

© 2023 Arnaud Watusadisi Mavakala, Wilfried Yves Hamilton Adoni, Najib Ben Aoun, Tarik Nahhal, Moez Krichen,

Mohammed Y. Alzahrani and Franck Mutombo Kalala. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

COV19-Dijkstra: A COVID-19 Propagation Model Based on

Dijkstra’s Algorithm

1Arnaud Watusadisi Mavakala, 2Wilfried Yves Hamilton Adoni, 3,4Najib Ben Aoun,
2Tarik Nahhal, 3,5Moez Krichen, 3Mohammed Y. Alzahrani and 6Franck Mutombo Kalala

1African Institute for Mathematical Sciences, Senegal
2LIMSAD Laboratory, Hassan II University of Casablanca, Morocco
3College of Computer Science and Information Technology, Al Baha University, Saudi Arabia
4REGIM-Lab: Research Groups in Intelligent Machines, University of Sfax, Tunisia
5ReDCAD Laboratory, University of Sfax, Tunisia
6University of Lubumbashi, Lubumbashi, Democratic Republic of Congo

Article history

Received: 08-06-2022
Revised: 21-11-2022

Accepted: 07-12-2022

Corresponding Author:

Najib Ben Aoun

College of Computer Science and

Information Technology, Al

Baha University, Saudi Arabia
Email: najib.benaoun@ieee.org

Abstract: The presence of the coronavirus, known as COVID-19, has prompted

several researchers to study the mode of spread and the different defense mechanisms

of the virus. As a reminder, obtaining a vaccine, for which much research is being

conducted around the world, is a long and expensive process and it is unlikely that the

pandemic can be treated in time. In this article, we present a new way to assess and

limit the spread of the virus while trying to answer the following important questions:

How to use the shortest path algorithm in a graph to analyze and better understand the

spread of the virus? How to use the predictive power of the graph using the shortest

path algorithm to find the relationships of a person who might be most at risk? The

designed algorithm simulates how the virus spreads and infects people through the

graph. Since the size of the collected COVID-19 data can reach a large volume

over time and speaking of the graph concept, the NOSQL database including

Neo4j which is a graph oriented NOSQL database is used for data collection,

storage and processing. To enable the design and optimization of virus defense

systems, this study proposes a feasible approach to quantify and predict the

danger of a virus infection within a community.

Keywords: Coronavirus, COVID-19, Propagation, Graph Search Algorithm,

Dijkstra, All-Shortests, Nosql Database, Neo4j

Introduction

In December 2019, the first victim of Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
the virus responsible for the 2019 coronavirus
pandemic (COVID-19), was diagnosed in Wuhan,
China (Andersen et al., 2020). In the weeks leading up
to the diagnosis, the disease spread widely in mainland
China and other countries around the world, causing
global panic and resulting in the first major coronavirus
pandemic in a few months. However, long before
SARS-CoV-2, there was SARS-CoV-1 (Giannis et al.,
2020; Ru et al., 2020), responsible for the SARS
outbreak in 2002-2004 and MERS-CoV from the
Middle East and South Korea, responsible for the
MERS outbreak in 2012 (Cai et al., 2013; Giannis et al.,
2020; Liang, 2020). Unlike these two viruses, a
problematic feature of SARS-CoV-2 is the existence of
asymptomatic infections (Giannis et al., 2020). These
asymptomatic infections are unaware of their ability to

spread and thus lead to an increase in the number of
infected persons. This has contributed to the rapid and
global spread and the resulting drastic restrictions on
daily life around the world to block the spread of the
virus, such as the use of certain vaccines, masks, social
distancing (Lewnard and Lo, 2020), city closures,
school closures, traffic stoppages, community management
and health education knowledge that has been adopted
worldwide (de Bruin et al., 2020; Lin et al., 2020).

Because of the evolving epidemic (Sebastiani et al.,

2020) and in an effort to provide a means of maximum
contact tracing, we wish to address the following

important issues for COVID-19:

(a) How to use the shortest path algorithm in a graph to

analyze and better understand the spread of the virus?

(b) How do we use the predictive power of the graph from

the use of a shorter path algorithm to be able to find the

relationships of a person that may be the most risky?

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

76

The objective pursued in this study being to develop a

suitable conceptual model that allows modeling the

transmission process while considering the specific

characteristics of COVID-19 in particular, which is

different from some models that have been used to

describe the spread of biological viruses or virus

propagation in a network such as: Susceptible Infected

Susceptible (SIS) model (Cai et al., 2013; Liang, 2020;

Song and Hei, 2020), Susceptible-Infected-Remised

(SIR) model (Cai et al., 2013; Chen et al., 2020; Sameni,

2020), the Susceptible Exposed Infectious Recovered

(SEIR) model (Cai et al., 2013; Faranda and Alberti,

2020; Rǎdulescu et al., 2020) and the Susceptible

Infectious Recovered Dead (SIDR) model (Cai et al.,

2013). Thus, this modeling of the COVID-19 which has

become a pandemic, will therefore lead to large-scale

scenarios, involving a great computational complexity,

which led us to use the Dijkstra algorithm, to reduce this

great computational complexity.

In this study, we use Dijkstra’s algorithm which is an

algorithm that consists of computing the shortest paths in

order to prevent and combat COVID-19 transmission for

a large-scale graph. Indeed, researchers have been

confronted with finding the shortest paths with the upper

constraint on large graphs (Yang et al., 2019) and using a

shortest path based method for gene analysis and

prediction (Zhu et al., 2016). We propose both a new way

to simulate COVID-19 propagation on large graphs and a

COVID-19 propagation model based on the Dijkstra

algorithm for analysis and prediction. Parameters such as

node reinfection probability, propagation speed,

propagation probability are introduced into our model to

simulate Coronavirus activity with greater accuracy.

We use the graph-oriented database that is Neo4j with

artificial data because of the need for hospitals and other

medical services to keep their patient’s data private but

also, to involve all the factors affecting the spread of the

virus. Thus, to get closer to real life, we use randomly

generated data with the Neo4j benchmark randomized

graph which thus mimics the structural characteristics of

real-world networks based on communities already

known a priori (Ghasemian et al., 2019). The artificially

generated data took into account real life, as no element

was discarded, such as people who are isolated or have no

social life, people who have many relationships or only

one relationship and the types of relationships that

connect them. We consider a person to be infected in our

artificially generated data, which represents an infected

node in our large-scale graph and ensure that this node has

at least one relationship but also a very high probability of

propagation with a node at risk of infection.

Network and graph-based modeling has been used for

may applications Event detection (Mejdoub et al., 2015;

Aoun et al., 2011a-b; Zorzenon et al., 2021; Aoun et al., 2014;

Al Hakim et al., 2022; Silveira et al., 2022). Network-

based epidemic modeling has become increasingly

popular, as it allows us to describe not only the impact of

individual behavior on the spread of infection, but also to

determine the best strategies for mitigating the impact of

infectious diseases. When considering large-scale

scenarios, there is a great deal of computational complexity

involved. Thus, (Zorzenon et al., 2021) proposed a new

notion of graph called contagion graph where, they

proposed a graph-based method, derived from Dijkstra’s

algorithm, which allowed them to reduce the

computational complexity of a simulation. This contagion

graph was used as an approximation scheme describing

the average behavior of an epidemic on a network and

requiring low computing power. Therefore, it is important

to point out that the Dijkstra algorithm mentioned earlier,

is an algorithm whose concept is to determine the

minimum service on certain routes and to produce sets of

solutions (Al Hakim et al., 2022). The Dijkstra algorithm

can determine the shortest path in the search for maritime

traffic, for example, as in the research (Silveira et al.,

2022) where the researchers tried to determine the shortest

Dijkstra path to characterize in a systematic way the

maritime traffic of the continental coast of Portugal but

also, between two other borders identified as potentially

interesting by observing the traffic density maps. The

modeling of this approach consisted of constructing a

graph in which the nodes are cells of a grid covering the

geographical area under study and the weights of the

directional edges that are inversely related to the

movements of ships between the cells.

Currently, the modeling of a complex system such as

the spread of the COVID-19 infection is among the topical

issues despite the fact that several other modeling cases to

help prevent and control the transmission of COVID-19

have been proposed since the outbreak of the pandemic

(Block et al., 2020; Hope et al., 2020; Ordun et al., 2020;

Yilmaz et al., 2020) and, the majority of his proposed

models on the spread of COVID-19 infection have

emphasized the prominent role of direct human-to-human

transmission in the COVID-19 epidemic (Chan et al.,

2020; Sahin et al., 2020; Yang and Wang, 2020). But,

despite the existence of a large number of proposed

models, the majority do not take into consideration the

epidemiological characteristics of COVID-19 such as

social distance, contact time with the infected person.

Thus in (Alguliyev et al., 2021), they proposed a graph-

based modeling of the spread of COVID-19 infection

where they reviewed the studies related to the modeling

of COVID-19 pandemic and analyzed the factors

affecting the spread of the disease and its main

characteristics while taking into account the social

distance, duration of contact with an infected person and

its local demographic characteristics. They developed a

graphic model of the process from the first confirmed case

of infection to the transmission of the virus from human

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

77

to human and visualized it considering the

epidemiological characteristics of COVID-19.

Unfortunately, they could not take into account all the

factors that influence the increase in the number of

cases of infection such as social, economic and

demographic factors, population density, etc. In this

study, we did not exclude any of these factors that were

cited as influencing the increase in the number of cases of

infection for our modeling.

The size of COVID-19 data collected from all over the

world keeps growing over time. Therefore, Khashan et al.

(2020) had proposed a storage framework capable of

handling SQL and NOSQL databases which they had

renamed COVID-QF for COVID-19 datasets to address

and manage the problems related to the spread of the

virus worldwide while reducing the processing time.

The graph-oriented database that is Neo4j, which is a

NOSQL database, has enabled several researchers to

model and study tens of billions of nodes, properties

and relationships in a single graph to address and

manage real-world problems.

Problem Statement

In this section, we introduce and define the graph

elements necessary for modeling the propagation of the

virus. The important elements that will be used

throughout this study.

Let G = (V, E) a directed graph, where V is the finite

set of vertices and E = {(vi, vj)\vi, vj ∈ V} is the set of edges

connecting the pairs of vertices of V. A weight can be

assigned to an edge, in this case the graph G = (V, E, W)

becomes weighted where W: E →  is a weighting

function associated with the edges of E. Representing a

community of people in the form of the G graph, we have:

• For all vi ∈ V, vi represents the person ith in the so-

called community graph

• Each of the edges (vi, vj) ∈ E represents the

relationship between person i and person j in the

community graph

• A sub-graph of G is defined as a sub-community of

people in the community graph G. We have three sub-

graphs: Sub-graph of infected people (I), subgraph of

uninfected people (U) and sub-graph of people at risk

of infection (S)

• The outer half degree of the vi vertex of G noted by

Gd + (vi) which is the number of arcs from vi. So, it is

the number of people the person i knows in the

community graph

• The inner half degree of the vertex vi noted by Gd − (vi)

which is the number of arcs ending in vi. So, it is the

number of people who know the person i in the

community graph

• The degree of vi in G noted by dG(vi) = Gd +
 + (vi)+ Gd −

(vi) which is the number of arcs admitting vi as end or

neighbor. So, it is the number of relationships of the

person i in the community graph

The propagation of the COVID-19 virus within a

community is spread from person to person by way of

aerosols, droplets that are expelled when an infected

person talks, sneezes or coughs and can end up on objects

that are touched and then by touching their face. We take

G = (V, E, W) a non-oriented graph (Fig. 1) because we

do not know the different directions of the arcs on the

existing relationships between people, for example who is

a friend of whom in the community, such that for any vi ∈

I, vj ∈ U and vs ∈ S, the person i can transmit the disease

to the close person j and the close person s under certain

probabilities of propagation the virus (PPropagation) within

the community, as shown in Fig. 2.

Fig. 1: Community network

Fig. 2: Propagation of the virus

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

78

This propagation of the virus through a graph is done

with a certain speed. Thus, it is said that the speed of virus

propagation in the community graph is defined as follows:

InfectedNodes

propagation

N
Speed

t
=

where, NInfectedNodes = |I| is the number of infected nodes in

the graph and t is the time taken to infect the entire graph.

Following the propagation of the virus, we say that the

probability PInfectedNodes gives us the probability of infected

nodes in the graph whose formula is:

InfectedNodes

InfectedNodes

N
P

N
=

the probability PUninfectedNodes for uninfected nodes is:

UninfectedNodes

UninfectedNodes

N
P

N
=

and for the probability PRiskNodes of nodes with risk of

infections is:

RiskNodes
RiskNodes

N
P

N
=

where, N = |V| is the total number of nodes,

NUninfectedNodes = |U| is the number of uninfected nodes

and NRiskNodes = |S| is the number of nodes with risk of

infections. An infected node thus transmits the virus to

its uninfected immediate neighbor and once the

neighboring node becomes infected, it too will continue

to transmit the virus to its uninfected immediate

neighbors and so on in the graph.

Background

In this section, we explain and give the principle of

path finding with the single-source Dijkstra algorithm.

Then, we discuss the graph-oriented database that is

Neo4j and its Extended Properties Graph Model (EPGM)

(Junghanns et al., 2016) which is an extension of a model

belonging to the graph family, namely the Property Graph

Model (PGM) (Rodriguez and Neubauer, 2010).

Path Computing with Dikjstra’s Algorithm

The algorithm was developed by computer scientist

Edsger W. Dijkstra in 1956. It allows to find from a starting

node and a destination node which are both known, a shortest

path between these two nodes, or to find from only one

known starting node, all the shortest paths from this node to

all the other nodes of the graph, we speak then about ”unique

source”. Dijkstra’s single source algorithm therefore consists

of defining the starting node and finding the shortest

weighted path to all other nodes in the network.

The principle of path searching with the single-source

Dijkstra algorithm (Fig. 3) can be described as follows.

Step 1: Initialization

Set of vertices V' ←  and of edges E' ← ; begin by

setting dist (vi) ← ∞ for each vertex vi ∈ V.

The initial vertex dist(vinitial) ← 0; the ith vertex is the

initial vi ← vinitial.

Step 2: Adding Vertices in V

vcurrent ← Choose the minimum distance between all 

vertices and vcurrent}:

Step 3: Vertex Expanding

For each edges (vcurrent, vi+1) ∈ E; if dist (vcurrent) + w

(vcurrent, vi+1) < dist(vi+1), then update dist(vi+1) ←

dist(vcurrent) + w (vcurrent, vi+1) and add the edge E' ← E'

∪{(vcurrent, vi+1)}

Step 4: Stopping Criteria

If V' = V then the path with all other vertices has

been found; otherwise, if V'  V then failure; otherwise

go to step 2.

The algorithm works with two main sets: V which

contains all the vertices of the graph and V which contains

the promising vertices of the subgraph covering the path.

The output of this algorithm consists in obtaining a sub-

graph that covers all the shortest paths, in which the

different vertices vi are classified in ascending order of

their minimum distance to the starting vertex. During each

iteration, a vertex of minimum distance is chosen outside

the sub-graph and added to the subgraph and the distances

of the vertices adjacent to the one added are updated by

doing dist (vi+1) ← dist (vcurrent) + w (vcurrent, vi + 1).

The single-source Dijkstra algorithm guarantees to find

the optimal path if for each edge (vcurrent, vi+1) ∈ E, the

triangular inequality is verified: dist (vcurrent) + w (vcurrent, vi+1)

< dist (vi+1). The complexity of this algorithm is such that the

initialization itself takes O(|V|) of time and the extraction of

the minimal vertex also takes O(|V|) of time. For the search

of the successor vertices, it takes O(d+(vi)) of time. Therefore,

the overall complexity of the Dijkstra algorithm is O(|V|2).

Neo4j

According to Neo4j documentation, Neo4j is an open-

source database written in Java and Scala, published under

a dual model of free software and commercial license

(Kan et al., 2017; Needham and Hodler, 2019; Jabri,

2020). It consists in implementing generic property graph

models and providing complete database features,

including Atomicity, Consistency, Isolation, Durability

(ACID) transaction compliance, cluster support and

execution failover. As indicated in Fig. 4 on the Neo4j

architecture, Neo4j stores graphic data in a number of

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

79

different storage files. The main components of this

architecture are its REST-based API, cache, transaction

log and log files (Kan et al., 2017).

Each component of the architecture has its own

importance which shows how the Neo4j database works.

We say that: The Traverser API therefore allows the user

to browse the graph with the help of reminders. Indeed,

the user can define an approach to search for a graph or

sub-graph using specific rules and algorithms. Caching

affects read and write performance. Transaction logs, on

the other hand, maintain all events and operations that

occur on the Neo4j database and log files are files storing

information about nodes, relationships and properties.

Fig. 3: Example on the Dijkstra’s single-source algorithm

Fig. 4: Architecture of Neo4j

Scalability and Redundancy

Neo4j enables high query performance on large

volumes of complex data. It can be deployed in two

modes. Standalone Server: This means that one instance

server is used and Highly Available cluster (HA): This

means that several instance servers are used. He HA

cluster is a master-slave architecture Fig. 5 which consists

of a single master server and a number of slave instance

servers. Each slave instance is synchronized with the

master server via the cluster management component to

maintain data consistency. A load balancer deployed

upstream of the cluster directly manages the read/write

operations of the client applications so that all read

requests are distributed to the slave instances and all write

requests are first synchronized with the master server and

then the results are sent to the client.

To complete a write load and ensure consistency, the

HA cluster requires a quorum to accept write operations.

This means that at least 1
2

S
+ hosts of cluster instances must

be online (where, S is the number of servers in the cluster). If

this quorum is not reached, the cluster will degrade to read-

only mode. In addition, Neo4j provides auto-clustering, in

case the current master server becomes unavailable, the

cluster management component ensures that a new master is

automatically elected. To ensure fault tolerance, the

complete graph data is replicated on each instance server of

the cluster and each server can host up to 34 billion nodes,

34 billion relationships and 68 billion properties.

The EPGM Model

The Neo4j database uses the Extended Properties

Graph Model (EPGM) model (Junghanns et al., 2016)

which is an extension of a model belonging to the family

of graphs, namely the Property Graph Model (PGM)

which was proposed in (Rodriguez and Neubauer, 2010) and

which is a directed, labeled and assigned multigraph. There

are data model requirements that the Property Graph Model

(PGM) cannot satisfy, such as the lack of support for graph

collections and associated operators. The Extended Property

Graph Model (EPGM) has been proposed to meet these

requirements. In this proposed model, a database consists of

several property graphs in the form of key-value pairs. These

graphs are generally called logical graphs and, have a type

label and may have different properties.

Formally, we define the graph of the EPGM model by

G = (, , L, , , ) where  a set of vertices,  a set

of edges and L a set of logical graphs. A logical graph

L = ⟨V, E⟩ is an ordered pair of a subset of vertices V

⊆  and a subset of edges E ⊆ . For labels associated

with  and ,  is used as the label alphabet T such

that ( ∪ ∪L) → . In the same way, the properties

which are of the form key-value pairs, are defined by

the set K of keys and the set A of values such as ( ∪
∪L) × →, as we can Fig. 6.

COV-19-Dijkstra

In this section, we present the spread of the virus in

the form of a graph and then propose a spread of

COVID-19 based on the Dijkstra algorithm. We

represent the entire population as an undirected G

graph with nodes representing persons and we

represent the infected population (I), the newly infected

population, the uninfected population (U) and persons

at risk of infection (S) as subgraphs of G.

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

80

We assume that a coronary patient positive or

patient zero in a community represents an initial v0

node and comes into contact with other people or other

nodes on the graph that are either already infected or

already healed or uninfected. Because it is an infectious

disease, it spreads throughout the community and the

choice of patient zero in that community is random. We

propose three functions, the first two of which are

constructed to simulate the spread of the virus in a

graph and the third one uses instead the Dijkstra

algorithm according to this mode of spread.

In order to model our different functions, we have used

some parameters that are necessary to explain from the

beginning such as:

• Infected which represents the list of infected nodes,

therefore Infected ∈ I

• SNodes as a list of nodes at risk of infection, therefore

SNodes ∈ U and S

• RNodes as a list of nodes that got the virus and

became cured, therefore RNodes ∈ U and S

• PandemicTime which represents the duration of the

pandemic. As long as the pandemic persists, there

will always be large-scale contamination

• R which is a random number associated with a node

(person) and is used to talk about the reinfection of a

node. Indeed, the World Health Organization (WHO)

has had to define the probability of reinfection

PReinfection which is 14% (Martínez-Álvarez et al.,

2020) and if R < PReinfection, the person is reinfected

• PPropagation which represents the probability of

propagation and PPropagation ∈ W

Function Infection

This function manages four lists: Nodes at risk of

infection, infected nodes (the current set of infected

individuals), uninfected nodes, nodes that have been

cured and newly infected nodes (the set of newly infected

nodes generated by the spread of coronavirus from

currently infected nodes). We are looking for the sub-

graph of infected nodes at the output.

Initially, the subgraph of infected nodes is associated

with the empty set I = (V′, E′, W) ←  where V′ is the set

of infected nodes and E is the border set associated with

its infected nodes. The vertex ith of the randomly selected

graph is considered the initial vertex vi ← vinitial and is

added to the empty infected node set defined at the
beginning V′ ← V′ ∪ {vi}, i.e., it is the infected node that

allows the infection function to start. The number of

iterations is controlled by the main loop, which evaluates

the duration of the pandemic because as long as the

pandemic is not over, the loop will continue to run but also

with all infected nodes strictly greater than 0, meaning

that there is at least one infected person (time <

PandemicTime and SizeOf V' >0). Indeed, at least one

person would have to be infected for the virus to spread.

We then check the condition for the initial node vi ∈ V,

such that if its degree is strictly greater than zero (dG(vi)

>0) and the probabilities of propagation with its direct

neighbors are strictly greater than zero (PPropagation(vi,vi+1)

>0), then we get a list of nodes that will be nodes infected

by the initial node (Infected Nodes). The condition dG(vi)

>0 is checked because it can be in the case where the

number of relations of a node with its neighbors is zero

and it is said that it is an isolated person or a dead person

so not in the presence of a virus spread.

Fig. 5: Neo4j cluster architecture

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

81

Fig. 6: Example EPGM database representing a simple social network containing three logical graphs (Junghanns et al., 2016)

After checking that the previously obtained list of

infected nodes is not empty, the list of infected nodes is sent

directly to a new list called the list of newly infected nodes

(NodesNewlyInfected ← InfectedNodes). We then send the

list of newly infected nodes obtained in the set of infected

nodes (V ' ← NodesNewlyInfected). We therefore say that

this set of infected nodes is completed as the pandemic

continues to exist, hence the condition time <PandemicTime

and the increment time ← time +1 have been placed in our

algorithm to signify the existence of this pandemic.

Neighbors of the infected node include both infected nodes,

uninfected nodes, cured nodes and nodes at risk of infection

connected by edges defined by the probabilities of virus

propagation, providing a broad means of observing the

propagation of the virus in a community graph.

Function Reinfection

This function is used to treat the case of the new infection.

We say that for the node belonging to the list of infected

nodes (v ∈ InfectedNodes) therefore is not a cured node and

is not a susceptible node. However, if the node is cured, it

can still be reinfected if its probability of reinfection is less

than the value defined by WHO (R<PReinfection).

Function COV19-Dijkstra

Indeed, during propagation, from the initial infected

node, a shorter path can be obtained and a prediction of the

possible infected node can be made in a graph. As explained

above with the Dijkstra algorithm, two sets are interesting,

namely the set V which contains all the vertices of a

community network and the set V' which contains the

promising vertices. All the vertices have as structure the key-

value pair according to the EPGM model seen above.

The first step is to initialize the distance dist(vinitial) to

0 (dist(vinitial) ← 0) and to initially assume that all the

vertices of the graph vi ∈ V have as infinite distance

(dist(vi) ← ∞). We take the node ith of the graph as the

initial node (vi ← vinitial). In the loop V'  V which ensures

the functioning of the algorithm, we start by extracting

the minimum distance which is for the first iteration vi

that we will note vcurrent and, which is added in the set

of infected nodes (V ∪{vcurrent}) which is empty at the

beginning (V' ← ). The next step thus consists in

exploring and selecting the promising vertices until all

the vertices of the target graph are found using the

function add-new-infected-node and then we use the

function Generate-Path to extract the path of the

selected vertices and a concatenation is made to

constitute all the shortest paths from the initial node to

all the other nodes of the graph.

Algorithm 1: Function infection

1 Input

2 G = (V, E, W): Undirected Graph

3 vinitial: Node initial

4 Output

5 I = (V ′, E′, W): Subgraph of infected nodes

6 Start

7 I = (V ′, E′, W) ← 

8 time ← 0

9 vi ← vinitial

10 V ′← V ′∪ {vi}

11 while time < PandemicTime and SizeOf(V ′) > 0 do

12 for vi ∈ V ′ do

13 if dG(vi) > 0 and PPropagation(vi, vi+1) > 0 then

14 In f ectedNodes ← infect(SNode, infected,

RNodes, PPropagation)

15 if NInfectedNodes > 0 then

16 NodesNewlyIn fected ←InfectedNodes

17 end

18 end

19 end

20 V ′← NodesNewlyInfected

21 time ← time + 1

22 end

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

82

Algorithm 2: Function reinfection

1 Input

2 G = (V, E, W): Undirected Graph

3 Output

4 NewInfectedNodes

5 Start

6 R ← RandomNumber()

7 for v ∈ InfectedNodes do

8 if v SNodes then

9 if v  RNodes then

10 NewInfectedNodes ← v

11 else

12 if R < PReinfection then

13 NewInfectedNodes ← v

14 remove v from RNodes

15 end

16 end

17 end

18 end

Algorithm 3: Function Cov19-Dijkstra

1 Input

2 G = (V, E, W): Graph

3 vinitial: Node initial

4 Output

5 GP: All the shortest paths

6 Start

7 V ′ ← 

8 dist(vinitial) ← 0

9 for all vi ∈ V do

10 dist(vi) ← ∞

11 end

12 vi ← vinitial

13 while V ′ ̸ = V do

14 vcurrent ← Choose the minimum distance between

all vertices

15 V ′ ← V ′ ∪ {vcurrent }

16 V ′ ← Add-New-Infected-Node(G, vcurrent)

17 E′ ← Generate-Path(V ′, vcurrent)

18 end

Algorithm 4 describes the function add-new-

infected-node and takes as input the graph G and the

current peak vcurrent to be expanded. It then explores in

depth the neighborhood of the current vertex. For each

developed vertex, it evaluates whether this vertex is

infected, at risk of infection, not infected or already

healed. It thus evaluates if the condition dist(vcurrent)+

w(vcurrent, vi+1) < dist(vi+1) is checked, then dist(vi+1) ←

dist(vcurrent)+ w(vcurrent, vi+1). The node vi+1 thus becomes

infected and we add it to the set of infected nodes V '

(V ' ← V ' ∪{vi+1}).

Algorithm 5 describes the function Generate-Path ′

and takes as input the set of infected nodes V' produced in

the add-new-infected-node function but also the current

vertex vcurrent. Knowing that we have vcurrent to reach vi+1,

which represents the edge {(vcurrent, vi+1)} and will be added

to the set of edges of the infected nodes sub-graph E′ ← E′ ∪

{(vcurrent, vi+1)} which is empty at the beginning E ' ← .

Finally, we concatenate the edges of ′ our edges which are

the vertices contained in V in order to build the paths.

Algorithm 4: Function add-new-infected-node

1 Input

2 G = (V, E, W): Graph

3 vcurrent : Infected start vertex

4 Output

5 V ′: Set of infected nodes

6 Start

7 for each vi+1 ∈ V and (vcurrent, vi+1) ∈ E such

 that PPropagation (vcurrent, vi+1) > 0 do

8 if dist (vcurrent) + w(vcurrent, vi+1) < dist(vi+1) then

9 dist(vi+1) ← dist(vcurrent) + w(vcurrent, vi+1)

10 vi+1 ← Infected (SNodes, infected, RNodes,

PPropagation)

11 V ′← V ′ ∪ {vi+1}

12 end

13 end

Algorithm 5: Function generate-path

1 Input

2 V ′: Set of infected nodes

3 vi: Current node

4 Output

5 GP: Generate the path

6 Start

7 E′← 

8 for each vi+1 ∈ V ′ do

9 E′← E′ ∪ {(vcurrent, vi+1)}

10 GP ← Concat (E′)

11 end

The output of the model, thus gives the sub-graph of

infected nodes I = (V ', E ', W) which covers all the shortest

paths from a source infected node to the other nodes that

have become infected in the graph. While the algorithm is

running, it evaluates the shortest paths from the infected

node with the other nodes in the graph, but also helps to

predict which nodes are at risk of infection and then take

appropriate action to try to stop the chain of transmission.

Experimental Results

In this section, we present the results obtained by

the COV-19-Dijkstra model. We will talk about the

complexity of COV-19-Dijkstra computation time and

propagation rate to know on average how many nodes

an infected node can contaminate and present the

different numbers of infected nodes obtained during the

different iterations.

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

83

Environment Setup and Datasets

We used neo4j-community version 4.1.1 and an Apache
NetBeans IDE 12.1 with Java 1.8.0 265; OpenJDK 64-Bit
Server VM 25.265-b01 and OpenJDK Runtime
Environment 1.8.0 265-8u265-b01-0ubuntu2 18.04-b01
under Linux system version 4. 15.0-117-generic running on
amd64; UTF-8; in GB (nb) on a computer with Intel Core i5-
8250U processor at 1.60 GHz × 8 and 7.7 GB RAM, running
on Ubuntu 18.04.4 LTS operating system.

We perform our experimental studies using randomly

generated data sets with the Neo4j benchmark

randomized graph because of the need for hospitals and

other medical services to keep their patient data private. The

generator creates heterogeneous social network graphs with

a fixed model similar to Fig. 6 where the nodes are Person

type and the edges are Knowledge type with some

probability of virus propagation on the edges that are

randomly assigned. The generated graphs thus mimic the

structural characteristics of real-world networks based on

communities already known a priori (Ghasemian et al.,

2019). In generating these graphs, we have taken into

account people with no social life, i.e., having no relationship

with other people in the community or having only one

relationship in the graph. In order to generate these

graphs, a parameter µ which is the average fraction of nodes

neighboring a node that does not belong to any community

to which the reference node belongs, allowed us to control

the fraction of edges between communities. In our case, µ =

0 to mean that all links are community links. Since the size

of the communities was taken into account, we were able to

generate graphs with many different nodes and at a large

scale to better evaluate our model.

Time Complexity

In this section, we talk about the impact of increasing
graph nodes on computation time. Indeed, we have carried
out our study on graphs generated with 5000, 8000,
10000, 20000, 50000, 100000, 500000, 800000, 900000
and 1000000 nodes. Figure 7 shows the influence of the
number of nodes on the computation time. Indeed, we say
that the addition of new nodes promotes an exponential
increase in temporal complexity.

Fig. 7: Influence of number of nodes on the computation time

Fig. 8: Average number of nodes infected by a single infected node

Fig. 9: The number of nodes contaminated by an infected node

in the graph

We have noticed that the computing time will increase

linearly each time the number of nodes increases. For

example, we can see that with 100,000 nodes, the

calculation time is between 0 and 200 sec, but multiplying

this number by 100, we end up with a calculation time

between 1000 and 1200 sec and even if we multiply the

100,000 nodes by half of 100, we find ourselves with a

calculation time of between 400 and 600 sec.

The Propagation Rate

In this section, we present the results of the

propagation rate, i.e., the number of nodes that are

infected on average by an infected node in the graph

(reproduction number). Figure 8 shows the result of this

propagation rate from the number of infected nodes for

the different numbers of graphs generated.

We can see that when comparing the propagation rate of

a 5000 node graph to an 8000 node graph, there is a decrease

in propagation rate. By further increasing the number of

nodes, the propagation rate increases and at a generated

graph of 500,000 nodes, the propagation rate seems to

stabilize. This stability is due to the structure of the randomly

generated graphs and to the good performance of our

algorithm over a large number of nodes.

Figure 9 shows us the number of infected nodes

obtained for the different graphs generated. We say that

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

84

the result obtained is normal because the number of nodes

infected by an infected node in the graph will continue to

increase as the number of nodes in a graph increases. We

notice that the more the number of nodes in the generated

graphs increases, the more the number of infected nodes

obtained for the different generated graphs increases.

When we try to compare the number of infected nodes

with the computation time versus the increase in the

number of nodes, we say that as the computation time

increases, so does the number of infected nodes.

Therefore, the number of infected nodes depends on the

computation time of our algorithm which depends on the

number of nodes in the generated graphs.

Discussion

In this section, we discuss the aspects and advantages of
our COV-19-Dijkstra: COVID-19 propagation model based
on Dijkstra’s algorithm. First, one aspect concerns the
optimal use of the graph. Indeed, we can say that a graph is
optimal when all the nodes of the graph participate in the
computation of the complete path. The answer to this
question depends on the configuration of the graph that is
generated. Being in a real-world configuration, there must be
nodes that are not linked to other nodes. We are talking about
cases of isolation and quarantine. That is why in our virus
propagation model we specified the point where dG(vi) > 0 as
a solution to this problem.

The second aspect concerns the level of spread of the

virus. Indeed, it is difficult to see the case when two nodes

that are linked have a zero probability of propagation. To

remedy this, in our propagation algorithm we thought of

the following condition PProp (vcurrent, vi+1) > 0.

Finally, the third aspect is the direct neighbor of an

infected node. We may have a node (person) that already

respects the barrier measures, so it is difficult to say that

this node will be infected. Indeed, the idea of this study is

to be able to predict which nodes are at risk of infection

and to mitigate the chain of transmission of COVID-19,

while not neglecting any case.

Conclusion and Future Work

To summarize, we proposed in this study a COVID-19
propagation model based on the Dijkstra algorithm called
COV19-Dijkstra to be able to compute the shortest path
of COVID-19 infection in large-scale community
networks in order to analyze and predict the transmission
chain. Experiments have shown that our COV19-Dijkstra
model is very powerful, very scalable and works well on
large-scale graphs. Moreover, it is reliable and can be used
in the fight against the rapid spread of COVID-19 in low
and high population density areas. Thus, we say that our
work represents a contribution to the fight against Covid-19
and could generate more interest for other shorter path
algorithms in graphs or for other infectious diseases.

For future work, we are interested in:

• The use of such a model on information transmission

networks such as twitter concerning an infectious

disease using the big data graph like Neo4j

• The proposal of a new geospatial data model using

the A* algorithm to plot and analyze the spread of the

virus in a graph

• The use of such a model which is proposed on a

decentralized database for the storage and

transmission of information such as the blockchain

Acknowledgment

Thank you to the publisher for their support in the

publication of this research article. We are grateful for the

resources and platform provided by the publisher, which

have enabled us to share our findings with a wider

audience. We appreciate the efforts of the editorial team

in reviewing and editing our work, and we are thankful for

the opportunity to contribute to the field of research

through this publication.

Funding Information

The authors have not received any financial support or

funding to report.

Author’s Contributions

Arnaud Watusadisi Mavakala and Wilfried Yves

Hamilton Adoni: Developed the theory and performed

the computations.

Najib Ben Aoun: Helps in the implementation part as

well as design.

Tarik Nahhal: Conceived the presented idea.

Moez Krichen: Conduct literature review and

perform the analysis.

Mohammed Y. Alzahrani: Provide first paper draft

and interpretated the results.

Franck Mutombo Kalala: Supervise all the work,

validate the idea.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Al Hakim, R. R., Purwono, P., Arief, Y. Z., Pangestu, A.,

Satria, M. H., & Ariyanto, E. (2022). Implementation

of Dijkstra Algorithm with React Native to

Determine COVID-19 Distribution. Sistemasi:

Jurnal Sistem Informasi, 11(1), 160-170.

 http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/articl

e/view/1667

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

85

Alguliyev, R., Aliguliyev, R., & Yusifov, F. (2021).

Graph modelling for tracking the COVID-19

pandemic spread. Infectious disease modelling, 6,

112-122. https://doi.org/10.1016/j.idm.2020.12.002

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E.

C., & Garry, R. F. (2020). The proximal origin of

SARS-CoV-2. Nature medicine, 26(4), 450-452.

https://doi.org/10.1038/s41591-020-0820-9

Aoun, N. B., Elghazel, H., Hacid, M. S., & Amar, C. B.

(2011a, August). Graph aggregation based image

modeling and indexing for video annotation.

In International Conference on Computer Analysis

of Images and Patterns (pp. 324-331). Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-

642-23678-5_38

Aoun, N. B., Elghazel, H., & Amar, C. B. (2011b, April).

Graph modeling based video event detection. In 2011

International Conference on Innovations in

Information Technology (pp. 114-117). IEEE.

 https://ieeexplore.ieee.org/abstract/document/5893799

Aoun, N. B., Mejdoub, M., & Amar, C. B. (2014, May). Bag

of sub-graphs for video event recognition. In 2014 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 1547-1551). IEEE.

https://ieeexplore.ieee.org/abstract/document/6853857

Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal,

C., Kashyap, R., & Mills, M. C. (2020). Social

network-based distancing strategies to flatten the

COVID-19 curve in a post-lockdown world. Nature

Human Behaviour, 4(6), 588-596.

 https://doi.org/10.1038/s41562-020-0898-6

Cai, F., Qingfeng, H., LanSheng, H., Li, S., & Xiao-Yang,

L. (2013). Virus propagation power of the dynamic

network. EURASIP Journal on Wireless

Communications and Networking, 2013(1), 1-14.

https://doi.org/10.1186/1687-1499-2013-210

Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu,

H., Yang, J., ... & Yuen, K. Y. (2020). A familial

cluster of pneumonia associated with the 2019 novel

coronavirus indicating person-to-person

transmission: A study of a family cluster. The lancet,

395(10223), 514-523.

 https://doi.org/10.1016/S0140-6736(20)30154-9

Chen, Y. C., Lu, P. E., Chang, C. S., & Liu, T. H. (2020).

A time-dependent SIR model for COVID-19 with

undetectable infected persons. Ieee transactions on

Network Science and Engineering, 7(4), 3279-3294.

https://ieeexplore.ieee.org/abstract/document/9200529

de Bruin, Y. B., Lequarre, A. S., McCourt, J., Clevestig,

P., Pigazzani, F., Jeddi, M. Z., ... & Goulart, M.

(2020). Initial impacts of global risk mitigation

measures taken during the combatting of the COVID-19

pandemic. Safety Science, 128, 104773.

https://doi.org/10.1016/j.ssci.2020.104773

Faranda, D., & Alberti, T. (2020). Modeling the second
wave of COVID-19 infections in France and Italy via
a stochastic SEIR model. Chaos: An
Interdisciplinary Journal of Nonlinear Science,
30(11), 111101. https://doi.org/10.1063/5.0015943

Ghasemian, A., Hosseinmardi, H., & Clauset, A. (2019).

Evaluating overfit and underfit in models of network

community structure. IEEE Transactions on

Knowledge and Data Engineering, 32(9), 1722-1735.

https://ieeexplore.ieee.org/abstract/document/8692626

Giannis, D., Ziogas, I. A., & Gianni, P. (2020).

Coagulation disorders in coronavirus infected

patients: COVID-19, SARS-CoV-1, MERS-CoV and

lessons from the past. Journal of Clinical Virology,

127, 104362.

 https://doi.org/10.1016/j.jcv.2020.104362

Hope, T., Portenoy, J., Vasan, K., Borchardt, J., Horvitz,

E., Weld, D. S., ... & West, J. (2020). SciSight:

Combining faceted navigation and research group

detection for COVID-19 exploratory scientific

search. arXiv preprint arXiv:2005.12668.

https://arxiv.org/abs/2005.12668

Jabri, E. (2020). A Novel Approach for Generating

SPARQL Queries from RDF Graphs. arXiv preprint

arXiv:2006.02862. https://arxiv.org/abs/2006.02862

Junghanns, M., Petermann, A., Teichmann, N., Gómez,

K., & Rahm, E. (2016, July). Analyzing extended

property graphs with Apache Flink. In Proceedings

of the 1st ACM SIGMOD Workshop on Network Data

Analytics (pp. 1-8).

 https://doi.org/10.1145/2980523.2980527
Kan, B., Zhu, W., Liu, G., Chen, X., Shi, D., & Yu, W.

(2017). Topology modeling and analysis of a power grid
network using a graph database. International Journal
of Computational Intelligence Systems, 10(1),
1355-1363. https://doi.org/10.2991/ijcis.10.1.96

Khashan, E. A., Eldesouky, A. I., Fadel, M., &
Elghamrawy, S. M. (2020). A big data based
framework for executing complex query over Covid-19
datasets (Covid-QF). arXiv preprint
arXiv:2005.12271. https://arxiv.org/abs/2005.12271

Lewnard, J. A., & Lo, N. C. (2020). Scientific and ethical

basis for social-distancing interventions against

COVID-19. The Lancet Infectious Diseases, 20(6),

631-633.

https://www.thelancet.com/journals/lancet/article/PI

IS1473-3099(20)30190-0/fulltext

Liang, K. (2020). Mathematical model of infection kinetics

and its analysis for COVID-19, SARS and

MERS. Infection, Genetics and Evolution, 82, 104306.

https://doi.org/10.1016/j.meegid.2020.104306

Lin, S., Huang, J., He, Z., & Zhan, D. (2020). Which

measures are effective in containing covid-19?—

empirical research based on prevention and control

cases in China. MedRxiv.

 https://doi.org/10.1101/2020.03.28.20046110

Arnaud Watusadisi Mavakala et al. / Journal of Computer Science 2023, 19 (1): 75.86

DOI: 10.3844/jcssp.2023.75.86

86

Martínez-Álvarez, F., Asencio-Cortés, G., Torres, J. F.,

Gutiérrez-Avilés, D., Melgar-García, L., Pérez-Chacón,

R., ... & Troncoso, A. (2020). Coronavirus optimization

algorithm: A bioinspired metaheuristic based on the

COVID-19 propagation model. Big Data, 8(4),

308-322. https://doi.org/10.1089/big.2020.0051

Mejdoub, M., Aoun, N. B., & Amar, C. B. (2015). Bag of

frequent subgraphs approach for image

classification. Intelligent Data Analysis, 19(1), 75-88.

https://content.iospress.com/articles/intelligent-data-

analysis/ida00697

Needham, M., & Hodler, A. E. (2019). Graph algorithms:

Practical examples in Apache Spark and Neo4j.

O'Reilly Media.

Ordun, C., Purushotham, S., & Raff, E. (2020).

Exploratory analysis of covid-19 tweets using topic

modeling, umap and digraphs. arXiv preprint

arXiv:2005.03082. https://arxiv.org/abs/2005.03082

Rǎdulescu, A., Williams, C., & Cavanagh, K. (2020).

Management strategies in a SEIR-type model of

COVID 19 community spread. Scientific reports, 10(1),

1-16. https://doi.org/10.1038/s41598-020-77628-4

Rodriguez, M. A., & Neubauer, P. (2010). Constructions

from dots and lines. arXiv preprint arXiv:1006.2361.

https://arxiv.org/abs/1006.2361

Ru, H., Yang, E., & Zou, K. (2020). What do we learn

from SARS-CoV-1 to SARS-CoV-2: Evidence from

global stock markets. Available at SSRN, 3569330.

Sahin, A. R., Erdogan, A., Agaoglu, P. M., Dineri, Y.,

Cakirci, A. Y., Senel, M. E., ... & Tasdogan, A. M.

(2020). 2019 novel coronavirus (COVID-19) outbreak:

A review of the current literature. EJMO, 4(1), 1-7.

Song, B., & Hei, X. (2020). Models and strategies on

reopening lockdown societies due to COVID-19. OSF

Prepr, 10. https://www.xialihei.com/wp-

content/uploads/2020/04/English.pdf

Sameni, R. (2020). Mathematical modeling of epidemic

diseases; a case study of the COVID-19

coronavirus. arXiv preprint arXiv:2003.11371.

https://arxiv.org/abs/2003.11371

Sebastiani, G., Massa, M., & Riboli, E. (2020). COVID-

19 epidemic in Italy: Evolution, projections and

impact of government measures. European Journal

of Epidemiology, 35(4), 341-345.

 https://doi.org/10.1007/s10654-020-00631-6

Silveira, P., Teixeira, A. P., & Soares, C. G. (2022).

Characterisation of ship routes off the continental

coast of Portugal using the Dijkstra

algorithm. Trends in Maritime Technology and

Engineering Volume 2, 151-159.

 ISBN-10: 9781003320289.

Yang, C., & Wang, J. (2020). A mathematical model for

the novel coronavirus epidemic in Wuhan,

China. Mathematical Biosciences and Engineering:

MBE, 17(3), 2708.

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC737

6496/

Yang, Y., Li, Z., Wang, X., & Hu, Q. (2019). Finding the

shortest path with vertex constraint over large

graphs. Complexity, 2019.

https://doi.org/10.1155/2019/8728245

Yilmaz, S., Dudkina, E., Bin, M., Crisostomi, E., Ferraro,

P., Murray-Smith, R., ... & Shorten, R. (2020).

Kemeny-based testing for COVID-19. PLOS

One, 15(11), e0242401.

 https://doi.org/10.1371/journal.pone.0242401

Zhu, L., Zhang, Y. H., Su, F., Chen, L., Huang, T., & Cai,

Y. D. (2016). A shortest-path-based method for the

analysis and prediction of fruit-related genes in

arabidopsis thaliana. PloS one, 11(7), e0159519.

https://doi.org/10.1371/journal.pone.0159519

Zorzenon, D., Molinari, F., & Raisch, J. (2021, May). Low

Complexity Method for Simulation of Epidemics Based

on Dijkstra's Algorithm. In 2021 American Control

Conference (ACC) (pp. 3018-3025). IEEE.

https://ieeexplore.ieee.org/abstract/document/9483311

