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Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder 

relating to speech complications, nonverbal and social communication, and 

repetitive behaviors. There is no remedy for ASD but early diagnosis, mediation, 

and supportive care can aid the development of language, conduct, and 

communication skills. As the cause of ASD is a neurodevelopmental 

disorder, its diagnosis based on brain function analyzing different brain 

signals, especially Electroencephalography (EEG), has drawn attention 

recently. Brain activity is recorded over time as an EEG signal from the scalp 

of a human and is used to investigate complicated neuropsychiatric disorders 

in the brain. In this study, the data from the EEG channels are translated into 

two-Dimensional (2D) form through correlation, and classification is 

performed using Convolutional Neural Networks (CNN), the well-known 

deep learning method for image analysis and classification. Two different 

CNN models are considered for classification purposes: Generic CNN and 

Residual Network (ResNet), a well-known deep CNN model. The proposed 

method with Resnet achieved 88% classification accuracy on a five-fold 

cross-validation mode, whereas it was 100 on 20% of test samples. 

Experimental evaluations using clinical EEG data revealed the efficacy of 

the proposed method outperforming other existing methods. 
 

Keywords: Autism Spectrum Disorder, Convolutional Neural Network, 

Electroencephalography, Pearson’s Correlation Coefficient, Residual 

Neural Network 

 

Introduction  

Autism Spectrum Disorder (ASD) or autism is caused 

by a variety of factors in the brain that result in behavior 

and communication abnormalities as well as limited 

stereotyped behaviors (Peya et al., 2020; Johnson and 

Myers, 2007). It is known as a spectrum disorder due to a 

wide variety of types and severity of symptoms such as 

repetitive behavior, language, and sensory problems, 

cognitive deficits, anxiety, social retreat, etc. ASD is 

exposed in childhood and progresses through 

adolescence and adulthood (WHO, 2013). The majority 

of ASD side effects occur during the first five years of 

life. Some indicators become visible from facial 

appearance. The case of an autistic child is depicted in 

Fig. 1. Nowadays ASD discovery is a vital issue 

because it influences the mental as well as physical 

development of kids. Numerous studies in the last few 

decades have indicated that one out of every 68 

children have ASD, however, according to more recent 

reports, one out of every 59 children is diagnosed with 

ASD (de Diego-Otero and Salgado-Cacho, 2019). The 

prevalence of ASD is increasing globally according to other 

studies conducted around the world (Hossain, 2018). 

ASD is a lifelong condition and no cure exists for 

ASD, but there are useful treatments/interventions 

available. There is an increasing number of proof that 

ASD may not be a long-lasting condition (CDC, 2018). 

Several studies revealed that a significant number of 

children who were initially identified with autism no 

longer follow the diagnosis later on. This has led to 

increased interest in the early detection of ASD which 

can help in later life. While ASD can be detected as 

early as two years old, most children are diagnosed 

after the age of four. At the age of three, less than half 

of young patients had been diagnosed with ASD. Early 

detection and intervention are most beneficial, as they can 

improve mental, communication, and language skills 

development (Landa, 2008). 
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Fig. 1: An Autistic child. (Source: www.eparent.com) 

 

ASD can be diagnosed in a variety of ways. Symptoms 

of ASD include persistent deficits in social 

communications with others (Walsh et al., 2011). Some 

methods diagnose ASD utilizing a questionnaire-based 

screening approach that only makes recommendations for 

further lookup. In screening (Greenspan et al., 2008), the 

child gets a brief test and the parents have to complete a 

questionnaire about the kid’s development including 

language, thinking, behavior and emotions following a 

standard questionnaire or checklist. Screening is also 

performed by doctors, nurses, or other experts in medical 

care, local area, or school settings. Some approaches 

include communicating with patients and collaborating 

with a multidisciplinary team (Huerta and Lord, 2012) to 

diagnose ASD and the team may be comprised of medical 

specialists, therapists, psychologists, and special 

educators. The method considers different areas of 

functioning during a diagnostic assessment. Smartphone 

and tablet apps are commercially available for autistic 

patients and their families (Collins, 2019) which employ 

activities to diagnose ASD that encourage kids to act as 

artists or the sensation of being surprised. The children's 

play is videotaped to assess and detect signs of autism. 

As the cause of ASD is a neurodevelopmental 

disorder, its diagnosis based on brain function analyzing 

different brain signals has drawn attention recently. 

Magnetic Resonance Imaging (MRI), functional MRI 

(fMRI), Electroencephalography (EEG), and 

Magnetoencephalography (MEG) are a few well-known 

noninvasive neuroimaging techniques for measuring brain 

functions. EEG, among the various brain signal methods, is 

increasingly being investigated as a possible diagnostic tool 

for tracking brain activities due to its ease of use and low cost 

(Bosl et al., 2018; Korik et al., 2018, 2016a, b,). EEG 

observes the brain's electrical activity using electrodes 

attached to various parts of the skull. Individual channels’ 

data are collected as an EEG signal for a certain period. The 

number of data points depends on the number of channels, 

frequency of data collection, and time. EEG signals have 

been investigated for studying human brain activities. Hence, 

its use in studying ASD is increasing (Bosl et al., 2018; 

Korik et al., 2018) (Grossi et al., 2017; Hadoush et al., 2019; 

Ibrahim et al., 2018; Kang et al., 2019). 

Machine Learning (ML) methods have been popular 

with researchers in recent studies for early ASD detection 

from EEG signals (Ari et al., 2022). ML employs 

computer algorithms to model or learns patterns in data 

and signals. There are two major steps in ML-based ASD 

detection from EEG: Processing data or signals and then 

classifying them using the appropriate ML method. In the 

first step, the collected data are pre-processed, transformed, 

and represented in the required format for the intended ML 

method. Finally, an ML method is prepared or trained with 

the data to recognize ASD. Along with different processing 

techniques, different ML methods are investigated in the 

last several years for ASD detection (Brihadiswaran et al., 

2019) including Support Vector Machine (SVM), Linear 

Discriminant Analysis (LDA), and Artificial Neural 

Network (ANN) (Bosl et al., 2018; Grossi et al., 2017; 

Hadoush et al., 2019; Ibrahim et al., 2018; Kang et al., 

2019). Deep learning methods have recently been used to 

detect ASD from EEG signals (Radhakrishnan et al., 2021; 

Khodatars et al., 2021; Ali et al., 2020). The performance 

of existing ML-based methods is promising, which 

motivates the current investigation, especially the deep 

learning method, intending to improve efficiency. 

Convolutional Neural Network (CNN) has been 

employed in ASD detection from EEG signals in this 

study. CNN is a deep learning technique with the added 

advantage of incorporating the feature extraction 

process within its structure, which makes CNN suitable 

for 2D (i.e., two-dimensional) image analysis and 

classification (Akhand et al., 2018). 

This feature of CNN does not restrict its application to 

problems involving 1D signals such as EEG signals. 

Firstly, independent EEG channel data are required for 

conversion into a 2D image employing Pearson's 

Correlation Coefficient (PCC) in the proposed approach 

(Pearson, 1895). Finally, generic CNN and residual neural 

network (ResNet), the widely recognized deep CNN model, 

are applied to the image like 2D data for classification. 

Although CNN-based ASD detection has been outlined in 

our previous study (Peya et al., 2020), the present study is 

an extended and complete presentation in terms of both 

theoretical analysis and experimental outcomes. 

The rest of the paper reviews several existing approaches 

to ASD detection clarifies the suggested approach and the 

experimental findings and comparison with existing 

methods. Finally, the paper concludes with a few remarks. 

Literature Review  

Many ML-based methods are investigated in the last 

several years for early ASD detection using different brain 

signals (Bosl et al., 2018; Grossi et al., 2017; Hadoush et al., 

2019; Ibrahim et al., 2018; Kang et al., 2019). Most of the 
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methods are based on EEG and a few are with other brain 

signals, e.g., fMRI. 

Akter et al. (2017) used fMRI images for detecting 

autism from the activation region of the fusiform gyrus of 

the human brain to diagnose ASD. MRI images of the 

normal and the autistic brain were preprocessed and features 

were extracted to calculate area, perimeter, and eccentricity 

for further analysis. Different mean areas, perimeter, and 

eccentricity showed a significant difference between normal 

and autistic brains. 

Zou et al. (2017) build up a deep learning-based 

Attention Deficit Hyperactivity Disorder (ADHD) 

classification, a type of autism, strategy through 3D CNNs 

applied to MRI images. They designed the 3D CNN 

model to investigate the local spatial patterns of MRI 

features. Structural MRI (sMRI) and fMRI features were 

combined with the proposed CNN model. The method 

achieved 69.15% accuracy on hold-out testing data of the 

ADHD-200 global competition. 

Jamal et al. (2014) investigated the nearness of mental 

imbalance utilizing the utilitarian mind availability 

estimates got from EEG signals of kids during face 

observation tasks. The leave one out cross-validation of 

the characterization calculation gives 94.7% precision as 

the best execution with relating affectability and 

explicitness esteems as 85.7 and 100% individually. 

Mullick et al. (2013) conducted a cross-sectional 

analysis to determine the proportion of sMRI and EEG 

abnormalities in autistic children, as well as any 

connection between MRI and EEG changes and co-

morbid mental illness. A total of 42 autistic children 

between the ages of two and twelve participated in the 

study at a child and adolescent consultation center. EEG 

changes were linked to a rise in the number of co-morbid 

illnesses (epilepsy, mental retardation, and others). They 

observed various anomalies indicative of relations among 

structural and physiological dysfunctions. 

Grossi et al. (2017) proposed an algorithm named MS-

ROM/I-FAST for detecting ASD from EEG signals using 

ANN. They collected real-time EEG data from Vila Santa 

Maria, Italy using DSM-IV criteria. Their proposed 

system predicted a feature named TWIST and formed an 

invariant feature vector input of EEG signal which was 

blindly classified with ANN. The accuracy of their system 

for distinguishing ASD subjects from typically 

developing was 100% using the train-test protocol and 

92.8% using the leave-one-out protocol. 

Raja and Priya (2006) used EEG signals to 

characterize autistic and normal children through ANN. 

The authors collected a real-time dataset from ASD 

children in various special schools. They used two ANN 

models named Layered Recurrent Neural network (LRN) 

and pattern recognition neural network for classification. 

They obtained a classification accuracy of 94.62% 

combining Autoregressive (AR) Burg and LRN. 

Heunis et al. (2018) investigated Recurrence 

Quantification Analysis (RQA) as a possible biomarker 

for autism through methodological investigation of 

technical confounders. On continuous 5 sec segments of 

resting-state EEG data, RQA feature extraction was 

accomplished. They performed classification through a 

leave-one-out protocol with a nonlinear SVM classifier 

and obtained 92.9% accuracy. 

Bosl et al. (2018) observed EEG as a potential clinical 

method for tracking atypical brain growth. Starting at the 

age of three months and lasting until the age of 36 months, 

they gathered real-time EEG data from 89 low-risk 

control subjects and 99 children with an older child who 

was diagnosed with ASD. The classification was 

performed through SVM. The prognosis of the clinical 

diagnostic outcome of autism and the control group was 

surprisingly accurate when utilizing EEG predictions as 

early as 3 months old enough. 

Harun et al. (2018) proposed an effective diagnostic 

method for ASD using EEG signals based on emotions. 

They analyzed EEG signals of autistic and normal 

subjects for different types of emotions and then measured 

the difference. Emotions of normal subjects and autistic 

subjects were classified separately employing an ANN 

and SVM which achieved ASD detection with accuracies 

of 90.5 and 88.1%, respectively. 

Recently, Ali et al. (2020) performed a CNN-based ASD 

diagnosis using an EEG signal. The data was collected using 

a 16-channel acquisition system at a sampling rate of 256 Hz. 

Every second’s data is converted into 16 × 256 sized 2D 

matrix form, which was then fed into CNN for classification 

of ASD. This method achieved an accuracy of 80%.  

Materials and Methods 

Recently, brain signals, especially EEG, are widely used 

for detecting ASD and other neurodevelopmental disorders 

(Büchel et al., 2021) (Zhang et al., 2020). To apply CNN to 

1D EEG signals, the novel aim of this study is to represent 

1D EEG signals in 2D (two-dimensional) format and then 

classify ASD data using CNN. PCC is used to convert EEG 

data into a two-dimensional format. Fig. 2 illustrates the 

proposed ASD detection method showing three key steps: 

EEG signal acquisition, the 2D transformation of signal, and 

classification using CNN. The outcome of the proposed 

system is the classification of input EEG signals into ASD 

and control (i.e., non-ASD) categories. The following 

subsections briefly explain individual steps. 

EEG Signal Acquisition 

Electroencephalography (EEG) is a non-invasive 

technique for observing brain electrical activity by putting 

electrodes on the skull (Misra and Kalita, 2018). EEG is a 

useful method for analyzing human brainwaves and 
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reflecting knowledge arrangement on acquired signals 

(Gao and Lee, 2015). An EEG can assess changes in brain 

activity that may be useful in the diagnosis of brain 

disorders. A system of electrode placement is needed to 

establish a consistent relationship between electrode 

position and underlying cerebral structures. The 

international 10-20 method of electrode placement for 

EEG signal recording is shown in schematic form in Fig. 3. 

In the figure, the anteroposterior estimations are focused 

on the gap between nasion and inion over the vertex in the 

midline with five category positions: Central (C), Frontal 

pole (Fp), Frontal (F), Parietal (P) and Occipital (O). It 

was agreed to utilize even numbers as the index for the 

right hemispheres and odd numbers for the left 

hemispheres to distinguish between homologous 

situations on the left and right sides of the hemispheres. 

The first point of Fp (i.e., Fp1), for example, is 10% of the 

nasion-inion distance from the nasion. Data from several 

channels is collected and preserved in a computer system. 

Transformation of EEG Data into 2D 

Image using PCC 

EEG signals collected via 19 channels are inherently 1D 

data. Classification of these data using a CNN classifier 

poses challenges while CNN requires data to be input in 2D 

form. There have been several methods appeared in the 

literature. Wu et al. (2018) showed that 2D CNN works 

better than 1D CNN for ECG signal classification. They 

transformed 1D ECG signals into 2D images to apply to 

2D CNN. In general, the standard 1D EEG signal 

analysis requires feature extraction, which mostly 

disregards the spatial, spectral, and temporal structure 

present in the data. To extract spatial, spectral, and 

temporal features, (Sharma et al., 2019) employed the 

transformation of non-image data into image data to 

apply to CNN. Sun et al. (2021) suggests a transformation of 

1D EEG data into 2D images for maintaining the spatial 

structure of the data. Naz et al. (2021) used a segmentation 

technique for transforming 1D ECG signals into 32 × 32 

binary images for applying to CNN.  
To analyze and classify EEG signals using 2D CNN, 

Pearson Correlation Coefficient (PCC) has been 
investigated in this research. PCC is a method for 
evaluating the demographic relationship, or correlation, 
between two consistent variables (Kirch, 2008). Pearson 
product-moment correlation coefficient, Pearson's r, or 
the bivariate correlation are popular concepts widely used 
in statistics refer to as PCC.  

PCC is calculated by multiplying the covariance of two 
variables by their standard deviations. The term "product 
moment" refers to the mean (first moment about the origin) 
of the product of mean-adjusted random variables, which is 
included in the definition. When applied to a population, 
PCC is usually denoted by ρ (rho) and is also known as the 
population correlation coefficient or the population PCC. For 
a given pair of random variables (X, Y), ρ is defined by: 

( )
,

,
X Y

X Y

cov X Y


 
=  (1) 

 

In Eq. (1), X, Y is the correlation coefficient of X and 

Y, cov (X, Y) is the covariance of X and Y, and σX and σY are 

the standard deviations of X and Y, respectively. PCC has a 

value within the range of [+1, -1], i.e., X, Y [+1, -1] where 

+1 indicates complete positive linear correlation, 0 means no 

straight relationship and -1 signifies all-out negative linear 

correlation. The advantage of using PCC is that the PCC 

matrix can be presented as a heat map (Friendly and Kwan, 

2003). The strength of heat maps to display the features of a 

PCC matrix was investigated by Friendly and Kwan 

(Friendly and Kwan, 2003). Correlation plots, regarded as a 

heat map, can be used to visualize association matrices and 

represents multiple correlation statistics (Haarman et al., 

2015). There has been little reported on the use of 2D images 

produced from the PCC matrix applied for the analysis and 

classification of signals.  

In this study, PCC is measured between individual 

channels' data and transformed into a 2D image. 

Initially, the PCC is resolved to individual PCC values 

by combining the two channels. After that, the values 

are ordered in a matrix form where an information 

cluster can be found. The size of the PCC matrix is               

19 × 19 as data of 19 channels are considered in this 

study. Utilizing the seaborn heatmap library of Python, 

the matrix was visualized as a color image. Instances 

of produced color images are shown in Fig. 4 for two-

sample data. Figure 4(a) shows the image of the ASD 

subject and Fig. 4(b) shows the image of the control 

subject. The presentation visualizes the difference 

between the ASD subject in Fig. 4(a) and the control 

(i.e., non-ASD) subject in Fig. 4(b).  

Classification using CNN 

CNN is the widely used method with significant 

features (e.g., convolutional, pooling) to handle 2D 

objects such as images (Akhand et al., 2018; Namatēvs, 

2017; Saha et al., 2005). In this study, two different 

CNN models are investigated for classifying 

transformed EEG data: Generic CNN and residual 

network (ResNet) (Alom et al., 2019), a well-known 

deep CNN model. The input is a 2D image of size           

64 × 64, which is used for both models. Hence, all the 

images were resized to 64 × 64.  

The architecture of the generic CNN is shown in Fig. 5; 

there are four convolution layers and four max-pooling 

layers. Four convolutional layers are used to suit the 

particular dataset. The CNN architecture with 4 

convolution layers verified on the dataset provided the 

best result. In each convolution layer, the Rectified 

Linear unit (ReLu) activation function was used. The 

inputs to the CNN are the EEG data transformed into 

2D images (i.e., 64 × 64 sized RGB images) which are 
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placed in the first convolution layer (Convolutional #1) 

operation. Using 3 × 3 sized 32 kernels, 62 × 62 sized 

32 convolved Feature Maps (FMs) were the outcome of 

the Convolutional #1 layer. Furthermore, the 

convolved FMs were fed into the next layer, which was 

the max-pooling layer (Max Pooling #1) with a pool size 

of 2 × 2 for feature extraction. This layer down-sampled the 

representation of the input by taking the maximum value for 

each dimension by pool size along with the axis of 

features and the resulting 31 × 31 sized 32 FMs. In the 

rest of the convolution layers, the kernel size was the 

same but the number of kernels (hence feature maps) 

was increased to 64 in the second (Convolutional #2), 

128 in the third (Convolutional #3), and fourth 

(Convolutional #4) convolution layers. After each 

convolution layer, the max-pooling method with a pool 

size of 2 × 2 was implemented. 

Total 2 × 2 sized 128 matrices are the outcomes after 

successive operations in four convolution-pooling layers. 

The resulting matrices were flattened into 512 nodes               

(= 128 × 2 × 2) in a single column. The next two dense 

layers (i.e., fully connected) having nodes 512 and 64 

were served by this flattening layer; and finally, the 

output of CNN comes from a second dense layer with 

a single node indicating if the subject is either ASD or 

Control. The node has a threshold value of 0.5. When 

output falls below the threshold, it is in the ASD group 

otherwise it is the control group. 

ResNet (Alom et al., 2019), a popular CNN model 

with a significant connection mechanism, is also 

considered in this study. A ResNet architecture is made 

up of several blocks, called residual blocks. Figure 6 

shows a block diagram of a typical residual block showing 

skipping connections between convolutional layers. 

Skipping connections can transform greater gradients into 

initial layers and these layers can also learn as quickly as 

final layers. There are several ResNet models available 

having a different number of convolutional layers. In this 

study, the ResNet20v1 (CIFAR-10 ResNet) model is 

employed, and the model's numeric value represents the 

depth (i.e., number of convolutional layers) of the 

model. In the model, each convolutional layer 

employed a 3 × 3 sized kernel. The average pooling 

layer is used to replace completely connected layers at 

the end of the model. In the output layer, a SoftMax 

activation function is used to calculate the probability for 

classification. A detailed description and implementation 

of ResNet can be found in (Peixeiro, 2019). 

 

 
 

Fig. 2: Schematic view of the proposed ASD detection method 

 

 
 

Fig. 3: Electrode placement for EEG recording of the International 10-20 method 
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Fig. 4: Two samples of 2D images of EEG signal using PCC visualizes the difference between ASD and control 
 

 
 

Fig. 5: The architecture of the generic CNN for ASD detection 

 

 
 
Fig. 6: A typical residual block of ResNet 

Experimental Studies 

This section depicts the experimental results of the 
proposed ASD detection system and then presents a 
performance comparison with similar existing methods. 

Experimental Data 

Clinical EEG data were obtained from the Villa Santa 

Maria Institute in Italy for this study (Grossi et al., 2017). The 

enlisted subjects' EEGs were collected while they were at 

rest. If the data is acquired during an activity, there is a risk 

of contaminating data with muscle artifacts. The ASD group 

consisted of thirteen boys and two girls aged between seven 

and twelve years, while the control group consisted of four 

boys and six girls aged between seven and twelve years. EEG 

recordings with a bandpass filter of 0.3-70 Hz were made 

using a Micromed device provided by System Plus Evolution 

software, which used pre-wired headsets with cotton elastic 

inside from nineteen electrodes. The international 10-20 

method was used for placing the electrodes. Fifteen children 

and adolescents were given an objective diagnosis of ASD 

based on DSM-V criteria, then that was confirmed at Villa 

Santa Maria by a qualified child and juvenile specialist. 
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Experimental Setup 

Anaconda software was used to implement the 

algorithm. Keras, Sklearn, NumPy, Pandas, Os, Pyplot, 

Matplotlib, and Tensor flow are among the libraries used 

by ResNet. To make a fair comparison with existing 

methods, both train-test split and cross-validation 

approaches are considered for performance measurement. 

In the train-test protocol, 17 cases were used for training 

and 8 cases were used for testing. In the case of five-fold 

cross-validation, 20 subjects were used for training, and 5 

subjects were used for testing in each fold. The tests were 

carried out on a PC (Intel® Core™ i7 - 4720HQ CPU @ 

2.60 GHz, 8 GB RAM) with Windows 10 OS.  

Experimental Results and Performance Comparison 

At first, EEG data transformed into 2D images is 

classified using generic CNN and ResNet. Figure 7 shows 

the classification accuracies (Y-axis) on both the training 

and test sets varying training epochs up to 200 (X-axis). 

For the generic CNN case, the training set accuracy (i.e., 

Train_CNN) reached 100% after 50 epochs and the test 

set accuracy (i.e., Test_CNN) reached up to 87.5% after 

180 epochs. ResNet's training set accuracy was 100% after 

25 epochs and the test set accuracy was also 100% after 160 

epochs, which is promising. Accuracy on the test set is 

important which indicates the system’s generalization 

ability, i.e., performance on the unseen data. The 100% 

accuracy on the test set by ResNet indicates the proficiency 

of deeper as well as skip connection architecture. It is worth 

mentioning that a previous study (Grossi et al., 2017) on the 

same data had similar findings.  

Table 1 compares the proficiency of the proposed ASD 

detection method on the test set to that of other existing 

methods on clinical EEG data. The table also includes the 

techniques used by various studies as well as the dataset 

size. ANN, LDA, SVM, Multi-Layer Perceptron (MLP), 

Layered Recurrent NN (LRN), Principal Component 

Analysis (PCA), and CNN were the methods considered. 

It is already mentioned that the data of (Grossi et al., 2017) 

is utilized in the present study. Other methods considered 

different data which varied in number. As a result, 

comparisons with other approaches except (Grossi et al., 

2017) are not entirely justified. The proposed method, 

however, outperformed all others, especially the recent 

CNN-based method (Ali et al., 2020) which applied CNN to 

the raw EEG data. The proposed method achieved 100% 

accuracy using ResNet on PCC-based transformed EEG 

data, similar to the data provider's experimental results. In the 

case of cross-validation, the proposed method achieved an 

average accuracy of 88% for five-fold cross-validation. The 

data provider (Grossi et al., 2017) achieved 92.8% accuracy 

as they performed leave-one-out cross-validation. At a 

glance, the achieved performance of the proposed method 

is better or more competitive compared to the existing 

state-of-arts. Finally, the significance of this research 

lies in the advancement of a 2D representation of EEG 

data without mutilating the inherent properties of 

signals, which has proven to be a promising tool for 

ASD detection from EEG signals.
 

 
 

Fig. 7: Accuracy curve for generic CNN and ResNet varying epoch up to 200 
 
Table 1: Comparison of classification accuracy 

    Test set accuracy 

    -------------------------------------------------- 

 Method ref, Data (ASD Used Cross Train-test 

Sl year + control) algorithm validation protocol 

1 Raja and Priya (2006) 10 (4+6) ANN, LRN - 94.62% 

2 Harun et al. (2018) - ANN, SVM 90.05% - 

3 Heunis et al. (2018) 111 (39+72) MLP, SVM, LDA 92.9% (Leave-one-out) - 

4 Hadoush et al. (2019) 36 (18+18) PCA, ANN - 97.2% 

5 Ali et al. (2020) 20 (8+12) CNN 80% (5-fold) - 

7 Grossi et al. (2017) 25 (15+10) ANN 92.8% (Leave-one-out) 100% 

8 Proposed method 25 (15+10) PCC, CNN 88% (5-fold) 100% 
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Conclusion 

Early detection of ASD is unquestionably significant 

and it is accepted as the clinical best practice, which helps 

children improve their learning ability at an early stage of 

life. To diagnose ASD, only standardized tests are used in 

clinical settings that require long diagnostic time and cost. 

On the other hand, any ASD symptom can be confused 

with natural developmental variation. For these reasons, 

the most powerful approach for early detection of ASD is 

brain signal analysis as it is a neurodevelopmental 

disorder. EEG signal is a low-cost and relatively easy-to-

use technique for detecting ASD among existing several 

brain signal methods, so it is promising for ASD 

detection. This study investigated EEG-based ASD 

detection on clinical EEG data where EEG signals are 

transformed into 2D images, which are then classified 

using generic CNN and Resnet models individually. 

Achieved classification accuracy of 88% on five-fold 

cross-validation mode (and 100% accuracy on 20% test 

samples) is promising. Hence, the proposed method 

outperformed other existing methods and is suggested to 

be an effective method for ASD detection.  

A possible extension of the current research would be 

to use larger datasets. There are other correlation 

analysis methods apart from PCC, which can also be 

investigated to compare the efficiency of PCC. There 

are other classification methods, which can also be 

explored in the future.  
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