

© 2020 Ranjna Jain and Neelam Duhan. This open access article is distributed under a Creative Commons Attribution (CC-

BY) 3.0 license.

Journal of Computer Science

Original Research Paper

OntoJob Query Processor: An Ontology Driven Query

Processing Method in Jobology Information System

Ranjna Jain and Neelam Duhan

Department of Computer Engineering, J.C. Bose University of Science and Technology, YMCA, India

Article history

Received: 10-05-2019

Revised: 12-12-2019

Accepted: 03-06-2020

Corresponding Author:

Ranjna Jain

Department of Computer

Engineering, J.C. Bose

University of Science and

Technology, YMCA, India
Email: ranjna.gupta@gmail.com

Abstract: There are a large numbers of jobsites/job portals that provide

information about employment on the internet. These websites facilitate

employers to post job lists. Job seekers go through those job posts and

apply for the same. But, due to the availability of dozens of job portals, job

seekers are unable to concentrate on the efforts to see the best outcomes.

The overall objective of the paper is to develop a prototype system that

provides a platform for the job seeker to access all the job lists from various

job sites on a single click, at the same place with respect to the fired query.

For this purpose, an ontology driven information system named as

Jobology is discussed that integrates various Jobboards using the approach

of ontology alignment. The system takes user’s query in keyword format

and in response generates a set of SPARQL queries. These SPARQL

queries are then fired on their respective ontologies and in turn they yield

the results. These results are merged and finally presented to user. As a

contribution of this paper, we have proposed an “OntoJob” Query

processor that takes job seeker query in keyword format and in turn

generates a set of SPARQL queries with respect to every jobboard. The

proposed approach is implemented in JAVA using OWLAPI on window

platform. To evaluate the proposed work, comparison analysis between

Jobboards, proposed ontologies and integrated system was performed. The

results came out to be very satisfactory.

Keywords: Ontology, Semantic Web, Data Heterogeneity, Query

Processing, SPARQL

Introduction

In today’s time, internet (Brin and Page, 1998) is the

biggest data source used by job seekers for job search. It

provides a number of jobboard sites where job-seeker

enrolls himself with his expertise and qualification and

gets job related information according to his

requirements. The internet is considered as an excellent

tool for locating the job but job-seeker faces a number of

challenges while handling various accounts on the

respective jobboard sites such as visiting each site

individually to look for opportunity and updating same

data on each registered site. To deal with these issues,

data integration seems to be a very convenient solution.

Data integration provides the ability to manipulate data

transparently across multiple data sources. But, the

biggest challenge that comes across data integration is

data heterogeneity. As data sources can be

heterogeneous in syntax, schema, or semantics, thus

making data interoperation a difficult task (Jain et al.,

2018a). Syntactic heterogeneity is caused by the use of

different models or languages. Schematic heterogeneity

results from structural differences and Semantic

heterogeneity is caused by different meanings or

interpretations of data in various contexts. To achieve

data integration, the issues posed by data heterogeneity

need to be eliminated. To handle semantic heterogeneity,

ontology plays a very important role in semantic web.

Ontology (Jain et al., 2018b) is considered as a backbone

of the semantic web (Berners-Lee et al., 2006). It is an

explicit specification of a domain which gives a formal

defined meaning to the terms used in annotation

associated with data. Ontologies have been realized as

the key knowledge representation technology for shaping

and exploiting information for the effective management

and evolution of semantic web.

In semantic web, it is the general perception that in

order to define a domain, there exists a single ontology

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

703

which is used by different data sources. But, in reality, it

is just opposite of what is assumed. For instance, today

there are already more than hundred ontologies available

for public access in only DAML (Mcguinness et al.,

2002) ontology library and with the increasing number

of user participation in semantic web, this number will

increase significantly in such kinds of ontology

libraries. This will ultimately create issue during query

processing. The problems which will occur in this

situation are discussed as below:

1. Since the developer is using its own ontology to

represent its data, establishing link between two data

sources to handle complex queries will become a

challenge because the search system would not be

able to communicate with each other due to different

ontology as vocabulary they are using

2. Conventional query processing techniques cannot be

applied on these structured data as they are unaware

of the annotation used by the data

3. Users generally fire query in a Natural Language,

handling of which on a structured data is a major

challenge

4. Ontologies are defined at conceptual level and

normally, they do not contain instances. Rather they

are used as annotation. User gives a query at an

instance level and not at conceptual level. Mapping

instances with its respective concepts and then

further plan a query in SPARQL (O'Connor and

Das, 2007) format is a big challenge

Therefore, looking at the rapidly evolving

technological environment, “OntoJob” a query

processing method, is being proposed in this paper that

describes the working of retrieving relevant information

corresponding to the query from the N number of data

sources at one place. The proposed method is divided

into two phases: First phase covers the identifying

concepts of the instances and the Second phase covers

generating SPARQL query to be fired on ontologies to

retrieve relevant results. The paper has been organized in

six sections afterwards, wherein section 2 describes the

preliminaries required before starting the work. Section 3

describes the related work that has been done in this

domain. Section 4 describes the proposed work

“ONTOJOB” query processor which explains the

architecture and formation of SPARQL queries. Section

5 shows the implementation of the proposed work

followed by performance evaluation and at last; section 6

concludes the paper with some light on future work.

Preliminaries

This section describes the indexes and various

datasets maintained by the proposed system which are

used during query processing.

(a) Indexes

The proposed system aligns selected ontologies and

with respect to those maintains three global indexes

named as Global Concept Index (GCI), Global Object

Property Index (GOPI) and Global Data Property Index

(GDPI) using following steps:

i. First it takes n number of ontologies as an input

which are to be aligned concurrently

ii. then, it performs semantic matching on concepts,

data properties and object properties

iii. And develops knowledge base of synonym of concepts

and properties to fasten the matching process

iv. And at last it finally builds Global Concept Index,

Global Data Property Index, Global Object Property

Index which stores all information of the aligned

ontologies and also maps them with their local

ontologies to which they actually belong, thereby

supporting backward engineering

(b) Datasets

A repository of different datasets is maintained which

plays a very important role during query processing

because ontologies are normally defined at conceptual

level. User gives query in keyword or in natural

language form. These dataset helps in finding to which

concept a keyword may belong; which ultimately helps

in planning query. For example; if a user is finding

‘java’ related jobs and he enters ‘java jobs’ then

looking at the skill dataset, it can be identified that java

is a skill and therefore this would help in understanding

that user is looking for job on the basis of skill named

as ‘Java’. In the same way, if the user is looking for

“Java, Delhi”, then location dataset would identify that

Delhi is a location and thus makes a high probability of

belongingness to Indlocation concept as defined in

Table 1, which would ultimately help in planning a

query in SPARQL format. In this work, following

datasets are maintained for finding the context of the

keywords of the query given by user.

These datasets maintain a list of their respective data.

They have built by extracting relevant data from various

jobboard sites. With the recognition of new data, it gets

updated in its corresponding dataset.

Table 1: List of dataset

S. No. Dataset Description

1. Skill dataset List of skillsets.

2. Indlocation dataset List of locations.

3. Salary dataset List of salary packages from

 minimum to maximum range.

4. Experience dataset List of experiences in terms of

 years a job can ask for.

5. Designation dataset List of job titles.

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

704

Literature Background

In the recent past, several ontology-based approaches

have been proposed. This literature work illustrates some

of the query processing methods proposed by researchers

by using ontologies.

Sander et al. (2014) proposed Ontology based

Translation of natural Queries to SPARQL where it

interprets natural language input under consideration of

domain specific concepts, individuals, relations and

restrictions in the ontology, as well as additional

knowledge e.g., keywords, synonyms etc. which are

stored in a Simple Knowledge Organization System

(SKOS) lexicon. After the interpretation or extraction of

required information to parse a Natural Language query

successfully, the input is mapped to the predefined

SPARQL Inferencing Notation (SPIN) rules which

provide the skeleton for the required SPARQL query.

Delbru et al. (2011) has examines the shift from the

traditional web document model to a web data object

(entity) model and has studies the challenges faced in

implementing a scalable and high performance system

for searching semi-structured data objects over a large

heterogeneous and decentralized infrastructure. Towards

this goal, they have defined an entity retrieval model and

developed methodologies for supporting this model and

show how to achieve a high performance entity retrieval

system introducing an indexing methodology for semi--

structured data which offered a good compromise

between query expressiveness, query processing and

index maintenance compared to other approaches. They

have address high performance by optimization of the

index data structure using appropriate compression

techniques. Finally, they have demonstrate that the

resulting system could index billions of data objects and

provide keyword based as well as more advanced search

interfaces for retrieving relevant data objects in

subsecond time. Weiand (2011) has developed KWQL; a

keyword based querying for the social semantic search.

Zhou et al. (2007) explored a novel approach of adapting

keywords to querying the semantic web. This approach

automatically translates keyword queries into formal

logic queries so that end users can use familiar keywords

to perform semantic search. A prototype system named

‘SPARK’ has been implemented in light of this

approach. Given a keyword query, SPARK outputs a

ranked list of SPARQL queries as the translation result.

In the methods for (Shekarpour, 2011) automatically

transforming keyword based queries into SPARQL has

been suggested. Also work has been done in improving

those methods in order to apply them on (a large subset

of) the Linked Data Web. A heuristic method has been

proposed for generating SPARQL queries out of

arbitrary number of keywords. Yahya et al. (2012) has

proposed Natural Language questions for the web of

data. They identified that structured query language is a

difficult task even for skill person and thus presented a

methodology for translating natural language questions

into structured SPARQL queries over linked data sources.

They proposed a framework DEep Answers for maNy

Naturally Asked question (DEANNA), that composes a

full suite of components for question decomposition,

mapping constituents into the semantic concept space,

generating alternative candidate mappings and computing

a coherent mapping of all constituents into a set of

SPARQL triple patterns that can be directly executed on

one or more linked data sources.

“ONTOJOB” Query Processor: Query

Processing in Aligned Ontologies

This section describes ONTOJOB, architecture for

query processing in global information systems as

shown in Fig. 1 motivated by the problems discussed

in the introduction section.

At an abstract level, the process starts with

tokenizing the query given by user which resides at

the token buffer. Query is entered by the user in

keyword form and keywords are separated by the

delimiter. Once the tokenization is done, tokenizer

sends signal to token mapper to find if token belongs

to any dataset and respective information gets stored

in Token_Dataset Table.

At the back end, dataset_concept mapping table is

maintained which contains a list designating which

concept is mapped with which dataset. For instance, skill

dataset contains a list of keyskills which can be the

instance of skill concept. Once this is done, token

mapper sends the signal to token_concept mapper to map

the tokens with their respective concepts. For this,

token_concept mapper refers token_dataset table and

concept_dataset table and generates instance_concept

table. Once, it is found to which concept a token

belongs; next task is to find the relation between the

classes and for this, Token_Concept mapper sends the

signal to property finder to find the relation and the

ontologies in which those concepts and property exist.

The generated information gets stored in the property

table. Once this is done, property finder sends signal to

property transformer which creates an inverse property

table by placing all the properties at one place

corresponding to the each ontology which would be

helpful in planning a query with respect to selected

ontologies. After this, inverse query transformer sends

signal to query generator process to take input from

inverse property table and generate individual

SPARQL queries for selected ontologies and then fires

them to the respective ontologies which in turn

generate results. At last, Result merger merges all the

results and display it to the user at one place.

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

705

Fig. 1: Architecture of ONTOJOB query processor

The schema of various data structures used during

query processing is shown in Table 2.

The schema of data structures used during query

processing is defined as follows.

Token Buffer

This buffer contains the tokens generated by

tokenizer. The descriptions of various fields maintained

in this table are described in Table 3.

Token_Dataset Table

Token_dataset process finds whether a token belongs

to any dataset maintained in dataset repository and its

corresponding information gets stored in Token_Dataset

table. The descriptions of various fields maintained in

this table are described in Table 4.

Concept_Dataset Table

This table stores the mapping information between

concept and dataset. For instance, skill dataset is mapped

with skill concept. The descriptions of various fields

maintained in this table are described in Table 5.

Instance_Concept Table

This table stores the mapping information between

token and concept. For instance, if a token ‘PHP’

belongs to skill dataset and skill dataset is mapped with

skill concept then PHP is considered as instance of skill

Results
Results

interface

Results

merger
Query

(keyword, location,

salary, experience)

Tokenizer

Keywords

Result Result Result

Token

buffer

Dataset
repository

Global

concept
indexer

1. Map
token with

dataset

Token

mapper

SPARQL

query
SPARQL

query

SPARQL

query

Concept_dataset

mapper Token_dataset
table

SPARQL query

generator

6. Marge

results

5. Generate query

2. Map

token with

concepts

Concept_dataset
table

Token_concept

mapper
Inverted

property

table

Instance_concept

table Property

table

transformer 4. Transform table

5. Find property

Property

finder

Property

table

Global object

property indexer

Global data

property indexer

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

706

concept. The descriptions of various fields maintained in this table are described in Table 6.

Table 2: Schema of various data structures used in query processor

Table 3: Description of token buffer

Field Description

TID Unique id of token t in the query q.

TN token name in the query q

Table 4: Description of Token_Dataset table

Field Description

TID Unique id of token t in the query q.

TN Token name in the query q.

DSID Unique dataset id collected in dataset repository.

Table 5: Description of Concept_Dataset Table

Field Description

GCID Global concept id of the concept maintained in

 global concept indexer (Jain et al., 2017).

GCN Global concept name of the concept maintained

 in global concept indexer.

DSID Unique dataset id collected in dataset repository.

DSN Name of the dataset stored in dataset repository.

Table 6: Description of Instance_Concept Table

Field Description

GCID Global concept id of the concept

 maintained in global concept indexer.

GCN Global concept name of the concept

 maintained in global concept indexer.

TID Unique id of token t in the query q.

TN Token name in the query q.

Table 7: Description of Data Property Table

Field Description

GPID Global concept id of the concept maintained in

 global concept indexer.

Domain Local concept name of the concept maintained

 in global data property table.

Range Local concept name of the concept (if object

 property) or data type (if data property)

 maintained in global object/data

 property table.

OID Ontology ID.

LPID Local property id of the property.

Domain Local concept name of the concept maintained

 in its respective local property table.

Range Local concept name (if object property) or data

 type (if data property) maintained in its

 respective local property table.

Table 8: Description of property table

Field Description

OID ontology ID.

LPID local property id of the property in its respective

 ontology.

LPN local property name of the property in its

 respective ontology.

Domain Local concept id, global concept id and local

 concept name of domain concept.

Range Local concept id, global concept id and local

 concept name of range concept

 (if object property); data type (if data property)

Token Buffer

TID TN

Token_Dataset Table

TID TN DSID

Concept_dataset Table

GCID DSID DSN

Instance_Concept Table

GCID TID TN

Property Table

GPID
Domain

GCID

Range

(Datatype)

OID

LPID

LPNAME

DOMAIN

RANGE

Inverted Property Table

OID

LPID

LPN

LCID

GCID

LCN

LCID

GCID

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

707

Property Table

Once the tokens get mapped with their respective

concepts, next step is to find the relationship that exists

between the concepts. For this, all the relationships

which are maintained between job concept and identified

concept c are collected from Global Object Property

Indexer and Global Data Property Indexer which in turn

are maintained in Data Property table and Object

Property Table. The descriptions of various fields

maintained in this table are described in Table 7.

Inverted Property Table

This table is an inverted version of Property Table. It

contains the list of properties with respect to individual

ontology which will help in constructing SPARQL

query. The descriptions of various fields maintained in

this table are described in Table 8.

The details of the various modules along with their

working are outlined as below:

Tokenizer

It takes user query keywords as an input and split it

into tokens. The generated tokens are stored in token

buffer. Once the tokens have been generated, it then

sends signal to token mapper for further process.

Token Mapper

Upon getting the signals from tokenizer, it finds to
which dataset the token may belong to. For instance,
if a java as token is received from token buffer and if
that is found in the skill dataset, then at the
generalized level it would be considered as skill.

Dataset_Concept Mapper

 This process maps datasets present in dataset
repository with the concept indexed in GCI. This is a
one- time process in which concepts are already
mapped with the datasets. For instance, skill concept
is mapped with skill dataset; location concept is
mapped with location dataset and so on.

Token_Concept Mapper

This process maps tokens with their respective
concepts by referring token_dataset table which contains
a list of tokens along with the dataset (to which they
belong) and concept_dataset table which holds a list of
concepts mapped with datasets. By joining these two
tables, the resultant table instance_concept table is
generated which contains a list of instances with their
respective concepts.

Property Finder

Once the concept has been identified with respect to
query keywords, token_concept mapper sends a signal to
property finder to find the relation that exists between

job and the concept. Property finder refers to GOBJPI
and GDPI and retrieves the property that exists between
the two concepts (Job and other concept identified from
token_concept mapper) and stores it into the
Dataproperty table (if retrieved from GDPI) and
Objectproperty table (if retrieved from GOBJPI). Along
with this, it retrieves other information such as
ontologies in which this property exists; and domain and
range concepts which would be required during query
planning. Once it is done, it sends transform property
signal to property transformer process.

Property Table Transformer

The data generated from Property Finder process gets

collected in Property Table. In this table, the head of every

row is the property followed by the nodes containing

information about the ontology and local property. This

defines the ontologies in which the property exists. Property

table transformer represents the same information but in

inverted form. This process upon getting the signals from

property finder process creates an inverted property table in

which each row is headed with ontology name followed by

the nodes containing the properties that are identified from

GOBJPI and GDPI with respect to the query. After this, a

signal is sent to a SPARQL_query_generator process. With

this step, writing SPARQL query becomes a simple

process. Once the instances get mapped with their

respective concepts and properties have been identified,

next step is to generate SPARQL query.

In the next section, the process of generation of

SPARQL queries with respect to ontologies is presented.

Generation of SPARQL Queries

This phase generates SPARQL queries with respect

to selected ontologies using Instance_Concept Table.

While generating the SPARQL queries; a number of

things have been taken into consideration for retrieving

better and relevant results for user:

1. Since all Job board results have to be displayed at the

same place to its intended user, the topmost results

should contain all the options given by user at the user

interface. For instance, if a user has given java, nodeJS,

AngularJS as keyword at the user interface, then

system should display all the job posts from different

ontologies which contain all these skills

2. It should also retrieve those job posts which contains

2 keywords followed by job posts with 1 keyword to

provide maximum opportunities

The process of SPARQL Query Generator is shown

in Fig. 2.

It starts working once it gets signal from the inverse

property transformer. It plans to build separate queries

corresponding to the each ontology listed in Inverse

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

708

Property Table. It collects ontology name, property name,

domain and range and constructs separate SPARQL query

with respect to the ontologies. It performs two tasks: First,

builds SPARQL Query using SPARQL Querybuilder

process and second, generates filters that will be appended

to SPARQL query using Filter combination generator.

The process of generating filters using Filter Combination

generator is shown in Fig. 3.

At one side filter combination generator generates all

the combinations of the instances and store them in filter

combination table and on the other side SPARQL

querybuilder builds SPARQL query using inverse

property table.

Once the SPARQL queries have been generated,

these queries are applied on their respective ontologies to

retrieve results from ontologies one by one and stores the

results in their respective result tables. Along with this,

each row of the result table contains the count of filters

taken from filter combination table. For instance, if the

filter_count is of the retrieved jobpost is 4 then this

designates that this job post contains 4 keywords given

by user. This will be required during merging operation.

Once this is done, it sends signal to result merger to

merge the results and present it to the user.

Result Merger

It merges the results upon getting the signal from
query generator. Now the motive is to provide those
jobpost on the top from various job boards which
contains maximum keywords given by user at user
interface. Therefore, looking at the filter_count in each
result table, merging operation is performed. For
instance jobpost containing all the keywords will be
displayed on the top. Now, on the basis of date and time
of job post uploaded, these posts will be displayed at the
interface and presented to user.

Fig. 2: SPARQL query generator

Fig. 3: Filter combination generator

SPARQL Query generator

Token concept table

Inverse property table

Filter combination

generator

Filter combination

Table

SPARQL Querybuilder

SPARQL query store

Token_concept

table

Token_seggregator

Skill combination

generator

Skill filter

Location filter

table

Salary filter

table

Experience

Filter table

Skill combination

table

Filter appender
Filter combination table

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

709

Illustration

Let’s consider an example whose illustration is

shown in Fig. 4 which will help in understanding the

construction of SPARQL query from keyword based

query corresponding to ontologies. Consider a query:

Python, Java, XML and Location: Delhi, Noida

The output of Filter Combination Generator i.e.;

Filter Combination Table and Inverse property table is

given to SPARQL Query builder which yields various

SPARQL queries. The sample of newly generated

SPARQL queries from the above process is shown in

Appendix I. The illustration as explained in Fig. 4 shows

the step by step process of converting keyword based

queries into SPARQL queries. These queries are then

fired over respective ontology independently. The

generated results are then merged by result merger and

finally get available to the user.

Query

Keyword:

Python, Java,
XML

Location: Delhi,
Noida

Tokenizer Toke mapper
DS

repository

Token_Concept Mapper

Token Buffer

TID TN

T1 Python

T2 Java

T3 XML

T4 Delhi

T5 Noida

Token_Dataset Table

TID TN DSID

T1 Python DS1

T2 Java DS1

T3 XML DS1

T4 Delhi DS2

T5 Noida DS2

Concept_Dataset Table

GCID DSID DSN

GC1 DS1 Techskill

GC2 DS2 indlocation

Instance_Concept Table

GCID TID TN

GC1 T1 Python

GC1 T2 Java

GC1 T3 XML

GC2 T4 Delhi

GC2 T5 Noida

Property finder

Object property

table

Property table transformer

Inverse Property

Table

SPARQL query generator

GOP1 GC3 GC1 O1 hasskill O1OP1 O1C1 Job O1C2 Skill O2 hasskill O2OP1 O2C1 Job O2C3 Keyskill O3 hasskillset O3OP1 O3C1 Job O3C2 Keyski

GOP2 GC3 GC2 O1 hasloc O1OP2 O1C1 Job O1C3 Location O2 haslocation O2OP2 O2C1 Job O2C4 Loc O3 hasplace O3OP2 O3C1 Job O3C3 Locati

O1 hasskkill O1OP1 O1C1 Job O1C2 Skill hasloc O1OP2 O1C1 Job O1C3 Location

O2 hasskkill O2OP1 O2C1 Job O2C3 Keyskill haslocation O2OP2 O2C1 Job O2C4 Loc

O3 hasskillset O3OP1 O3C1 Job O3C2 Keyskill hasplace O3OP2 O3C1 Job O3C3 Location

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

710

Fig. 4: Illustration of user query

Implementation of the Proposed Work

To analyze the proposed work, various experiments

have been conducted. The proposed approach has been

implemented in Java Eclipse. For the implementation

of the proposed system, keyword based query is taken

from user interface which retrieves results from ‘n’

number of ontologies and displays the results at the

Instance

Segregator

Skill_Instance Table

SID SN

S1 Python

S2 Java

S3 XML

Location_Instance Table

LID GCN LN

L1 Location Delhi

L2 Location Noida

Token_Concept Table

GCID TID TN

GC1 T1 Python

GC1 T2 Java

GC1 T3 XML

GC2 T4 Delhi

GC2 T5 Noida

Skill

Combination
generator

Skill_Comb Table

SCID GCN Skill_comb

SC1 Skill Python,Java,XML

SC2 Skill Python,Java

SC3 Skill Python,XML

SC4 Skill Java,XML

SC5 Skill Python

SC6 Skill Java

SC8 Skill XML

Concatenation

Filter_combination table

ID Instance_Comb Filter_count

ID1 Skill:Python;Skill:Java;Skill:XML;Location:Delhi 4

ID2 Skill:Python;Skill:Java;Skill:XML;Location:Noida 4

ID3 Skill:Python;Skill:Java;Location:Delhi 3

ID4 Skill:Python;Skill:Java;Location:Noida 3

ID5 Skill:Python;Skill:XML;Location:Delhi 3

ID6 Skill:Python;Skill:XML;Location:Noida 3

ID8 Skill:Java;Skill:XML;Location:Delhi 3

ID8 Skill:Java;Skill:XML;Location:Noida 3

ID9 Skill:Python;Location:Delhi 2

ID10 Skill:Python;Location:Noida 2

ID11 Skill:Java;Location:Delhi 2

ID12 Skill:Java;Location:Noida 2

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

711

same platform. The snapshot shown in Fig. 5 illustrates

the results related to the user query “Java” as keyword

and “Noida” as location.

Performance Evaluation of the Proposed System

To evaluate the Proposed System, the architecture

has been implemented in JDK 1.8 Eclipse framework.

For analysis, three sets of queries as shown in

Table 9 were given to the 20 users. Top 50 posts were

considered as retrieved post and out of those, top 10

posts were used for making decision. The comparative

analysis of Precision P, P’, P’’ for the queries

belonging to corresponding query sets is shown in

Fig. 6 where p depicts the average precision with

respect to query q1 from all the jobboard, p’ depicts

the average precision with respect to q1 from all the

individual proposed ontologies and p’’ depicts the

average precision from the proposed integrated system

i.e., Jobology search system.

The average precision graph at system level is shown

in Fig. 7.

It can be observed from Fig. 6a that the proposed

system gives more relevant results as it exhibits high

precision in comparison with Jobboards and individual

Jobboard’s ontologies. For QS3, the plotted values are

comparatively low.

Fig. 5: Output

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

712

 (a) (b)

(c)

Fig. 6: (a) Precision analysis of queries for Query Set1 (b) Precision analysis of queries for Query Set2 (c) Precision analysis of

queries for Query Set3

Fig. 7: Plotted values of average precision of query sets

1

0.9

0.8

07

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

07

0.6

0.5

0.4

0.3

0.2

0.1

0

p

p'

p"

p

p'

p"

p

p'

p"

1

0.9

0.8

07

0.6

0.5

0.4

0.3

0.2

0.1

0

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

q1 q2 q3 q4 q5 q6

0.9

0.8

07

0.6

0.5

0.4

0.3

0.2

0.1

0

p

p'

p"

QS1 QS2 QS3

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

713

Table 9: Sample query set

Query Set1 Query Set2 Query Set3

-- -- ---

S. no Query S. no Query S. no Query

1 Java, Delhi 1 Oracle, Delhi 1 Advanced Java, Mumbai

2 PHP, Bangalore 2 SAP, Gurugram 2 .net, Pune

3 Python, Chennai 3 ADO, Dehradun 3 HTML, Javascript, Delhi

4 CSS, Delhi 4 Core Java, Ahmednagar 4 NodeJS, Javs, Ahemdabad

5 .net, Indore 5 Java, Struts, Bhopal 5 Abndroid, Bangalore

6 AngularJS, Ahemdabad 6 Java, Hibernate, Bhubeneshwar 6 Java, Spring, Kolkata

Conclusion

In this paper, a novel approach has been proposed

for that allows querying of aligned ontologies. The

basic idea of proposed approach is to make use of

ontology alignment systems for querying. The system

supports writing queries using global indexers built

during alignment process and dataset. By this, more

relevant results from n number of websites are

presented to the user at one place.

While the contributions in this paper provide a novel

and in our opinion, a scalable querying approach for

querying, there is a scope of extension also. Given the

fact that, currently proposed system is considering only

jobboard websites as data for building ontology driven

knowledge base, coverage area of knowledge base can

be enhanced by considering direct jobs posted at the

company’s websites. The proposed system is focusing on

converting semi-structured data available on the current

web into structured data. The data coverage of proposed

system can be expanded by taking unstructured text data

into consideration and converting it into structured data

using ‘gate tools’.

Acknowledgment

I would like to thank (Late) Dr. A. K. Sharma for his

guidance.

Author’s Contributions

Ranjna Jain: This work has been accomplished as a

Ph.D thesis of this author. She is the core contributor of

this work.

Neelam Duhan: This author was one of the

supervisors of the thesis and work extensively towards

preparing the article.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Berners-Lee, T., Y. Chen, L. Chilton, D. Connolly and
R. Dhanaraj et al., 2006. Tabulator: Exploring and
analyzing linked data on the semantic web.
Proceedings of the 3rd International Semantic Web
User Interaction Workshop (UIW’ 06).

Brin, S. and L. Page, 1998. The anatomy of a large-scale
hypertextual Web search engine. Proceedings of the
7th International Conference on World Wide Web,
(WWW’ 98), Brisbane, Australia, pp: 107-117.
DOI: 10.1016/S0169-7552(98)00110-X

Delbru, R., S. Campinas and G. Tummarello, 2011.

Searching web data: An entity retrieval and high

performance indexing model. J. Web Semant., 10:

33-58. DOI: 10.1016/j.websem.2011.04.004

Jain, R., N. Duhan and A.K. Sharma, 2017. Design of

building automatic global concept indexer for ontology

alignment. Int. J. Eng. Technol., 9: 1532-1541.

 DOI: 10.21817/ijet/2017/v9i3/170903503

Jain, R., N. Duhan and A.K. Sharma, 2018a. A novel

method for building indexer for aligning

ontologies. Int. J. Inform. Retrieval Res., 8: 67-86.

DOI: 10.4018/IJIRR.2018100105

Jain, R., N. Duhan and A.K. Sharma, 2018b.

Comparative study on ontology management

approaches in semantic web. Int. J. Comput. Sci.

Eng., 6: 132-140. DOI: 10.26438/ijcse/v6i1.132140

Mcguinness, D.L., R. Fikes, J. Hendler and L.A. Stein,

2002. DAML+OIL: An ontology language for the

Semantic Web. IEEE Intell. Syst., 17: 72-80.

 DOI: 10.1109/MIS.2002.1039835

O'Connor, M.J. and A. Das, 2007. Querying the semantic

web with SWRL. Proceedings of the International

Conference on Advances in Rule Interchange and

Applications, Oct. 25-26, Springer, Orlando,

Florida, pp: 155-159.

 DOI: 10.1007/978-3-540-75975-1_13

Sander, M., U. Waltinger, M. Roshchin and T. Runkler,

2014. Ontology-based translation of natural

language queries to SPARQL. Proceedings of the

Association for the Advancement of Artificial

Intelligence (AAAI) Symposium on) Natural

Language Access to Big Data, (ABD’ 14).

https://www.igi-global.com/journal/international-journal-information-retrieval-research/1178
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=ZScMRbwAAAAJ&cstart=20&citation_for_view=ZScMRbwAAAAJ:_FxGoFyzp5QC
http://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=ZScMRbwAAAAJ&cstart=20&citation_for_view=ZScMRbwAAAAJ:_FxGoFyzp5QC

Ranjna Jain and Neelam Duhan / Journal of Computer Science 2020, 16 (5): 702.714

DOI: 10.3844/jcssp.2020.702.714

714

Shekarpour, S., 2011. DC Proposal: Automatically

transforming keyword queries to SPARQL on

Large-Scale Knowledge Bases. Proceedings of the

10th International Conference on The Semantic

Web, Oct. 23-27, Springer, Bonn, Germany, pp:

357-364. DOI: 10.1007/978-3-642-25093-4_29

Weiand, K.A., 2011. Keyword-based querying for the

social semantic web: The KWQL language:

Concept, algorithm and system. Dissertation,

Faculty of Mathematics, Computer Science and

Statistics, LMU München.

Yahya, M., K. Berbrich, S. Elbassuoni, M. Ramanath
and V. Tresp et al., 2012. Natural language
questions for the web of data. Proceedings of the
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Learning, Jul. 12-14, Association for Computational
Linguistics, Jeju Island, Korea, pp: 379-390.

Zhou, Q., C. Wang, M. Xiong, H. Wang and Y. Yu, 2007.
SPARK: Adapting keyword query to semantic search.
Proceedings of the 6th International Semantic Web
Conference on the Semantic Web and 2nd Asian
Semantic Web Conference, Nov. 11-15, Busan, Korea,
pp: 694-707. DOI: 10.1007/978-3-540-76298-0_50

APPENDIX- I

QID SPARQL Query Filter_count

O1Q1 "PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" + 4

 "PREFIX p:

 <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

 "SELECT ?Job ?title ?skill ?location where" {

 "?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+

 “FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+

 “FILTER(?skill=”XML”)."+ “FILTER(?location=”Delhi”)."

 }

O1Q2 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" + 4

 "PREFIX p:

 http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

 "SELECT ?Job ?title ?skill ?location where" {

 "?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+

 “FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+

 “FILTER(?skill=”XML”)."+ “FILTER(?location=”Noida”)."

 }

O1Q3 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>\n" + 3

 "PREFIX p: <http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>\n"+

 "SELECT ?Job ?title ?skill ?location where" {

 {

 "?Job p:hasloc ?location."+ "?Job p:hasskill ?skill."+

 “FILTER(?skill=”Python”)." + “FILTER(?skill=”Java”)."+

 “FILTER(?location=”Delhi”)."

 }

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl#>/n
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.semanticweb.org/ranjna/ontologies/2018/1/test2.owl

