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Abstract: The presence of the coronavirus, known as COVID-19, has prompted 

several researchers to study the mode of spread and the different defense mechanisms 

of the virus. As a reminder, obtaining a vaccine, for which much research is being 

conducted around the world, is a long and expensive process and it is unlikely that the 

pandemic can be treated in time. In this article, we present a new way to assess and 

limit the spread of the virus while trying to answer the following important questions: 

How to use the shortest path algorithm in a graph to analyze and better understand the 

spread of the virus? How to use the predictive power of the graph using the shortest 

path algorithm to find the relationships of a person who might be most at risk? The 

designed algorithm simulates how the virus spreads and infects people through the 

graph. Since the size of the collected COVID-19 data can reach a large volume 

over time and speaking of the graph concept, the NOSQL database including 

Neo4j which is a graph oriented NOSQL database is used for data collection, 

storage and processing. To enable the design and optimization of virus defense 

systems, this study proposes a feasible approach to quantify and predict the 

danger of a virus infection within a community. 

 

Keywords: Coronavirus, COVID-19, Propagation, Graph Search Algorithm, 

Dijkstra, All-Shortests, Nosql Database, Neo4j 

 

Introduction 

In December 2019, the first victim of Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), 
the virus responsible for the 2019 coronavirus 
pandemic (COVID-19), was diagnosed in Wuhan, 
China (Andersen et al., 2020). In the weeks leading up 
to the diagnosis, the disease spread widely in mainland 
China and other countries around the world, causing 
global panic and resulting in the first major coronavirus 
pandemic in a few months. However, long before 
SARS-CoV-2, there was SARS-CoV-1 (Giannis et al., 
2020; Ru et al., 2020), responsible for the SARS 
outbreak in 2002-2004 and MERS-CoV from the 
Middle East and South Korea, responsible for the 
MERS outbreak in 2012 (Cai et al., 2013; Giannis et al., 
2020; Liang, 2020). Unlike these two viruses, a 
problematic feature of SARS-CoV-2 is the existence of 
asymptomatic infections (Giannis et al., 2020). These 
asymptomatic infections are unaware of their ability to 

spread and thus lead to an increase in the number of 
infected persons. This has contributed to the rapid and 
global spread and the resulting drastic restrictions on 
daily life around the world to block the spread of the 
virus, such as the use of certain vaccines, masks, social 
distancing (Lewnard and Lo, 2020), city closures, 
school closures, traffic stoppages, community management 
and health education knowledge that has been adopted 
worldwide (de Bruin et al., 2020; Lin et al., 2020). 

Because of the evolving epidemic (Sebastiani et al., 

2020) and in an effort to provide a means of maximum 
contact tracing, we wish to address the following 

important issues for COVID-19: 

 

(a) How to use the shortest path algorithm in a graph to 

analyze and better understand the spread of the virus? 

(b) How do we use the predictive power of the graph from 

the use of a shorter path algorithm to be able to find the 

relationships of a person that may be the most risky? 
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The objective pursued in this study being to develop a 

suitable conceptual model that allows modeling the 

transmission process while considering the specific 

characteristics of COVID-19 in particular, which is 

different from some models that have been used to 

describe the spread of biological viruses or virus 

propagation in a network such as: Susceptible Infected 

Susceptible (SIS) model (Cai et al., 2013; Liang, 2020; 

Song and Hei, 2020), Susceptible-Infected-Remised 

(SIR) model (Cai et al., 2013; Chen et al., 2020; Sameni, 

2020), the Susceptible Exposed Infectious Recovered 

(SEIR) model (Cai et al., 2013; Faranda and Alberti, 

2020; Rǎdulescu et al., 2020) and the Susceptible 

Infectious Recovered Dead (SIDR) model (Cai et al., 

2013). Thus, this modeling of the COVID-19 which has 

become a pandemic, will therefore lead to large-scale 

scenarios, involving a great computational complexity, 

which led us to use the Dijkstra algorithm, to reduce this 

great computational complexity. 

In this study, we use Dijkstra’s algorithm which is an 

algorithm that consists of computing the shortest paths in 

order to prevent and combat COVID-19 transmission for 

a large-scale graph. Indeed, researchers have been 

confronted with finding the shortest paths with the upper 

constraint on large graphs (Yang et al., 2019) and using a 

shortest path based method for gene analysis and 

prediction (Zhu et al., 2016). We propose both a new way 

to simulate COVID-19 propagation on large graphs and a 

COVID-19 propagation model based on the Dijkstra 

algorithm for analysis and prediction. Parameters such as 

node reinfection probability, propagation speed, 

propagation probability are introduced into our model to 

simulate Coronavirus activity with greater accuracy. 

We use the graph-oriented database that is Neo4j with 

artificial data because of the need for hospitals and other 

medical services to keep their patient’s data private but 

also, to involve all the factors affecting the spread of the 

virus. Thus, to get closer to real life, we use randomly 

generated data with the Neo4j benchmark randomized 

graph which thus mimics the structural characteristics of 

real-world networks based on communities already 

known a priori (Ghasemian et al., 2019). The artificially 

generated data took into account real life, as no element 

was discarded, such as people who are isolated or have no 

social life, people who have many relationships or only 

one relationship and the types of relationships that 

connect them. We consider a person to be infected in our 

artificially generated data, which represents an infected 

node in our large-scale graph and ensure that this node has 

at least one relationship but also a very high probability of 

propagation with a node at risk of infection. 

Network and graph-based modeling has been used for 

may applications Event detection (Mejdoub et al., 2015; 

Aoun et al., 2011a-b; Zorzenon et al., 2021; Aoun et al., 2014; 

Al Hakim et al., 2022; Silveira et al., 2022). Network-

based epidemic modeling has become increasingly 

popular, as it allows us to describe not only the impact of 

individual behavior on the spread of infection, but also to 

determine the best strategies for mitigating the impact of 

infectious diseases. When considering large-scale 

scenarios, there is a great deal of computational complexity 

involved. Thus, (Zorzenon et al., 2021) proposed a new 

notion of graph called contagion graph where, they 

proposed a graph-based method, derived from Dijkstra’s 

algorithm, which allowed them to reduce the 

computational complexity of a simulation. This contagion 

graph was used as an approximation scheme describing 

the average behavior of an epidemic on a network and 

requiring low computing power. Therefore, it is important 

to point out that the Dijkstra algorithm mentioned earlier, 

is an algorithm whose concept is to determine the 

minimum service on certain routes and to produce sets of 

solutions (Al Hakim et al., 2022). The Dijkstra algorithm 

can determine the shortest path in the search for maritime 

traffic, for example, as in the research (Silveira et al., 

2022) where the researchers tried to determine the shortest 

Dijkstra path to characterize in a systematic way the 

maritime traffic of the continental coast of Portugal but 

also, between two other borders identified as potentially 

interesting by observing the traffic density maps. The 

modeling of this approach consisted of constructing a 

graph in which the nodes are cells of a grid covering the 

geographical area under study and the weights of the 

directional edges that are inversely related to the 

movements of ships between the cells. 

Currently, the modeling of a complex system such as 

the spread of the COVID-19 infection is among the topical 

issues despite the fact that several other modeling cases to 

help prevent and control the transmission of COVID-19 

have been proposed since the outbreak of the pandemic 

(Block et al., 2020; Hope et al., 2020; Ordun et al., 2020; 

Yilmaz et al., 2020) and, the majority of his proposed 

models on the spread of COVID-19 infection have 

emphasized the prominent role of direct human-to-human 

transmission in the COVID-19 epidemic (Chan et al., 

2020; Sahin et al., 2020; Yang and Wang, 2020). But, 

despite the existence of a large number of proposed 

models, the majority do not take into consideration the 

epidemiological characteristics of COVID-19 such as 

social distance, contact time with the infected person. 

Thus in (Alguliyev et al., 2021), they proposed a graph-

based modeling of the spread of COVID-19 infection 

where they reviewed the studies related to the modeling 

of COVID-19 pandemic and analyzed the factors 

affecting the spread of the disease and its main 

characteristics while taking into account the social 

distance, duration of contact with an infected person and 

its local demographic characteristics. They developed a 

graphic model of the process from the first confirmed case 

of infection to the transmission of the virus from human 
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to human and visualized it considering the 

epidemiological characteristics of COVID-19. 

Unfortunately, they could not take into account all the 

factors that influence the increase in the number of 

cases of infection such as social, economic and 

demographic factors, population density, etc. In this 

study, we did not exclude any of these factors that were 

cited as influencing the increase in the number of cases of 

infection for our modeling. 

The size of COVID-19 data collected from all over the 

world keeps growing over time. Therefore, Khashan et al. 

(2020) had proposed a storage framework capable of 

handling SQL and NOSQL databases which they had 

renamed COVID-QF for COVID-19 datasets to address 

and manage the problems related to the spread of the 

virus worldwide while reducing the processing time. 

The graph-oriented database that is Neo4j, which is a 

NOSQL database, has enabled several researchers to 

model and study tens of billions of nodes, properties 

and relationships in a single graph to address and 

manage real-world problems. 

Problem Statement 

In this section, we introduce and define the graph 

elements necessary for modeling the propagation of the 

virus. The important elements that will be used 

throughout this study. 

Let G = (V, E) a directed graph, where V is the finite 

set of vertices and E = {(vi, vj)\vi, vj ∈ V} is the set of edges 

connecting the pairs of vertices of V. A weight can be 

assigned to an edge, in this case the graph G = (V, E, W) 

becomes weighted where W: E →  is a weighting 

function associated with the edges of E. Representing a 

community of people in the form of the G graph, we have: 

 

• For all vi ∈ V, vi represents the person ith in the so-

called community graph 

• Each of the edges (vi, vj) ∈ E represents the 

relationship between person i and person j in the 

community graph 

• A sub-graph of G is defined as a sub-community of 

people in the community graph G. We have three sub-

graphs: Sub-graph of infected people (I), subgraph of 

uninfected people (U) and sub-graph of people at risk 

of infection (S) 

• The outer half degree of the vi vertex of G noted by 

Gd +  (vi) which is the number of arcs from vi. So, it is 

the number of people the person i knows in the 

community graph 

• The inner half degree of the vertex vi noted by Gd −  (vi) 

which is the number of arcs ending in vi. So, it is the 

number of people who know the person i in the 

community graph 

• The degree of vi in G noted by dG(vi) = Gd +
 + (vi)+ Gd −  

(vi) which is the number of arcs admitting vi as end or 

neighbor. So, it is the number of relationships of the 

person i in the community graph 

 

The propagation of the COVID-19 virus within a 

community is spread from person to person by way of 

aerosols, droplets that are expelled when an infected 

person talks, sneezes or coughs and can end up on objects 

that are touched and then by touching their face. We take 

G = (V, E, W) a non-oriented graph (Fig. 1) because we 

do not know the different directions of the arcs on the 

existing relationships between people, for example who is 

a friend of whom in the community, such that for any vi ∈ 

I, vj ∈ U and vs ∈ S, the person i can transmit the disease 

to the close person j and the close person s under certain 

probabilities of propagation the virus (PPropagation) within 

the community, as shown in Fig. 2. 

 

 
 
Fig. 1: Community network 

 

 

 

Fig. 2: Propagation of the virus 
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This propagation of the virus through a graph is done 

with a certain speed. Thus, it is said that the speed of virus 

propagation in the community graph is defined as follows: 
 

InfectedNodes

propagation

N
Speed

t
=

 
 

where, NInfectedNodes = |I| is the number of infected nodes in 

the graph and t is the time taken to infect the entire graph. 

Following the propagation of the virus, we say that the 

probability PInfectedNodes gives us the probability of infected 

nodes in the graph whose formula is: 

 

InfectedNodes

InfectedNodes

N
P

N
=

 
 

the probability PUninfectedNodes for uninfected nodes is: 

 

UninfectedNodes

UninfectedNodes

N
P

N
=

 
 
and for the probability PRiskNodes of nodes with risk of 

infections is: 
 

RiskNodes
RiskNodes

N
P

N
=

 
 
where, N = |V| is the total number of nodes, 

NUninfectedNodes = |U| is the number of uninfected nodes 

and NRiskNodes = |S| is the number of nodes with risk of 

infections. An infected node thus transmits the virus to 

its uninfected immediate neighbor and once the 

neighboring node becomes infected, it too will continue 

to transmit the virus to its uninfected immediate 

neighbors and so on in the graph. 

Background 

In this section, we explain and give the principle of 

path finding with the single-source Dijkstra algorithm. 

Then, we discuss the graph-oriented database that is 

Neo4j and its Extended Properties Graph Model (EPGM) 

(Junghanns et al., 2016) which is an extension of a model 

belonging to the graph family, namely the Property Graph 

Model (PGM) (Rodriguez and Neubauer, 2010). 

Path Computing with Dikjstra’s Algorithm 

The algorithm was developed by computer scientist 

Edsger W. Dijkstra in 1956. It allows to find from a starting 

node and a destination node which are both known, a shortest 

path between these two nodes, or to find from only one 

known starting node, all the shortest paths from this node to 

all the other nodes of the graph, we speak then about ”unique 

source”. Dijkstra’s single source algorithm therefore consists 

of defining the starting node and finding the shortest 

weighted path to all other nodes in the network. 

The principle of path searching with the single-source 

Dijkstra algorithm (Fig. 3) can be described as follows. 

Step 1: Initialization 

Set of vertices V' ←  and of edges E' ← ; begin by 

setting dist (vi) ← ∞ for each vertex vi ∈ V. 

The initial vertex dist(vinitial) ← 0; the ith vertex is the 

initial vi ← vinitial. 

Step 2: Adding Vertices in V 

vcurrent ← Choose the minimum distance between all  

vertices and vcurrent}: 

Step 3: Vertex Expanding 

For each edges (vcurrent, vi+1) ∈ E; if dist (vcurrent) + w 

(vcurrent, vi+1) < dist(vi+1), then update dist(vi+1) ← 

dist(vcurrent) + w (vcurrent, vi+1) and add the edge E' ← E' 

∪{(vcurrent, vi+1)} 

Step 4: Stopping Criteria 

If V' = V then the path with all other vertices has 

been found; otherwise, if V'  V then failure; otherwise 

go to step 2. 

The algorithm works with two main sets: V which 

contains all the vertices of the graph and V which contains 

the promising vertices of the subgraph covering the path. 

The output of this algorithm consists in obtaining a sub-

graph that covers all the shortest paths, in which the 

different vertices vi are classified in ascending order of 

their minimum distance to the starting vertex. During each 

iteration, a vertex of minimum distance is chosen outside 

the sub-graph and added to the subgraph and the distances 

of the vertices adjacent to the one added are updated by 

doing dist (vi+1) ← dist (vcurrent) + w (vcurrent, vi + 1). 

The single-source Dijkstra algorithm guarantees to find 

the optimal path if for each edge (vcurrent, vi+1) ∈ E, the 

triangular inequality is verified: dist (vcurrent) + w (vcurrent, vi+1) 

< dist (vi+1). The complexity of this algorithm is such that the 

initialization itself takes O(|V|) of time and the extraction of 

the minimal vertex also takes O(|V|) of time. For the search 

of the successor vertices, it takes O(d+(vi)) of time. Therefore, 

the overall complexity of the Dijkstra algorithm is O(|V|2). 

Neo4j 

According to Neo4j documentation, Neo4j is an open-

source database written in Java and Scala, published under 

a dual model of free software and commercial license 

(Kan et al., 2017; Needham and Hodler, 2019; Jabri, 

2020). It consists in implementing generic property graph 

models and providing complete database features, 

including Atomicity, Consistency, Isolation, Durability 

(ACID) transaction compliance, cluster support and 

execution failover. As indicated in Fig. 4 on the Neo4j 

architecture, Neo4j stores graphic data in a number of 
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different storage files. The main components of this 

architecture are its REST-based API, cache, transaction 

log and log files (Kan et al., 2017). 

Each component of the architecture has its own 

importance which shows how the Neo4j database works. 

We say that: The Traverser API therefore allows the user 

to browse the graph with the help of reminders. Indeed, 

the user can define an approach to search for a graph or 

sub-graph using specific rules and algorithms. Caching 

affects read and write performance. Transaction logs, on 

the other hand, maintain all events and operations that 

occur on the Neo4j database and log files are files storing 

information about nodes, relationships and properties. 

 

 
 
Fig. 3: Example on the Dijkstra’s single-source algorithm 
 

 
 
Fig. 4: Architecture of Neo4j 
 

Scalability and Redundancy 

Neo4j enables high query performance on large 

volumes of complex data. It can be deployed in two 

modes. Standalone Server: This means that one instance 

server is used and Highly Available cluster (HA): This 

means that several instance servers are used. He HA 

cluster is a master-slave architecture Fig. 5 which consists 

of a single master server and a number of slave instance 

servers. Each slave instance is synchronized with the 

master server via the cluster management component to 

maintain data consistency. A load balancer deployed 

upstream of the cluster directly manages the read/write 

operations of the client applications so that all read 

requests are distributed to the slave instances and all write 

requests are first synchronized with the master server and 

then the results are sent to the client. 

To complete a write load and ensure consistency, the 

HA cluster requires a quorum to accept write operations. 

This means that at least 1
2

S
+  hosts of cluster instances must 

be online (where, S is the number of servers in the cluster). If 

this quorum is not reached, the cluster will degrade to read-

only mode. In addition, Neo4j provides auto-clustering, in 

case the current master server becomes unavailable, the 

cluster management component ensures that a new master is 

automatically elected. To ensure fault tolerance, the 

complete graph data is replicated on each instance server of 

the cluster and each server can host up to 34 billion nodes, 

34 billion relationships and 68 billion properties. 

The EPGM Model 

The Neo4j database uses the Extended Properties 

Graph Model (EPGM) model (Junghanns et al., 2016) 

which is an extension of a model belonging to the family 

of graphs, namely the Property Graph Model (PGM) 

which was proposed in (Rodriguez and Neubauer, 2010) and 

which is a directed, labeled and assigned multigraph. There 

are data model requirements that the Property Graph Model 

(PGM) cannot satisfy, such as the lack of support for graph 

collections and associated operators. The Extended Property 

Graph Model (EPGM) has been proposed to meet these 

requirements. In this proposed model, a database consists of 

several property graphs in the form of key-value pairs. These 

graphs are generally called logical graphs and, have a type 

label and may have different properties. 

Formally, we define the graph of the EPGM model by 

G = (, , L, , , ) where  a set of vertices,  a set 

of edges and L a set of logical graphs. A logical graph 

L = ⟨V, E⟩ is an ordered pair of a subset of vertices V 

⊆  and a subset of edges E ⊆ . For labels associated 

with  and ,  is used as the label alphabet T such 

that ( ∪ ∪L) → . In the same way, the properties 

which are of the form key-value pairs, are defined by 

the set K of keys and the set A of values such as ( ∪ 
∪L) × →, as we can Fig. 6. 

COV-19-Dijkstra 

In this section, we present the spread of the virus in 

the form of a graph and then propose a spread of 

COVID-19 based on the Dijkstra algorithm. We 

represent the entire population as an undirected G 

graph with nodes representing persons and we 

represent the infected population (I), the newly infected 

population, the uninfected population (U) and persons 

at risk of infection (S) as subgraphs of G. 
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We assume that a coronary patient positive or 

patient zero in a community represents an initial v0 

node and comes into contact with other people or other 

nodes on the graph that are either already infected or 

already healed or uninfected. Because it is an infectious 

disease, it spreads throughout the community and the 

choice of patient zero in that community is random. We 

propose three functions, the first two of which are 

constructed to simulate the spread of the virus in a 

graph and the third one uses instead the Dijkstra 

algorithm according to this mode of spread. 

In order to model our different functions, we have used 

some parameters that are necessary to explain from the 

beginning such as: 

 

• Infected which represents the list of infected nodes, 

therefore Infected ∈ I 

• SNodes as a list of nodes at risk of infection, therefore 

SNodes ∈ U and S 

• RNodes as a list of nodes that got the virus and 

became cured, therefore RNodes ∈ U and S 

• PandemicTime which represents the duration of the 

pandemic. As long as the pandemic persists, there 

will always be large-scale contamination 

• R which is a random number associated with a node 

(person) and is used to talk about the reinfection of a 

node. Indeed, the World Health Organization (WHO) 

has had to define the probability of reinfection 

PReinfection which is 14% (Martínez-Álvarez et al., 

2020) and if R < PReinfection, the person is reinfected 

• PPropagation which represents the probability of 

propagation and PPropagation ∈ W 

Function Infection 

This function manages four lists: Nodes at risk of 

infection, infected nodes (the current set of infected 

individuals), uninfected nodes, nodes that have been 

cured and newly infected nodes (the set of newly infected 

nodes generated by the spread of coronavirus from 

currently infected nodes). We are looking for the sub-

graph of infected nodes at the output. 

Initially, the subgraph of infected nodes is associated 

with the empty set I = (V′, E′, W) ←  where V′ is the set 

of infected nodes and E is the border set associated with 

its infected nodes. The vertex ith of the randomly selected 

graph is considered the initial vertex vi ← vinitial and is 

added to the empty infected node set defined at the 
beginning V′ ← V′ ∪ {vi}, i.e., it is the infected node that 

allows the infection function to start. The number of 

iterations is controlled by the main loop, which evaluates 

the duration of the pandemic because as long as the 

pandemic is not over, the loop will continue to run but also 

with all infected nodes strictly greater than 0, meaning 

that there is at least one infected person (time < 

PandemicTime and SizeOf V' >0). Indeed, at least one 

person would have to be infected for the virus to spread. 

We then check the condition for the initial node vi ∈ V, 

such that if its degree is strictly greater than zero (dG(vi) 

>0) and the probabilities of propagation with its direct 

neighbors are strictly greater than zero (PPropagation(vi,vi+1) 

>0), then we get a list of nodes that will be nodes infected 

by the initial node (Infected Nodes). The condition dG(vi) 

>0 is checked because it can be in the case where the 

number of relations of a node with its neighbors is zero 

and it is said that it is an isolated person or a dead person 

so not in the presence of a virus spread.
 

 
 

Fig. 5: Neo4j cluster architecture
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Fig. 6: Example EPGM database representing a simple social network containing three logical graphs (Junghanns et al., 2016) 
 

After checking that the previously obtained list of 

infected nodes is not empty, the list of infected nodes is sent 

directly to a new list called the list of newly infected nodes 

(NodesNewlyInfected ← InfectedNodes). We then send the 

list of newly infected nodes obtained in the set of infected 

nodes (V ' ← NodesNewlyInfected). We therefore say that 

this set of infected nodes is completed as the pandemic 

continues to exist, hence the condition time <PandemicTime 

and the increment time ← time +1 have been placed in our 

algorithm to signify the existence of this pandemic. 

Neighbors of the infected node include both infected nodes, 

uninfected nodes, cured nodes and nodes at risk of infection 

connected by edges defined by the probabilities of virus 

propagation, providing a broad means of observing the 

propagation of the virus in a community graph. 

Function Reinfection 

This function is used to treat the case of the new infection. 

We say that for the node belonging to the list of infected 

nodes (v ∈ InfectedNodes) therefore is not a cured node and 

is not a susceptible node. However, if the node is cured, it 

can still be reinfected if its probability of reinfection is less 

than the value defined by WHO (R<PReinfection). 

Function COV19-Dijkstra 

Indeed, during propagation, from the initial infected 

node, a shorter path can be obtained and a prediction of the 

possible infected node can be made in a graph. As explained 

above with the Dijkstra algorithm, two sets are interesting, 

namely the set V which contains all the vertices of a 

community network and the set V' which contains the 

promising vertices. All the vertices have as structure the key-

value pair according to the EPGM model seen above. 

The first step is to initialize the distance dist(vinitial) to 

0 (dist(vinitial) ← 0) and to initially assume that all the 

vertices of the graph vi ∈ V have as infinite distance 

(dist(vi) ← ∞). We take the node ith of the graph as the 

initial node (vi ← vinitial). In the loop V'  V which ensures 

the functioning of the algorithm, we start by extracting 

the minimum distance which is for the first iteration vi 

that we will note vcurrent and, which is added in the set 

of infected nodes (V ∪{vcurrent}) which is empty at the 

beginning (V' ← ). The next step thus consists in 

exploring and selecting the promising vertices until all 

the vertices of the target graph are found using the 

function add-new-infected-node and then we use the 

function Generate-Path to extract the path of the 

selected vertices and a concatenation is made to 

constitute all the shortest paths from the initial node to 

all the other nodes of the graph. 

 

Algorithm 1: Function infection 

1 Input 

2 G = (V, E, W): Undirected Graph 

3 vinitial: Node initial 

4 Output 

5 I = (V ′, E′, W): Subgraph of infected nodes 

6 Start 

7 I = (V ′, E′, W) ←  

8 time ← 0 

9 vi ← vinitial 

10 V ′← V ′∪ {vi} 

11 while time < PandemicTime and SizeOf(V ′) > 0 do 

12 for vi ∈ V ′ do 

13 if dG(vi) > 0 and PPropagation(vi, vi+1) > 0 then 

14 In f ectedNodes ← infect(SNode, infected, 

RNodes, PPropagation) 

15 if NInfectedNodes > 0 then 

16 NodesNewlyIn fected ←InfectedNodes 

17 end 

18 end 

19 end 

20  V ′← NodesNewlyInfected 

21  time ← time + 1 

22 end 
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Algorithm 2: Function reinfection 

1 Input 

2 G = (V, E, W): Undirected Graph 

3 Output 

4 NewInfectedNodes 

5 Start 

6 R ← RandomNumber() 

7 for v ∈ InfectedNodes do 

8 if v SNodes then 

9 if v  RNodes then 

10 NewInfectedNodes ← v 

11 else 

12 if R < PReinfection then 

13 NewInfectedNodes ← v 

14 remove v from RNodes 

15 end 

16 end 

17 end 

18 end 
 

Algorithm 3: Function Cov19-Dijkstra 

1 Input 

2 G = (V, E, W): Graph 

3 vinitial: Node initial 

4 Output 

5 GP: All the shortest paths 

6 Start 

7 V ′ ←  

8 dist(vinitial) ← 0 

9 for all vi ∈ V do 

10 dist(vi) ← ∞ 

11 end 

12 vi ← vinitial 

13 while V ′ ̸ = V do 

14 vcurrent ← Choose the minimum distance between 

all vertices 

15 V ′ ← V ′ ∪ {vcurrent } 

16 V ′ ← Add-New-Infected-Node(G, vcurrent) 

17 E′ ← Generate-Path(V ′, vcurrent) 

18 end 
 

Algorithm 4 describes the function add-new-

infected-node and takes as input the graph G and the 

current peak vcurrent to be expanded. It then explores in 

depth the neighborhood of the current vertex. For each 

developed vertex, it evaluates whether this vertex is 

infected, at risk of infection, not infected or already 

healed. It thus evaluates if the condition dist(vcurrent)+ 

w(vcurrent, vi+1) < dist(vi+1) is checked, then dist(vi+1) ← 

dist(vcurrent)+ w(vcurrent, vi+1). The node vi+1 thus becomes 

infected and we add it to the set of infected nodes V ' 

(V ' ← V ' ∪{vi+1}). 

Algorithm 5 describes the function Generate-Path ′ 

and takes as input the set of infected nodes V' produced in 

the add-new-infected-node function but also the current 

vertex vcurrent. Knowing that we have vcurrent to reach vi+1, 

which represents the edge {(vcurrent, vi+1)} and will be added 

to the set of edges of the infected nodes sub-graph E′ ← E′ ∪ 

{(vcurrent, vi+1)} which is empty at the beginning E ' ← . 

Finally, we concatenate the edges of ′ our edges which are 

the vertices contained in V in order to build the paths. 

 

Algorithm 4: Function add-new-infected-node 

1 Input 

2 G = (V, E, W): Graph 

3 vcurrent : Infected start vertex 

4 Output 

5 V ′: Set of infected nodes 

6 Start 

7 for each vi+1 ∈ V and (vcurrent, vi+1) ∈ E such 

 that PPropagation (vcurrent, vi+1) > 0 do 

8 if dist (vcurrent) + w(vcurrent, vi+1) < dist(vi+1) then 

9 dist(vi+1) ← dist(vcurrent) + w(vcurrent, vi+1) 

10  vi+1 ← Infected (SNodes, infected, RNodes, 

PPropagation) 

11 V ′← V ′ ∪ {vi+1} 

12 end 

13 end 

 

Algorithm 5: Function generate-path 

1 Input 

2 V ′: Set of infected nodes 

3 vi: Current node 

4 Output 

5 GP: Generate the path 

6 Start 

7 E′←  

8 for each vi+1 ∈ V ′ do 

9 E′← E′ ∪ {(vcurrent, vi+1)} 

10 GP ← Concat (E′) 

11 end 

 
The output of the model, thus gives the sub-graph of 

infected nodes I = (V ', E ', W) which covers all the shortest 

paths from a source infected node to the other nodes that 

have become infected in the graph. While the algorithm is 

running, it evaluates the shortest paths from the infected 

node with the other nodes in the graph, but also helps to 

predict which nodes are at risk of infection and then take 

appropriate action to try to stop the chain of transmission. 

Experimental Results 

In this section, we present the results obtained by 

the COV-19-Dijkstra model. We will talk about the 

complexity of COV-19-Dijkstra computation time and 

propagation rate to know on average how many nodes 

an infected node can contaminate and present the 

different numbers of infected nodes obtained during the 

different iterations. 
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Environment Setup and Datasets 

We used neo4j-community version 4.1.1 and an Apache 
NetBeans IDE 12.1 with Java 1.8.0 265; OpenJDK 64-Bit 
Server VM 25.265-b01 and OpenJDK Runtime 
Environment 1.8.0 265-8u265-b01-0ubuntu2 18.04-b01 
under Linux system version 4. 15.0-117-generic running on 
amd64; UTF-8; in GB (nb) on a computer with Intel Core i5-
8250U processor at 1.60 GHz × 8 and 7.7 GB RAM, running 
on Ubuntu 18.04.4 LTS operating system. 

We perform our experimental studies using randomly 

generated data sets with the Neo4j benchmark 

randomized graph because of the need for hospitals and 

other medical services to keep their patient data private. The 

generator creates heterogeneous social network graphs with 

a fixed model similar to Fig. 6 where the nodes are Person 

type and the edges are Knowledge type with some 

probability of virus propagation on the edges that are 

randomly assigned. The generated graphs thus mimic the 

structural characteristics of real-world networks based on 

communities already known a priori (Ghasemian et al., 

2019). In generating these graphs, we have taken into 

account people with no social life, i.e., having no relationship 

with other people in the community or having only one 

relationship in the graph. In order to generate these 

graphs, a parameter µ which is the average fraction of nodes 

neighboring a node that does not belong to any community 

to which the reference node belongs, allowed us to control 

the fraction of edges between communities. In our case, µ = 

0 to mean that all links are community links. Since the size 

of the communities was taken into account, we were able to 

generate graphs with many different nodes and at a large 

scale to better evaluate our model. 

Time Complexity 

In this section, we talk about the impact of increasing 
graph nodes on computation time. Indeed, we have carried 
out our study on graphs generated with 5000, 8000, 
10000, 20000, 50000, 100000, 500000, 800000, 900000 
and 1000000 nodes. Figure 7 shows the influence of the 
number of nodes on the computation time. Indeed, we say 
that the addition of new nodes promotes an exponential 
increase in temporal complexity. 
 

 
 
Fig. 7: Influence of number of nodes on the computation time 

 
 
Fig. 8: Average number of nodes infected by a single infected node 

 

 
 
Fig. 9: The number of nodes contaminated by an infected node 

in the graph 

 

We have noticed that the computing time will increase 

linearly each time the number of nodes increases. For 

example, we can see that with 100,000 nodes, the 

calculation time is between 0 and 200 sec, but multiplying 

this number by 100, we end up with a calculation time 

between 1000 and 1200 sec and even if we multiply the 

100,000 nodes by half of 100, we find ourselves with a 

calculation time of between 400 and 600 sec. 

The Propagation Rate 

In this section, we present the results of the 

propagation rate, i.e., the number of nodes that are 

infected on average by an infected node in the graph 

(reproduction number). Figure 8 shows the result of this 

propagation rate from the number of infected nodes for 

the different numbers of graphs generated. 

We can see that when comparing the propagation rate of 

a 5000 node graph to an 8000 node graph, there is a decrease 

in propagation rate. By further increasing the number of 

nodes, the propagation rate increases and at a generated 

graph of 500,000 nodes, the propagation rate seems to 

stabilize. This stability is due to the structure of the randomly 

generated graphs and to the good performance of our 

algorithm over a large number of nodes. 

Figure 9 shows us the number of infected nodes 

obtained for the different graphs generated. We say that 
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the result obtained is normal because the number of nodes 

infected by an infected node in the graph will continue to 

increase as the number of nodes in a graph increases. We 

notice that the more the number of nodes in the generated 

graphs increases, the more the number of infected nodes 

obtained for the different generated graphs increases. 

When we try to compare the number of infected nodes 

with the computation time versus the increase in the 

number of nodes, we say that as the computation time 

increases, so does the number of infected nodes. 

Therefore, the number of infected nodes depends on the 

computation time of our algorithm which depends on the 

number of nodes in the generated graphs. 

Discussion 

In this section, we discuss the aspects and advantages of 
our COV-19-Dijkstra: COVID-19 propagation model based 
on Dijkstra’s algorithm. First, one aspect concerns the 
optimal use of the graph. Indeed, we can say that a graph is 
optimal when all the nodes of the graph participate in the 
computation of the complete path. The answer to this 
question depends on the configuration of the graph that is 
generated. Being in a real-world configuration, there must be 
nodes that are not linked to other nodes. We are talking about 
cases of isolation and quarantine. That is why in our virus 
propagation model we specified the point where dG(vi) > 0 as 
a solution to this problem. 

The second aspect concerns the level of spread of the 

virus. Indeed, it is difficult to see the case when two nodes 

that are linked have a zero probability of propagation. To 

remedy this, in our propagation algorithm we thought of 

the following condition PProp (vcurrent, vi+1) > 0. 

Finally, the third aspect is the direct neighbor of an 

infected node. We may have a node (person) that already 

respects the barrier measures, so it is difficult to say that 

this node will be infected. Indeed, the idea of this study is 

to be able to predict which nodes are at risk of infection 

and to mitigate the chain of transmission of COVID-19, 

while not neglecting any case. 

Conclusion and Future Work 

To summarize, we proposed in this study a COVID-19 
propagation model based on the Dijkstra algorithm called 
COV19-Dijkstra to be able to compute the shortest path 
of COVID-19 infection in large-scale community 
networks in order to analyze and predict the transmission 
chain. Experiments have shown that our COV19-Dijkstra 
model is very powerful, very scalable and works well on 
large-scale graphs. Moreover, it is reliable and can be used 
in the fight against the rapid spread of COVID-19 in low 
and high population density areas. Thus, we say that our 
work represents a contribution to the fight against Covid-19 
and could generate more interest for other shorter path 
algorithms in graphs or for other infectious diseases. 

For future work, we are interested in: 

• The use of such a model on information transmission 

networks such as twitter concerning an infectious 

disease using the big data graph like Neo4j 

• The proposal of a new geospatial data model using 

the A* algorithm to plot and analyze the spread of the 

virus in a graph 

• The use of such a model which is proposed on a 

decentralized database for the storage and 

transmission of information such as the blockchain 
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