any 

consecutive Li and Li+1. 
1i i

B B
Q P

+

=
is a vertex of 

polygonal curve π if 
1B Bi i

Q P
x x

+

= . In case of 
1

B B
i i

Q P
x x

+

< , 

slope s of the line segment joining Li and Li+1 strictly lies 
between the slope of  Li and Li+1. From Lemma 2, we know 
that there are no grid centres in ( ) I S which is below line 

segment 
1

 
i

i

B
B

Q P
+

. In this case, we replace the vertex of π 

which is the intersection point between Bi and Bi+1 with 
vertices 

i
B

Q  and 
1i

B
P

+

. Hence, updated π is same as the 

lower envelope of the convex hull of the grid centres in 
( ) I S  and there is no grid centre between the isothetic 

cover ( ) I S  and the polygonal curve π. 

Let assume that the object S is isothetically convex. Let 
Li and Li+1 be any two consecutive maximal isothetic 
segments with decreasing slope. Then, there is atleast one 
grid centre between the line joining 

iB
P  and 

1i
B

Q
+

 and 

lower leaning lines of Li and Li+1. Otherwise, 
iB

P  and 
1i

B
Q

+

 

belong to the same isothetic segment, contradicting the fact 
that Li and Li+1 are consecutive maximal isothetic segments. 

Theorem 2  

An object is isothetically convex if and only if the 
isothetic tangents defined around the object in an anti-
clockwise order (or clockwise order) have non 
decreasing(non-increasing) slopes. 

( )I S  µ

 

( )I S  
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Fig. 2: Illustration of lemma 2 
 
Proof 

For the proof, it is sufficient to show that the isothetic 
tangents defined around the object have non decreasing 
slopes whenever the slopes of the maximal isothetic 
segments are non-decreasing. Since triangular function 
Λ is semi-differentiable at 1/2 and we are traversing 
around the object in only one direction, we will discuss 
only the right derivative of ( )ˆ kα  here. 

Right derivative of the isothetic tangent w.r.t k can be 
expressed as: 
 

( )

( )
( )( ) ( )( ) ( )( ) ( )( )

( )( )( )
2

 

ˆ

j i i j

i ji j

i j

jj

r k r k r k r k

l l

k

r k

α α

α

+ +

<

+

 Λ ∂ Λ Λ ∂ Λ
 − −
 
 ∂ =

Λ

∑

∑

 

 
Let us assume that slopes of the maximal isothetic 

segments are non-decreasing. Then, we have to show 
that ∂+αˆ (k) is non negative. Since αi-αj is less than or 
equal to 0 for any pair of isothetic segments, Li and Lj 
with i < j, we have to show that: 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
0 for

j i i j

j i

i j

r k r k r k r k
m k n

l l

+ +
Λ ∂ Λ Λ ∂ Λ

− ≤ < <   (4) 

 
Depending upon the position of µk in Li and Lj, we 

have the following cases: 

Case 1 

If ri (k) ≤ 1/2 and rj (k) ≤ 1/2 (or ri (k) > 1/2 and rj (k) > 
1/2), then ∂+Λ (ri (k)) = ∂+Λ (rj(k)) = 1 (or -1). The Equation 

(4) becomes
 

 

i j i j

i j i j

m m n n
or

l l l l

− − 
  
 

which is less than 0.  

Case 2 

If ri (k)> 1/2 and rj (k) ≤ 1/2 (or ri (k) ≤ 1/2 and rj (k) 
> 1/2), then ∂+Λ(ri (k)) = −1(or 1), ∂+Λ(rj (k)) = 1(or 

−1). The Equation (4) becomes 
 

 

j i i j

i j i j

m n m n
or

l l l l

− − 
  
 

 

which is less than 0. Thus the isothetic tangents around 
the object have non decreasing slopes if the object is 
isothetically convex. 

Convergence of Isothetic Tangent Estimator 

One of the desirable properties of a discrete tangent 
estimator is the asymptotic convergence. In this section, 

we show that isothetic tangent direction converges 
toward the real tangent direction as the grid size gets 
smaller. Though the result is shown only for convex 
shape, it is applicable to concave shape as well. 

The length of a maximal isothetic segment depends on 
the local curvature of the object where the segment is 
defined. The following lemma relates the length of maximal 
isothetic segments with the radius of a circular disk. 

Theorem 3 

The upper bound for the lengths of isothetic segments 
that can be defined for a circular disk with radius r is 

1

1 2

22 2.2 rg
 
 
 

where g is the size of the grid. 

Proof 

The thickness of an isothetic segment cannot be 

greater than 
1

22 g . So the thickness of strip for the 
maximum length isothetic segment which contains the 

circle cannot be greater than 
1

22 g . The upper bound for 
the isothetic segment is obtained by substituting the 

value of ordinate in circle equation with 
1

22r g− . Thus 

the maximum length is less than 

1

1 2

22 2.2 rg
 
 
 

. 

Theorem 4  

Let K be a point on the boundary of convex object S. 
Then the slope of any maximal isothetic segment that 
passed through the grid square that contains K 

approaches the slope of the tangent at K as the grid size g 
tends toward zero. 

Proof 

Let L be a maximal isothotic segment with slope α 

that cover K. Let also assume that K is the origin and L is 
located in the first octant. Let d be the abscissa of the 
grid centre that is located in the right end of the segment 
and M be a point on the boundary of S with x-coordinate 
xM = d. And f (x) be the function which describes the 
boundary of S. 

If h is the vertical thickness of the isothetic segment 
L, then the maximum distance of K or M from the 
leaning lines of L is h + g/2. Then we have: 

i
B

Q  

1i
B
P

+

 

'

O
V  

V  



Yumnam Surajkanta and Shyamosree Pal / Journal of Computer Science 2020, 16 (4): 467.478 

DOI: 10.3844/jcssp.2020.467.478 

 

472 

( )
2 2

g g
d h f d d hα α− − ≤ ≤ + +  (5) 

 
Using the taylor expansion, we can express f (d) as: 

 
( ) ( ) ( )2' 0f d f d O d= +  (6) 

 
From Equation (5) and (6), we have: 

 

( ) ( )

( ) ( )

2
' 0

2 2

/ 2
' 0

g g
d h f d O d d h

h g
or f O d

d

α α

α

− − ≤ + ≤ + +

+
= ± +

  (7) 

 
Assuming the boundary countour is non linear, it can 

be approximated locally by a circle of radius r. Therefore 
d can be written as some constant fraction of 

( )2 2 . 2 /g r g
. And as 0 < h ≤ 2g, we can rewrite 

( )
/ 2

 as 

2. 2 /

h g Cg

d g r g

+

where C is some constant. 

Therefore,  
/ 2h g

d

+
 approaches zero as g tends toward 

zero. Similarly, O(d) can be rewritten as 
1

1 2

22.2O rg

 
  
  
  
 

which also approaches zero as g tends 

toward zero. Hence Limg→0α = f ′(0). 
The linear part of the boundary can also be proved 

in the similar fashion by ignoring the second and the 
higher degree terms in the taylor expansion. Thus the 
slope of the maximal isothetic segment tends toward 
the real slope of the curve at point K as the grid size 
tends toward zero. 

Theorem 4  

Let K be a point on the boundary of convex object S. 
Then the slope of isothetic tangent estimated at the 
centre of grid square that contains K approaches the 
slope of the real tangent at K as the grid size g tends 
toward zero. 

Proof 

Let α(K) be the slope of the real tangent at K and 
c

k
µ be the centre of the grid cell that contains K. ( )kµL  

be the set of maximal isothetic segments that pass 
through the grid cell that contains K. Then the slope of 
the isothetic tangent estimated at c

k
µ  is given as: 

 

( )
( )( )( )

( )( )( )

ˆ
k

k

i ii

ii

r K

K
r K

µ

µ

α

α

∈

∈

Λ

=
Λ

∑

∑

L

L

 

Since ( )kµL is the set of isothetic segments that pass 

through the grid cell that contains K, the slope of every 
maximal isothetic segment in ( )kµL  tends toward α(K) 

as the grid size approaches zero. Since ( )ˆ Kα  is a linear 

combination of slopes in ( )kµL and the coefficients of 

slopes sum to one, the direction of the isothetic tangent 
at c

k
µ  tends toward α(K) as the grid size approaches zero. 

Complexity of Isothetic Tangent Estimator 

The computation of isothetic tangent is based on 
finding the next maximal isothetic segment from the 
preceding maximal segment in incremental updates. If 

,

k k
m nk

L I= is the current maximal isothetic segment, 

then the next maximal isothetic segment is the one which 
contains the centre of grid cell 

1k
n

+

μ and obtained from Lk 

with least amount of operation. The Algorithm 1 
computes next maximal isothetic segment 

1 1
,1 k k

m nk
L I

+ +
+
= from current segment 

,

k k
m nk

L I= . 

The algorithm finds the next maximal isothetic 
segment by deleting from the beginning of the current 
segment until it is possible to include the next grid 
centre in the other end. Then the algorithm extends 
the end of the segment until it is no longer possible to 
include the next grid centre and remain isothetically 
straight. The complexity of the algorithm depends on 
the deletion and the addition operations of a grid 
centre to an isothetically straight segment. We show 
in the following paragraphs that it is possible to add 
or delete a grid centre from an isothetically straight 
segment in constant time. 
 

Algorithm 1 compute_next maximal_isothetic_segment 
(mk; nk) 
1: nk+1 = nk +1; mk+1 = mk +1 
2: while (

1 1
,

k k
m n
I

+ +

is not isothetically straight) do 

3: mk +1 = mk+1+1 
4: end while 
5: while (

1 1
,

k k
m n
I

+ +
 is isothetically straight) do 

6:  nk+1 = nk+1 +1 
7: end while 
8: nk+1←nk+1-1 
9: Lk+1←

1 1
,

k k
m n
I

+ +

 

10: return Lk+1 
 

Addition of a grid centre to an isothetically straight 
segment is based on the incremental Reveilles’s 
algorithm (Debled-Rennesson and Reveilles, 1995). 
Whether it is possible to extend the segment Ii, j with 
properties (M, N, PU, QU, PB, QB, η) to the next grid 
centre, 

1

c

j
µ

+
, depends on the remainder of the 
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polynomal 
 1  1

/ /  c c
j j

µ µ
R Mx g Ny g η

+ +

= − − . Properties of 

the new isothetically straight segments (M’, N
’, P

’

U, 
Q

’

U, P
’

B, Q
’

B, η
’) are updated depending on the 

following cases: 
 
• If 0 ≤ R ≤|M| + |N|−1, then Ii,j+1 is an isothetically 

straight segment and the properties of the segment 
remain same as Ii,j.  

• If R = −1, then Ii,j+1 is isothetically straight and 
properties are updated as 

'
u u

P P= ,
1

'
c

u j
Q

+
= μ ,

' '
'

u u
Q pM y y= − ,

' '
'

u u
Q pN x x= − ,

' '
B

B B
P Q Q= = and 

1 1

' / ' /c c
j j

M x g N y g
+ +

= −
μμ

η . 

• If R = |M| + |N|, then Ii,j+1 is isothetically straight and 
properties are updated as '  

B B
P P= , 

1
'  

c

B j
Q µ

+
= , 

'
BB
PQM y y= − , '  

BB
PQN x x= − , ' '

U U U
P Q Q= =  and 

' '
' / ' / .
U U

P P
M x g N y g= −η  

• If R ≤ -2 or R > |M| + |N|, then it it not possible to 

extend the segment to grid centre 
1

c

j
µ

+
. 

 

 
(a) 

 

 
(b) 

 

Fig. 3:  (a) Grid centres of isothetic straight segment Ii,j before the deletion of 
c

i
µ . (b) Updated isothetic straight segment after the 

deletion of 
c

i
µ . 

 

Table 1: Updation of isothetic straight segment after a deletion 
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Feschet has shown in their article (Feschet and 
Tougne, 1999) that update of a digital straight line after 
a deletion can be done in constant time. Figure 3 
illustrates the deletion of a grid centre, µi, from the 
isothetic segment Ii,j. Deletion of the starting grid 
centre causes an update in the properties of the isothetic 
segment only if the grid centre is on one of the leaning 
lines. As it can be seen from Fig. 3, grid centre 

( ),c c

i i
µ µ

A x y= + −g g  can be added to Ii+1,j without 

causing an update in the properties of the segment. The 
properties of the new segment, Ii+1,j are derived from A. 
The Table 1 summarise the update after a deletion. 

Since the update to the isothetically straight segment 
can be done in constant time, the computation required 
for finding all the maximal isothetic segments is linear to 
the number of grid cells between the isothetic covers. 
Thus the complexity of isothetic tangent estimator is 
linear to the number of grid cells between the isothetic 
covers of the object. 

Results 

Isothetic tangent estimator is implemented in C and is 
evaluated against various digital objects using different 
grid sizes. Figure 4 shows the maximal isothetic 
segments defined for a disk of radius 20 and grid sizes g 
= 4 and g = 1. It can be observed that as the grid size 
reduces, the average number of maximal isothetic 
segments which pass through a given cell increases and 
the accuracy of the tangent estimation at a grid centre 
depends on the number of isothetic segments passing 
through the grid cell. 

Figure 5a shows the graph of theoretical tangents 
directions of a disk plotted against the directions of 
isothetic tangents both expressed in polar coordinates. 
It can be seen that both of them increase monotonically 
with the direction of the position vectors of the points 

and maximum deviations of isothetical tangents from 
theoretical ones occur at multiples of π/2. This is 
expected as the regions have the least density of 
isothetic segments per grid cells. Figure 5b shows the 
errors in tangent estimations for g = 1, 2 and 4. It can 
be observed that errors in tangent estimations decrease 
with reduction in grid size and it agrees well with the 
theoretical prediction that isothetic tangents converge 
toward the directions of the real tangent as grid size 
tends toward zero. 

Figure 6a shows a disk with eroded edge, 
simulating a disk distorted by noise and Figure 6b 
shows the abstraction of the distorted edge with 
isothetic covers. Dependence of Isothetic Tangent 
Estimator on isothetic covers makes it less vulnerable 
to distortion compared to other tangent estimators 
which work directly with pixels. Figure 7 shows the 
plot of isothetic tangents for the distorted disk against 
the theoretical tangents of a circle and the second 
figure compares the errors in tangent estimations 
between the distorted disk and the undistorted disk. 

It can be observed that estimated tangents for both 
disks are more or less same albeit with a bit more 
variations in the distorted disk. 

Table 2 shows the errors in tangents estimation for some 
common curves using our method and the estimation of 
tangents by approximating curves with linear isothetic 
segments. The first column contains the test images using 
which the comparisons are done and the second column 
contains the grid size using which the isothetic covers are 
constructed for the comparison test. The three columns 
under each of the methods contain the maximal error, 
mean of the errors and the measure of the spread or the 
standard deviation of the errors for each test run. Several 
observations can be made from the values in Table 2. It 
can be observed that the maximal error and the spread of 
the errors generally increased with the grid size.

 

Table 2:  Errors in discrete tangent estimations for (a) Isothetic Tangent Estimators (b) Estimation of tangents by approximating 

curves with linear segments 

  Isothetic Tangents  Linear Approximations  

  ------------------------------------------------- --------------------------------------------------- 

 Grid Size Max error Mean Std. Deviation Max error Mean Std. Deviation 

Test Image  

 5 6.01 0.014 1.75 16.16 3.07 5.3 

 10 9.2 0.045 3.6 18.93 4.78 9.26 

 20 16.9 0.139 6.85 53.06 9.25 18.93 

 40 24.69 0.326 11.39 42.53 12.97 16.45 

 5 14.85 0.052 3.00 24.06 2.87 6.13 

 10 18.71 0.344 4.46 29.66 2.10 9.34 

 20 33.98 1.079 8.62 48.29 3.17 15.02 

 40 53.43 5.05 17.61 56.61 3.05 20.76 

 5 8.26 3.13 2.06 21.62 2.97 6.61 

 10 20.04 0.069 6.03 31.59 4.69 10.54 

 20 29.05 0.056 10.55 43.97 4.73 16.76 

40 61.51 1.047 18.85 56.29 5.65 17.93 
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 (a) (b) 

 
Fig. 4: Maximal isothetic segments for a disk of radius 20 and grid size (a) g = 4 (b) g = 2. 

 

 
 (a) 
 

 
 (b) 
 
Fig. 5:  (a) Graph of theoretical tangents directions and isothetic tangents directions both expressed in polar coordinates for a disk. 

(b) Plot of errors in isothetic tangent estimation expressed in polar coordinates for a disk of radius 20. 

Theoretical slope 
 

Isothetic tangent estimator 

S
lo
p
e 
in
 r
ad
ia
n
s 

6 
 

5.5 
 

5 
 

4.5 
 

4 
 

3.5 
 

3 
 

2.5 
 

2 
 

1.5 
 

1 
 

0.5 
 

0 
2    2.5     3    3.5    4    4.5     5    5.5     6    6.5    7     7.5 

0.17 

 
0.087 

 
0.0 

 
-0.087 

 
-0.17 

E
rr
o
r 

g=1 

g=2 

g=4 

 

2.96       3.32       2.09       3.66        4.36       4.47        5.06 

θ 

θ 



Yumnam Surajkanta and Shyamosree Pal / Journal of Computer Science 2020, 16 (4): 467.478 

DOI: 10.3844/jcssp.2020.467.478 

 

476 

 
 (a) (b) 

 
Fig. 6: (a) Disk with eroded edge simulating a distorted disk (b) Abstraction of the edge by isothetic covers 

 

 
(a) 

 

 
(b) 

 
Fig. 7:  (a) Graph of theoretical slopes of a disk and slopes estimated by Isothetic Tangent Estimators for the distorted disk shown in 

Fig. 6a. (b) Plot of errors in estimated tangents for distorted disk and undistorted disk. 
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However, for the linear approximations, error in 
measurement depends on the position of the line 
segments approximating the curves and the increase in 
errors with the increase in grid size is not always true 
while the errors strictly increase with the grid size in 
isothetic tangent estimations. Another observation is 
that the isothetic tangent estimation has lower errors 
in measurements than the linear approximation for a 
given grid size and in both the methods, errors in 
tangent estimations increased with the increase in 
curvature of the test object. 

Conclusion 

We have presented a method for tangent estimation 
based on the isothetic covers of objects. Isothetic covers 
provide a simple yet useful abstraction of an object and 
reduce the number of points we have to deal with by a 
factor of grid size. Information content and resolution 
of isothetic covers depend on the grid size and can be 
adjusted depending on the application requirements. 
Abstraction of edges with isothetic covers makes our 
tangent estimator robust in the presence of noise. We 
use maximal isothetic segments to estimate the local 
properties of an object and isothetic tangents are given 
as the weighted linear combination of maximal 
isothetic segments. We have shown that isothetic 
tangent estimator is multi-grid convergent and 
successive isothetic tangents directions are related to the 
convexity of the objects.  

We have proved that complexity of isothetic tangent 
estimator depends linearly on the number of grid points 
of the isothetic cover and shown that experimental 
results agree well with the theoretical predictions. 

Tangent estimation of a discrete curve has a variety 
of applications and one particular application of discrete 
tangent estimation is the curvature estimation of discrete 
objects. Geometrical primitives like circles, ellipses etc. 
have distinct curvature patterns and it can be used in 
object recognition. For the future work, we would like to 
explore the digital geometry problem of shape 
determination using curvature estimation based on 
isothetic segments. 
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