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Abstract: This study is a new version of a previous paper. Its purpose is to 

simplify some sections of the old version and, above all, to present the proofs 

of some theorems which had been omitted for the sake of brevity. The 

analysis discussed in this study and its previous version is based on a well-

known NP-complete problem which is called the "satisfiability problem" or 

"SAT". From SAT a new NP-complete problem, called "core function", 

derives; this problem is described by a Boolean function of the number of the 

clauses of SAT. In this study, a new proof is presented according to which 

the number of gates of the minimal implementation of core function increases 

with n exponentially. Since the synthesis of the core function is an NP-complete 

problem, this result can be considered as the proof of the theorem which 

states that the class P of all the decision problems which can be solved in 

polynomial time does not coincide with the class NP of the problems for 

which an answer can be verified in polynomial time. 

 

Keywords: P-NP Question, Complexity, Boolean Functions, Satisfiability, 

Polynomial or Exponential Increase, Core Function 

 

Introduction 

A paper devoted to the proof of the theorem according 

to which P and NP do not coincide was presented to the 

Journal of Computer Science on September 2020 and 

published (Meo, 2021). According to the Journal of 

Computer Science at the end of August 2022 more than 

2200 readers had viewed that paper and more than 600 

readers had downloaded it. 
Some readers have asked some questions concerning 

a few theorems whose proofs had been omitted in that 
paper for the sake of brevity. To prove these theorems is 
the main purpose of this new version of that paper. 

The proof of inequality on the question PvsNP which 
had been presented in the previous paper and which will 
be completed in this study is based on the following steps: 
 
1. A new Boolean function called "core function" is 

derived from the well-known SAT function. The core 

function is equivalent to SAT according to the known 

definition of NP-completeness 

2. The main properties of the core function are 

presented and discussed 

3. It is shown that the number of gates necessary to 

implement core function increases exponentially with 

the size of the problem 
 

At present, no reader of my papers has found any 

mistake in the three steps of that proof. Future work 

might concern some mistakes which will be 

discovered. For example, if it will be proved that core 

function is not NP-complete, another function will be 

presented and discussed.  

The second line of future research might concern the 

direct synthesis of SAT function or some other function 

equivalent to SAT.  

Definitions 

A brief description of the definitions and properties well-

known among the scientists of modern computational 

complexity theory is presented in this section.  

P denotes the class of all the decision problems which 

can be solved in polynomial time. 

NP denotes the class of all the decision problems f 

satisfying the property that the function check (f) 

analyzing a witness of the decision problem is polynomial 

time decidable. 

“P = NP?”, or, in other terms, “Is P a proper subset of 

NP?”, is one of the most important open questions in 

modern computational complexity theory. 

A decision problem C in NP is NP-complete if it is in 

NP and if every other problem L in NP is reducible to it, 

in the sense that there is a polynomial time algorithm that 

transforms instances of L into instances of C producing 

the same output values.  

The importance of NP-completeness derives from the 

fact that, if we find a polynomial time algorithm for just 
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one NP-complete problem, then we can construct 

polynomial time algorithms for all the problems in NP 

and, conversely, if any single NP-complete problem does 

not have a polynomial time algorithm than no NP-complete 

problem has a polynomial time solution. 

The analysis discussed in this study will be based on 

the following well-known NP-complete problem which is 

called the "satisfiability problem or SAT". 

Given a Boolean expression containing only the names 

of variables (some of which may be complemented), the 

operators AND, OR, and NOT and parentheses, is there 

an assignment of TRUE or FALSE values to the variables 

which makes the entire expression TRUE.? 

It is well known that the problem remains NP-complete 

also when all the expressions are written in “conjunctive 

normal form” with 3 variables per clause (problem 

3SAT). In this case, the analyzed expressions will be of 

the type: 
 

 

 

 

11 12 13

21 22 23

1 2 3

...........................

t t t

F x OR x OR x and

x OR x OR x and

x OR x OR x



 (1) 

 
where: 

t = The number of clauses or triplets 

each xij = A variable in complemented or 

uncomplemented form 
 

Each variable may appear multiple times in that 

expression. 
Usually, the deterministic Turin machine is assumed 

as the computational model. In this study, the analysis will 
be developed concerning a family {Cn} of Boolean 
circuits, where Cn has n binary inputs and it produces the 
same binary output as the corresponding Turing machine. 

The equivalence between a deterministic Turing 
machine M processing some input x belonging to {0,1}n 
and an n-input Boolean circuit Cn is well known. It is also 
known that the number of gates, or AND, OR, NOT 
operators, appearing in circuit Cn, is polynomial in the 
running time of the corresponding Turing machine. 

The synthesis of the state of the art of question 
PvsNP can be found in (Fortnow, 2009; Cook, 1997; 
Mulmuley and Sohoni, 2001). 

Materials and Methods   

The Core Function 

The Boolean circuit implementing the function described 

by Eq. (1) will be called Ct or Cn. Indeed, the number t of 

triplets appearing in Eq. (1) plays the role of symbol n used 

in the standard complexity theory. In the following analysis, 

we shall use the symbol t when it is necessary to remember 

the number of triplets and n in the other cases. 

To simplify the analysis, circuit Cn will be 

decomposed into two processing layers called the 

"compatibility layer" and "core layer". 

Compatibility Layer 

A variable j of triplet i will be defined as “compatible” 

with variable k of triplet h when and only when, either: 
 

 The sign sij of the former variable is equal to the sign 

shk of the latter variable, or  

 The name <nij1 nij2 … nijm> of the former variable 

is different from the name <nhk1 nhk2 …nhkm> of the 

latter variable 
 

From that definition it follows that two “not 

compatible” variables have different signs and the same 

name; therefore, their AND is identically FALSE. 

The compatibility layer is composed of 3∙t∙(3∙t-3)/2 

identical cells, one for each pair of variables belonging to 

different triplets. 

The inputs of a cell will be the sign sij and the binary 

code <nij1 nij2 …nijm> of variable j of triplet i and the sign 

shk and the binary code <nhk1 nhk2 …nhkm> of variable k of 

triplet h. The output of the same cell c(i, j; h, k) will be 

TRUE when, and only when, the two variables are 

compatible between themselves. 

Therefore, the function implemented by a cell may be 

written as follows (by using the symbols ∗, + and! for 

representing AND, OR, and NOT operators, respectively):  
 

 

1 1 1 1

2 2 2 2

, ; ,   ! !

 ! !

 ! !

! !

ij hk ij hk

ij hk ij hk

ij hk ij hk

ijm hkm ijm hkm

c i j h k s s s s

n n n n

n n n n

n n n n

    

    

    



   

 (2) 

 
Variable c(i, j; h, k) will be called a “compatibility 

variable” or simply a “compatibility”. 

Core Layer 

The Boolean function implemented by the core layer 

will be called the “core function” of order t, where t is the 

number of triplets. It will be denoted with the symbol 

CF(t) or CF(n). The core layer processes only the 9∙t∙(t-1)/2 

compatibility variables c(i, j; h, k) and produce the global 

result of the computation. The core function can be 

determined by proceeding as follows. 

Consider one selection of variables appearing in Eq. (1), 

one and only one for each triplet, for all the triplets: 
 

1 21 , 2 , , ti i ti       (3) 

 
with, i1, i2, …., it ∈ {1, 2, 3} be the indexes <number of 

triplets, number of variables in the triplet> of the selected 

variables. They will be called "characteristic indexes". Let 
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Πk be the product of all the compatibility variables relative 

to the k-th of selections (3): 

 

     1 2 1 3 1 1, ;2, 1, ;3, ...... 1, ; ,k

t tc i i c i i c t i t i       (4) 

 

The core function can be defined as the sum: 

 
k

k   (5) 

 

of the products (4) relative to all the selections (3). 
For example, in the case of CF (3), the core function 

can be defined as follows: 

 

       

     

     

     

 

   

3  1,1;2,1 1,1;3,1 2,1;3,1

1,1;2,1 1,1;3,2 2,1;3,2

1,1;2,1 1,1;3,3 2,1;3,3

1,1;2,2 1,1;3,1 2,2;3,1

... 22 ...

(1,3;2,3) 1,3;3,3 2,3;3,3

CF c c c

c c c

c c c

c c c

other products

c c c

  

  

  

  



  

 (6) 

 

It is easy to prove that there is an assignment of values 

TRUE or FALSE to variables appearing in Eq. (1) which 

make the value of (1) equal to TRUE when and only 

when, the core function takes the value TRUE. 

Notice that the processing work of a cell increases as 

a polynomial function P(t) of the number of the variables 

since the increment of the length of the code of the name 

is logarithmic. Therefore, the total processing work of the 

compatibility layer increases as 9∙t∙(t-1)∙ P(t) where 

9∙t∙(t-1)/2 is the total number of the compatibility cells. 

Besides, the problem solved by the core layer is clearly 

in NP, because it is easy to verify a witness solution. It 

follows that, since the compatibility layer polynomially 

reduces an NP-complete problem (3SAT) to the problem 

solved by the core layer, the core function describes a new 

NP-complete problem.  

 Some properties of core function have been discussed 

in (Meo, 2008). 

A Theorem of Boolean Monotonic Functions 

Let f (x1, x2, ..., xh) be an isotonic Boolean function, 

that is a Boolean function that can be implemented with 

only AND and OR gates, applied to uncomplemented 

literals x1, x2, …, xh. It was believed that the minimum cost 

implementation of f (x1, x2,…,xh) always contains only OR 

and AND gates, but A. Razborov proved that there are 

isotonic functions whose minimum cost implementation 

contains also NOT gates (Razborov, 1985). 

However, there is an upper bound on the comparison of 

the costs of the minimum cost implementations with and 

without NOT gates. It is specified by the following theorem. 

Theorem 4.1 

Let Imin be one of the minimum cost implementations 

of the isotonic Boolean function f (x1, x2,...,xh), the cost 

being defined as the total number of AND, OR, or NOT 

gates. Let Cmin be the cost of Imin. 

There exists always an implementation J of f containing 

only and or gates (in addition, if necessary, to the NOT 

operators producing input variables! x1,! x2, ...,! xh) such that: 

 

   2 mincost J C h  
 

 
where, h is the number of variables. 

The proof of this theorem can be found in Chapter 4 of 

(Meo, 2021). 

This theorem will be used to simplify the analysis of 

core function circuits.  

Properties of Core Function 

It is easy to prove the following properties of the 

core function. 

Property 1 

A function defined by Eq. (5) isotone. 

Property 2 

Any product defined by Eq. (4) is a prime implicant of 

core function (that is, a Product of Compatibilities (“PoC”) 

which implies core function and no other term of it).  

Property 3 

Since the different selections of each of the 

variables defined by Eq. (3) are 3, the number of prime 

implicants of the core function is equal to 3 t. Each of 

these prime implicants is essential (that is, it does not 

imply a sum of other prime implicants) and it is the 

product of t∙(t-1)/2 compatibilities. 

Products of Compatibilities 

In the next sections, reference will be made to the 
following definitions. 

Definition of Spurious Compatibilities Pair 

A pair of compatibility variables {c(h,k;l,m), 
c(p,q;r,s)} is defined as a spurious pair if: 
 

 

 

 

 

1

1

h p and k q

or h r and k s

or p and m q

or r and m s

 

 

 

 
 

 

For example, the pair {c(1,1;2,1), c(1,2;3,1)} is 

spurious since the triplet 1 is associated with two different 

indexes of variables (1 and 2). 
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Definition of Spurious Products of Compatibilities 

A spurious Product of Compatibilities (spurious PoC) 

is a product of compatibility variables containing the 

elements of one or more than one spurious pair. 

For example, the PoC: 

 

     1,1;2,1 1,2;3,1 2,1;3,1c c c   

 
is a spurious PoC since it contains the elements of the 

spurious pair: 

 

    1,1;2,1 , 1,2;3,1c c
 

 

Definition of Impure Products of Compatibilities 

A PoC containing one or more complemented 

variables will be defined as an impure PoC. In particular, 

a term T of CF (that is, a PoC implying CF) which 

contains one or more complemented variables, will be 

defined as an impure term of CF. A product of 

compatibilities that is neither spurious nor impure will be 

defined as a pure product of compatibilities. 

Definition of Mark 

Consider a pure product of compatibilities satisfying 

the property that all the indexes of triplet {1,2,…,t} appear 

at least once in some variable. The product of the variables 

of such a subset will be defined as a "mark" or "pure 

mark" of the prime implicant of which it contains a subset 

of compatibilities. 

For example, in the case of CF (4), the PoC: 
 

     1, ;2, 1, ;3, 1, ;4,M c a b c a c c a d    (7) 

 
where the indexes of the triplet are elements of the set 

{1,2,3,4} and a, b, c, d are elements of {1,2,3} is a mark 

of the prime implicant: 
 

     

     

1, ;2, 1, ;3, 1, ;4,

2, ;3, 2, ;4, 3, ;4,

P c a b c a c c a d

c b c c b d c c d

  

  
 (8) 

 
since all the indexes of triplet appear at least once in Eq. (7).  

Definition of Spurious Mark 

A spurious PoC in which all the indexes of triplet 

appear at least once will be called a “spurious mark”. 

Notice that a spurious mark may be the mark of more than 

one prime implicant. For example, in the case of CF (3): 
 

     1,1;2,1 1,1;3,1 1,1;2,2c c c 
 

 
is a spurious mark of both the prime implicants: 
 

     1,1;2,1 1,1;3,1 2,1;3,1c c c 
 

and: 

     1,1;2,2 1,1;3,1 2,2;3,1c c c 
 

 
An impure PoC containing a (possibly spurious) mark 

will be defined as a (possibly spurious) impure mark. 

Definition of Extended Prime Implicant 

A term T of core function, that is, an implicant of core 

function (a product of literals implying core function), 

contains all the uncomplemented literals of a prime 

implicant. Therefore, it may be defined as an “extended 

prime implicant” (only) to remember that it contains all 

the compatibilities of a prime implicant.  

It may be a spurious extended prime implicant or an 

impure extended prime implicant or both a spurious and 

impure extended prime implicant. 

Notice that an extended prime implicant can be viewed 

as a (possibly spurious or impure) mark. 

Definition of Remainder 

A PoC which is neither a (possibly spurious or impure) 

mark nor an (extended) prime implicant will be called a 

remainder". Also, a remainder may be pure (if for any 

triplet index there is only one index of variable in that 

triplet) or spurious or impure. 

A pure remainder R may be implied by more than 

one prime implicant. For example, in the case of CF (3), 

R = c(2,1;3,1) is a remainder which is implied by the 

following prime implicants: 
 

     

     

     

1 1,1;2,1 1,1;3,1 2,1;3,1

2 1,2;2,1 1,2;3,1 2,1;3,1

3 1,3;2,1 1,3;3,1 2,1;3,1

P c c c

P c c c

P c c c

  

  

  

 (9) 

 
On the definitions of mark and remainder, the 

following property is based. 

Property 4 

Let P1 and P2 be two PoCs such that P1∗P2 is equal to 

a prime implicant P of the core function. Either P1 or P2 

is a mark of P. 

The External Core Function 

Let Ij be a prime implicant of CF(n). The external core 

function relative to Ij, ECF(n, Ij), is defined as the sum of 

all the minterms of CF(n) which imply Ij and no other 

prime implicant Ik of CF(n) with k ≠ j. (Remember that a 

minterm of a Boolean function F is a product of all the 

variables of F, some complimented and some others 

uncomplemented, implying F). 

Of course: 
 

   , !j j k j kECF n I I P I   (10) 
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where all the prime implicants of core function are involved 

and! Ik denotes the complement of Ik (i.e., NOT Ik). 

The global external core function of order n, or 

ECF(n), will be defined as the sum of ECF(n, Ij)’s relative 

to all the prime implicants Ij of CF(n): 

 

   , jj
ECF n ECF n I  (11) 

 

The importance of external core function derives from 

the following theorems. 

The proofs of these theorems can be found in (Meo, 2022; 

2008), except Theorem 7.5 which has been presented in 

Appendix 1 of this study. 

Theorem 7.1 

Let T be a term (or extended prime implicant) of CF(n). 

It may be the product of all the compatibilities of a prime 

implicant Ij of CF(n) and other compatibilities, that is: 

 

jT I X 
 

 

where X is a possibly empty PoC. T can also be written as 

T = T(Ij). 

All the minterms of T(Ij) contained in ECF(n) are 

minterms of ECF(n, Ij). 

Theorem 7.2 

Let T be a term of CF(n) implying two or more than 

two prime implicants of CF(n): 

 

 ,j kT T I I
 

 

The number of minterms of T(Ij, Ik) belonging to 

ECF(n) is equal to 0. 

Theorem 7.3 

Let T = T(Ij) = Ij∗X be a term of CF(n) which is 

spurious for a single not complemented compatibility X. 

If NMT(F) denotes the number of minterms of Boolean 

function F, the number of minterms of Ij∗X contained in 

ECF(n, Ij ) is: 

 

       , 1 / 2 . ,j j jNMT I X ECF n I NMT ECE n I    (12) 

 

However, for large values of n, as shown by the data 

of Appendix 1: 

 

       
~

, 1 / 2 . ,j j jNMT I X ECF n I NMT ECE n I  
 

 

By proceeding in the same way, it is possible to 

generalize the preceding Theorem 7.3 as follows. 

Theorem 7.4 

Let: 

1 2j mI X X X  
 

 
be a spurious term characterized by m spurious not 

complemented compatibilities.  

The number of its minterms contained in ECF(n, Ij) is: 
 

  

     

1 2 ,... ,

1 / 2 . ,

j m j

m

j

NMT I X X X ECF n I

NMT ECE n I

    


 

 
However, for large values of n, as shown by the data 

of Appendix 1: 

 

  

     

1 2 ,... ,

1 / 2 . ,

j m j

m

j

NMT I X X X ECF n I

NMT ECE n I

    


 (13) 

 

Theorem 7.5 

Let T = T(Ij) be an impure term of CF(n) characterized 

by a single impure variable (!X): 
 

 !jT I X 
 

 
For large values of n, the number of minterms of 

ECF(n, Ij) contained in T is: 
 

         ! , 1 / 2 . ,j j jNMT I X ECF n I NMT ECE n I    (14) 

 
The proof of this theorem can be found in Appendix 1. 

Theorem 7.6 

Let T = T(Ij) be an impure term of CF(n) characterized by 

m impure variables: 

 

     1 2! ! !j mT I X X X   
 

 

For large values of n, the number of minterms of 

ECF(n,Ij) contained in T is: 

 

        , 1 / 2 ,
m

j jNMT T ECF n I NMT ECF n I    (15) 

 

This theorem is an obvious extension of Theorem 7.5. 

Notice that NMT (ECF (n, Ij)) = NMT (ECF (n, Ik)) for 

any j and k. It will be called NMT1(n). 

Results and Discussion  

The Value of a Node 

Let U be a node of the network implementing core 

function and let F(U) be the Boolean function of 

compatibilities c(i, j, h, k) implemented by U. Since the 
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subnetwork having U as its input does not contain any 

NOT gate, we can write: 

 

   1 2 1 2 *  *CF F U x F U x y y      (16) 

 

where, x1, x2, …, y1, y2, …, are products of variables of 

core function, that is, products of compatibilities. Notice 

also that every F(U)*xi and every yj must be an extended 

prime implicant of the core function. As we shall see in 

some examples, generally a single product of 

compatibilities is sufficient to implement the core 

function according to the following equation: 

 

  1 2 *CF F U x y y     (17) 

 

where, x is single compatibility. 

x1, x2, …, y1, y2, …, or x will be called “completion code”. 
More than one solution of Eq. (16) and (17) can 

produce the value of the core function. However, we are 

looking for a solution characterized by the following 

property: The total number of minterms of the external 

core functions ECF(n, Ij) of the prime implicants 

produced by F(U) * x1 + F(U) * x2 + … s or by F(U) * x 

takes the maximum value. By definition, this maximum 

value will be considered as the value val(U) of the node U 

or the value val(F(U)) of the Boolean function 

implemented by U, on the condition that no xi (or x) is a 

mark, since, otherwise, the contribution of the subnetwork 

having U as its input might be considered as more 

important than the contribution of U. 

The values of x1, x2, …, or x which appear in the best 

solution of Eq. (16) and (17) will be called “optimal 

completion code”. 

It is easy to prove that the value of a pure remainder 

and the value of a Boolean function which can be 

described as a sum of remainders are always equal to 0. 

On the contrary, the value of a pure mark can be 

considered equal to NMT1(n) while the value of an impure 

mark can be considered equal to NMT1(n)·2-m, where m is 

the number of spurious or complemented compatibilities. 

Besides, the value of a Boolean function which is equal to 

a sum of marks is always less than or equal to the sum of 

the values of the considered marks. 

For example, as we shall discuss in the following sum 

of remainders of CF (4): 

 

       

         

1,1;2,1 * 1,1;3,1 * 2,1;3,1 1,2;2,1  

* 1,2;3,1 * 2,1;3,1 1,3;2,1 * 1,3;3,1 * 2,1;3,1

c c c c

c c c c c




 

 

has a value equal to 0, while the following sum of marks: 

 

       

         

1,1;2,1 * 1,1;3,1 * 1,1;4,1 1,2;2,1  

* 1,2;3,1 * 1,2;4,1 1,3;2,1 * 1,3;3,1 * 1,3;4,1

c c c c

c c c c c




 

has a value equal to 3 · NMT1(4). 

The Value of an OR Gate 

An OR gate characterized by n inputs can be 

implemented as a sum of two inputs OR gates. Therefore, 

we can restrict our attention to two inputs OR gates.  

The value of an OR gate having node A and node B as 

its inputs and node U as its output can be defined as: 
 

        OR   –   val A B val U val A val B   

 
On the statements discussed it is easy to prove the 

following simple rules for evaluating the values of 

functions F(U), F(A), and F(B), under the hypothesis that 

these three functions are written as the sums of their prime 

implicants: 
 
1. The value of a remainder is equal to 0 

2. The value of a sum of remainders is equal to 0 

3. The value of a pure mark is equal to NMT1(n). The 

value of an impure mark M is NMT1(n)·(1/2m) where, 

m is the number of spurious or impure compatibilities 

contained in M 

4. The value of a sum of marks is always equal to or less 

than the sum of the values of the prime implicants of 

core function which imply those marks 

5. Notice that, theoretically, a mark might derive from 

the Boolean sum of two or more than two remainders. 

For example, the mark of CF (4) m = c(1,1;4,1) * 

c(2,1;4,1) * c(3,1;4,1) might derive from the sum of 

the two remainders r1 = c(1,1;4,1) * c(2,1;4,1) * 

!c(1,1;3,2) and r2 = c(3,1;4,1) * c(1,1;3,2). Let 

remainders r1 and r2 be two of the inputs of the OR 

gate producing mark m and let U be the output of this 

OR gate. Since the circuit-producing CF does not 

contain NOT circuits, the value of the circuit-

producing CF can be written as follows: 
 

1 2 1 2

1 1 2 1 1 2 2 2 1 2

* *    

* * * *  

CF U x U x y y

r x r x r x r x y y

      

       
  

 
Since r1 and i2 are remainders, every xi must be a mark. 

Besides, either there is a yk equal to the prime implicant 

I(m) deriving from mark m or one of the products ri * xj is 

equal to I(m) and, therefore, the mark of I(m) is produced 

outside the considered OR operation. It follows that the 

production of a mark as the sum of two remainders cannot 

be used to generate new prime implicants.  

From these rules, it is easy to prove that val(U) is never 

larger than val(A) + val(B) and, therefore, the value of an 

OR gate can always be considered equal to 0. 

The Value of an AND GATE the Most Powerful 

and Gate 

As in the case of OR gates, an n inputs AND gate 

can be implemented as the product of two inputs AND 
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gates. Therefore, we can restrict our attention to two 

inputs AND gates. 

The value of an AND gate having A and B as its inputs 

and U as its output can be defined as: 

 

(   ) ( ) – ( ( ) ( ))val A AND B val U val A val B   

 

Since we are interested in identifying the most powerful 

AND gate, we shall assume that both F(A) and F(B) are sums 

of remainders so that both val(A) and (B) are equal to 0. 

Therefore, the value of the considered gate will be always 

equal to the value of output U. 

 

The most powerful AND gate can be identified by 

proceeding as follows: 

 

1. Let A = ( a1 + a2 + a3 + …) and B = (b1 + b2 + b3 + …), 

where all the ai and bj are remainders. A product ai * 

bj can produce more than one mark, but a product ai * 

bj * x cannot produce more than one prime implicant 

because the product of two prime implicants has a 

value equal to 0. To produce a pure prime implicant, 

the product ai * bj must produce a pure mark 

2. If a1 is a remainder, at least one of the t indexes of 

triplet does not appear in the list of triplet indexes of a1 

because, otherwise, it a1would be a mark. Let it be i’ 

For the same reason, at least another triplet index 

does not appear in the list of triplet indexes of b1. Let 

it be j’ 

By example: 

 

1

1

1 1 1

(1,1;2,1)* (1,1;3,1) * (2,1;3,1)

(1,1;4,1)* (2,1;4,1)

*

a c c c

b c c

m a b







 (18) 

 

Triplet index 4 is missing in a1; triplet index 3 is 

missing in b1. So that a1*b1*x is a prime implicant of 

CF (4), x must be equal to c(3,1;4,1) 

3. Eq. (18) is the example of two remainders whose 

product is a mark without spurious or impure 

variables. The value of that mark is NMT1(4) 

According to Theorems 7.3, 7.4, 7.5, 7.6, a mark 

containing a spurious or impure compatibility has a 

value equal to (1/2)·NMT1(n) while a mark 

containing m spurious or ·impure compatibilities has 

a value equal to (1/2m)·NMT1(n) 

4. Assume that a2*b1 is equal to a new mark as: 
 

2 (1,2;2,1)* (1,2;3,1)* (2,1;4,1)m c c c  (19) 

 
We can start by assuming a2= c(1,2;2,1) * c(1,2;3,1) 

* c(2,1;3,1) 

Since the optimal completion code x must be equal to 

c(3,1;4,1) and a2 cannot contain all the three 

compatibilities involving <1,2>, the value of b1 must 

be corrected by adding c(1,2;4,1) to b1: 

b1’ = b1* c(1,2;4,1) 

 

Therefore:  

 

     

     

1 1

2 1

*   1 / 2  · 1 4

*   1 / 2  · 1 4

val a b NMT

val a b NMT




 

 

No increment of the total value has been obtained by 

introducing a new mark  

5. To implement the new mark m2 without reducing the 

value of m1 it is necessary to introduce a new 

remainder b2 = c(1,2;4,1) * c(2,1;4,1) so that  

m2 = a2 * b2  

 

However, the products a1 * b2 and a2 * b1 are not 

marks. Therefore, it is necessary to introduce a 

correction like the following one: 

 

     

     

     

     

1

1

2

1

1,1;2,1 * 1,1;3,1 * 2,1;3,1

1,1;4,1 * 2,1;4,1 * 1,2;4,1

1,2;2,1 * 1,2;3,1 * 2,1;3,1

1,2;4,1 * 2,1;4,1 * 1,1;4,1

a c c c

b c c c

a c c c

b c c c









 

 

which is characterized by a total value equal to (1/2 + 

1/2) * NMT1(4) 

 

It is easy to prove that the best solution is the 

following: 

 

     

     

        

       

1

1

2

2

1,1;2,1 * 1,1;3,1 * 2,1;3,1

1,1;4,1 * 2,1;4,1 * 1,1;2,1

1,2;2,1 * 1,2;3,1 * 2,1,3,1 *! 1,1;2,1 20

1,2;4,1 * 2,1;4,1 * 1,2;2,1 *! 1,1;2,1

a c c c

b c c c

a c c c c

b c c c c









  

 

where: 

val (m1 = a1 * b1) = NMT1(4)  

val (m2 = a2 * b2) = NMT1(4) · (1/2) 

 

6. The two pairs of remainders appearing in (a1 + a2) * 

(b1+ b2) can produce four different marks. Appendix 

2 shows the best implementation. Its total value is 

(1/2) * NMT1(4), but the value of the four marks 

decreases very quickly with n. Therefore, there is no 

point in continuing this line 

 

7. By following the same line of reasoning which has 

made it possible to prove that Eq. (20) is the best 

solution for implementing two marks, it is easy to 

prove that the best solution for implementing three 

marks is the following one: 



Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98 

DOI: 10.3844/jcssp.2023.87.98 

 

94 

     

     

       

       

         

 

1

1

2

2

3

3

1,1;2,1 * 1,1;3,1 * 2,1;3,1

1,1;4,1 * 2,1;4,1 * 1,1;2,1

1,2;2,1 * 1,2;3,1 * 2,1,3,1 *! 1,1;2,1

1,2;4,1 * 2,1;4,1 * 1,2;2,1 *! 1,1;2,1

  1,3;2,1 * 1,3;3,1 * 2,1;3,1 *! 1,1;2,1 *! 1,2;2,1

1,3;4,1 * 2

a c c c

b c c c

a c c c c

b c c c c

a c c c c c

b c c











        ,1;4,1 * 1,3;2,1 *! 1,1;2,1 *! 1,2;2,1c c c

 (21) 

 

The value of this solution is: 

 

      1 1/ 2 1/ 4  · 1 4NMT   

 

8. Appendix 3 shows the best solution for implementing 

the marks of all the nine prime implicants of CF (4) 

compatible with the conditions that the variables <3,2>, 

<3,3>, <4,2>, <4,3> do not appear in that product and 

the completion code x takes the value c(3,1;4,1) 

The value of the gate implementing those imarks is: 
 

(1 (1 / 2) (1 / 4)) (1 (1 / 4) (1 /16)) 1(4)NMT       (22) 
 

which is slightly less than the: 
 

2(1 (1/ 2) (1/ 4)) · 1(4)NMT   (23)  

 

Equation (22) and (23) can be generalized according to 

the following equations which show the value of the best 

gate implementing the marks of 3(n-2) prime implicants: 
 

n-3(1 (1/ 2) (1/ 4)) (1 (1/ 4) (1/16)) ( )NMT n       (24) 
 
which is slightly less than: 
 

n.2(1 (1/ 2) (1/ 4)) · 1( )NMT n   (25) 

 

To prove that the solution proposed in Appendix 3 is the 

best consider three marks that are different for the value 

of one and only one triplet index. For example, the three 

marks m7 = a7 * b7, m8 = a8 * b8, and m9 = a9 * b9, which 

have been defined in Appendix 3, are different only for 

the values in triplet index 1 

In order that a7 * b8 = 0 and a8 * b7 = 0, both a8 and b8 

must contain compatibility !c(1,1;2,3). Therefore, the 

value of mark m8 will be multiplied by 1 / 2o 

In order that a7 * b9 = a9 * b7 = a8 * b9 = a9 * b8 = 0, 

both a9 and b9 must contain !c(1,1;2,3) *!c(1,2;2,3) 

No other solution makes it possible to reduce the 

values of m8 and m9 by a smaller value 

It is easy to verify on the data of Appendix 3 that all 

the triplets {mi, mj, mk} satisfying that property has 

received the same type of corrections and only those 

corrections have been applied  

Therefore, we can state that the solution proposed in this 

study leads to the best solution and that the maximum 

value of an AND gate of the type above specified is 

slightly less than (1 + (1/2) + (1/4))n-2 · NMT1(n) 

9. So far all the new marks contained only <3,1> and 

<4,1> in the compatibilities involving variables of triplet 

3 or 4. This condition can be removed to try to increase 

the value of the considered AND gate 

For example, as shown in Appendix 3, we can add 

nine new remainders a10 …a18 to a1…a9 and b10 …b18 

to b1…b9, where the new remainders are obtained by 

replacing all the appearances of <4,1> with <4,2>. 

Thus nine new marks and nine new prime implicants 

will be generated but the value of the considered gate 

will not be doubled. Indeed, the optimal completion 

code x, which was c(3,1;4,1> becomes c(3,1;4,1) * 

c(3,1;4,2) and the value of all the marks will be 

multiplied by (1/2) 

 

10. The lists (a1 + a2 +… +a9) and (b1 + b2 +…+b9u) can 

be updated as follows: 

 









1 10 19 28 37

46 55 64 73

1 10 19 28 37

46 55 64 73

 

a a a a a

a a a a

b b b b b

b b b b

   

     

    

    

 

 

where also the completion code should be updated: 

 

     

     

     

3,1;4,1 * 3,1;4,2 * 3,1;4,3

* 3,2;4,1 * 3,2;4,2 * 3,2;4,3 *

3,3;4,1 * 3,3;4,2 * 3,3;4,3

x c c c

c c c

c c c



 

 

Thus, all 81 prime implicants of CF (4) will be generated, 

but their total value will increase very slowly 

It is very hard to identify the most powerful AND 

gate in the implementation of CF(n). However, since 

the number of elementary products (a1 + a2 +…) *(b1 

+ b2 +…) is 9 and it has been proved that each of these 

products has the value shown by Eq. (24) and (25), it 

is obvious that the value of the most powerful AND 

gate is smaller than: 
 

        
2

 9 · 1 1 / 2 1 / 4 · 1
n

valmax n NMT n


    (26)  

 

Conclusion 

Since the number of minterms of ECF(n) contained in 
CF(n) is equal to 3n. NMT1(n) and the value of a gate, that is 
the number of new minterms produced by a gate, is less than: 

 

        
2

9 · 1 1 / 2 1 / 4 · 1
n

valmax n NMT n


  
 

 
the number of gates necessary to implement CF(n) is 
larger than 3n/(9·((1+1/2+1/4)(n-2))) and, therefore, it 
increases exponentially with n. 
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Since the synthesis of core function CF(n) is an NP-
complete problem, this result is equivalent to proving that 
P and NP do not coincide.  
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Appendix 1 

In order to prove Eq. (14) consider the following 

example relative to the external core function ECF (4,Ij) 

where, Ij is the prime implicant defined by the mark 

c(1,1;2,1) * c(3,1;4,1) and !X = !c(1,1;2,2).  

 

ECF (4, I) = 

c(1,1;2,1) * c(1,1;3,1) * c(1,1;4,1) * c(2,1;3,1) * c(2,1;4,1) 

* c(3,1;4,1)* 

(!c(1,1;2,1) + !c(1,1;3,1) + !i(1,1;4,2) + !c(2,1;3,1) + 

!c(2,1;4,2) + !c(3,1;4,2))*  

(!c(1,1;2,1) + !c(1,1;3,1) + !c(1,1;4,3) + !c(2,1;3,1) 

+!c(2,1;4,3) + !c(3,1;4,3))* 

(!c(1,1;2,1) +!c(1,1;3,2) + !c(1,1;4,1) + !c(2,1;3,2) + !c( 

2,1;4,1) + !c(3,2;4,1))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
(!c(1,1;2,2) +!c(1,1;3,1) + !c(1,1;4,1) + !i(2,2;3,1) + 

!c(2,2;4.1) + !c(3,1;4,1))* 

(!c(1,1;2,2) + !c(1,1;3,1) + !c(1,1;4,2)+ !c(2,2;3,1) + 

!c(2,2;4,2) + !c(3,1;4,2))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

(!c(1,1;2,3) + !c(1,1;3,1) + !c(1,1;4,1) + !c(2,3;3,1) + 

!c(2,3;4,1) + !c(3,1;4,1)* 

(!c(1,1;2,3) + !c(1,1;3,1) + !c(1,1;4,2) + !c(2,3;3,1) + 

!c(2,3;4,2) + !c(3,1;4,2))* 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

(!c(1,2;2,1) + !c(1,2;3,1) + !c(1,2;4,1) + !c(2,1;3,1) + 

!c(2,1;4,1) + !c(3,1;4,1))* 

(!c(1,2;2,1) + !c(1,2;3,1) + !c(1,2;4,2) + !c(2,1;3,1) + 

!c(2,1;4,2) + !c(3,1;4,2))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

(!c(1,2;2,2) +!c(1,2;3,1) + !c(1,2;4,1) + !c(2,2;3,1) + 

!c(2,2;4,1) + !c(3,1;4,1))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

(!c(1,2;2,3) + !c(1,2;3,1) + !c(1,2;4,1) + !c(2,3;3,1) + 

!c(2,3;4,1) + !c(3,1;4,1))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

(!c(1,3;2,1) + !c(1,3;3,1) + !c(1,3;4,1) + !c(2,1;3,1) + 

!c(2,1;4,1) + !c(3,1;4,1))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
(!c(1,3;2,2) + !c(1,3;3,1) + !c(1,3;4,1) + !c(2,2;3,1) + 

!c(2,2;4,1) + !c(3,1;4,1))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
(!c(1,3;2,3) + !c(1,3;3,1) + !c(1,3;4,1) + !c(2,3;3,1) + 

!c(2,3;4,1) + !c(3,1;4,1))* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

This table is characterized by 73 rows and 6 columns 

and produces 6·73 products of compatibility. A minority 

of these products contain compatibility! c(1,1;2,2) while 

the other terms-the majority-do not contain that 

compatibility. 
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The multiplication by !c(1,1;2,2) deletes half of the 

minterms contained in the majority of terms and leaves 

the other minterms unchanged. 

Since the number of columns increases as n2 is 

apparent that the ratio of the number of unchanged 

minterms divided by the total number of minterms 

decreases very quickly with the number n of variables.  

 

Appendix 2 

Consider the product (a1 + a2) * (b1 + b2) relative to 

CF (4) where: 

 

a1 = c(1,1;2,1)* c(1,1;3,1)* c(1,1;3,2) 

a2 = c(1,1;2,2)* c(1,1;3,2)* c(1,1;3,1) 

b1 = c(2,1;3,1)* c(2,1;4,1)* c(3,1;4,1)* c(2,2;3,1)* 

c(2,2;4,1) 

b2 = c(2,2;3,2)* c(2,2;4,1)* c(3,2;4,1)* c(2,1;3,2)* 

c(2,1;4,1) 

with x = c[1,1] * c[4,1] 
 

The following four marks of CF (4) are generated: 
 
m1 = a1 * b1 involving variables ([1,1], [2,1], [3,1], [4,1]) 

m2 = a1 * b2 involving variables ([1,1], [2,1], [3,2], [4,1]) 

m3 = a2 * b1 involving variables ([1,1], [2,2], [3,1], [4,1]) 

m4 = a2 * b2 involving variables ([1,1], [2,2], [3,2], [4,1]) 

 

It is easy to verify that: 

 

           1 2 3 4 1/ 8 1 4val m val m val m val m NMT      

 
Therefore, the total value of the considered product is 

(1/2) ∙ NMT1(4) 

Now consider the following product (a1 + a2) * (b1 + 

b2) relative to CF (5), where: 
 
a1 = c(1,1;2,1) * c(1,1;3,1) * c(1,1;5,1) * c(1,1;3,2) 

a2 = c(1,1;2,2) * c(1,1;3,2) * c(1,1;5,1) * c(1,1;3,1)  

b1 = c(2,1;3,1) * c(2,1;4,1) * c(2,1;5,1) * c(3,1;4,1)* 

c(3,1;5,1) * c(4,1;5,1) * c(2,2;3,1) * c(2,2;4,1) * 

c(2,2;5,1) 

b2 = c(2,2;3,2) * c(2,2;4,1) * c(2,2;5,1)* c(3,2;4,1) * 

c(3,2;5,1) * c(4,1;5,1) * c(2,1;3,2) * c(2,1;4,1) * 

c(2,1;5,1)  
 

It is easy to verify that: 
 
m1 = a1 * b1 

m2 = a1 * b2 

m3 = a2 * b1 

m4 = a2 * b2 
 
are four marks implying four different prime implicants 

of CF (5) and that: 
 

           1 2 3 4 1/16 1 5val m val m val m val m NMT      

In more general terms, the product (a1 + a2) * (b1 + b2) 

can produce four marks implying four different prime 

implicants of CF(n), but the value of these marks 

decreases very quickly with n. 

 

Appendix 3  

 Consider the following example relative to CF (4): 
 

   1 2 9 1 2 9  * *U A B a a a b b b       (27) 

 
where: 

a1 = c(1,1;2,1) * c(1,1;3,1) * c(2,1;3,1) 

b1 = c(1,1;4,1) *c(2,1;4,1) * c(1,1;2,1) 
 
a2 = c(1,2;2,1) * c(1,2;3,1) * c(2,1,3,1) * !c(1,1;2,1) 

b2 = c(1,2;4,1) * c(2,1;4,1) * c(1,2;2,1) * !c(1,1;2,1)  
 
a3 = c(1,3;2,1) * c(1,3;3,1) * c(2,1;3,1) * !c(1,1;2,1) * 

!c(1,2;2,1) 

b3 = c(1,3;4,1) *c(2,1;4,1) * c(1,3;2,1) * !c(1,1;2,1) * 

!c(1,2;2,1) 
 
a4 = c(1,1;2,2) * c(1,1;3,1) * c(2,2;3,1) * !c(2,1;4,1) 

b4 = c(1,1;4,1) * c(2,2;4,1) * c(1,1;2,2) * !c(2,1;3,1) 

 

a5 = c(1,2;2,2) * c(1,2;3,1) * c(2,2;3,1) * !c(1,1;2,2) * 

!c(2,1;4,1)  

b5 = c(1,2;4,1) * c(2,2;4,1) * c(1,2;2,2) *!c(1,1;2,2) * 

!c(2,1;3,1) 
 
a6 = c(1,3;2,2) * c(1,3;3,1) * c(2,2;3,1) * !c(1,1;2,2) * 

!c(1,2;2,2) * !c(2,1;4,1) 

b6 = c(1,3;4,1) * c(2,2;4,1) * c(1,3;2,2) * !c(1,1;2,2) * 

!c(1,2;2,2) * !c(2,1;3,1) 
 
a7 = c(1,1;2,3) * c(1,1;3,1) * c(2,3;3,1) * !c(2,1;4,1) 

*!c(2,2;4,1) 

b7 = c(1,1;4,1) * c(2,3;4,1) * c( 1,1;2,3) * !c(2,1;3,1) 

*!c(2,2;3,1) 
 
a8 = c(1,2;2,3) * c( 1,2;3,1) *c(2,3;3,1) * !c(1,1;2,3) * 

!c(2,1;4,1) *!c(2,2;4,1) 

b8 = c(1,2;4,1) * c(2,3;4,1) * c(1,2;2,3) * !c(1,1;2,3) * 

!c(2,1;3,1) *!c(2,2;3,1) 

a9 = c(1,3;2,3) * c(1,3;3,1) * c(2,3;3,1) * !c(1,1;2,3)* 

!c(1,2;2,3) * !c(2,1;4,1) *!c(2,2;4,1) 

b9 = c(1,3;4,1) * c(2,3;4,1) * c(1,3;2,3) * !c(1,1;2,3) * 

!c(1,2;2,3) * !c(2,1;3,1) *!c(2,2;3,1)  
 

The product specified by A*B, multiplied by the 

optimal completion code x = c(3,1;4,1), produces nine 

marks and nine prime implicants, whose total value is: 
 

         1 1/ 2 1/ 4 1 1/ 4 1/16    
 

 
It is easy to verify by extending this example to CF(n) 

that the value of an AND gate performing the product (a1 + 

a2 +…) * (b1 + b2 +…) (with constant <3,1> and <4,1>) is: 
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             
3

1 1 / 2 1 / 4 1 1 / 4 1 /16 1
n

val n NMT n


        

 

which is slightly less than the: 

 

      
2

1 1/ 2 1 / 4 1
n

NMT n


    (28) 

 

In order to prove that the solution proposed in this 

study is characterized by the maximum value of the gate 

performing the product A*B, analyze in detail the 

preceding example.  

First, consider the product (a1+a2+a3) * (b1+b2+b3). 

The product of compatibilities a2 can be obtained from 

a1 and b2 can be obtained from b1, by replacing variable 

<1,1> with variable <1,2>. In order that a1 * b2 = 0 and a2 

* b1 = 0 both a2 and b2 must contain! c(1,1;2.1) . 

Similarly, a3 can be obtained from a1 and b3 can be 

obtained from b1 by replacing variable <1,1> with 

variable <1, 3>. In order that a1 * b3 = 0, a3* b1 = 0, a2 * 

b3 = 0 and a3 * b2 = 0, both a3 and b3 must contain 

!c(1,1;2,1) * !c(1,2;2,1). 

Then consider the product (a4+a5+a6) * (b4+b5+b6). In 

this case, triplet index a5 can be obtained from a4 and b5 

can be obtained from b4 by replacing variable <1,1> with 

variable <1,2>. In order that a4 * b5 = 0 and a5 * b4 = 0, 

both a5 and b5 must contain !c(1,1;2,2). Similarly, in order 

that a4 * b6 = 0, a6 * b4 = 0, a5 * b6 = 0 and a6 * b5 = 0, 

both a6 and b6 must contain !c(1,1;2,2) * !c(1,2;2,2). 

For similar reasons, both a8 and b8 must contain 

!c(1,1;2,3) while a9 and b9 contain !c(1,1;2,3) * 

!c(1,2;2,3). 

As the second step of analysis considers the product 

(a1+a4+a7) * (b1+b4+b7). 

The product of compatibilities a4 can be obtained from 

a1 and b4 can be obtained from b1, by replacing variable 

<2,1> with variable <2,2>. In order that a1 * b4 = 0, b4 

must contain! c(2,1;3,1); in order that a4 * b1 = 0, a4 must 

contain !c(2,1;4,1). Therefore: 

 

     4 4* 1 / 4 1 4val a b NMT   

 

In order that a1 * b7 = 0 and a7 * b1 = 0, b7 must contain 

!c(2,1;3,1) * !c(2,2;3,1) and a7 must contain !c(2,1;4,1) 

*!c(2,2;4,1). 

Therefore: 

 

   7 7* 1 /16 1(4)val a b NMT   

 
In the same way, all the complemented compatibilities 

appearing in Eq. (27) can be easily justified. 

From all the data appearing in Eq. (27), it follows that 

the total value of the marks produced by the product 

(a1+a2+…+a9) * (b1+b2+…+b9) is equal to: 

         1 1/ 2 1/ 4  · (1 1/ 4 1/16     (29) 

 

slightly less than: 

 

    
2

1 1 / 2 1 / 4   (30) 

 

which becomes Eq. (28) for n>4.  

Consider again the product (a1+a2+a3) * (b1+b2+b3). 

By replacing variable <1,1> with <1,2> in all the 

compatibilities of a1 and b1 we obtain a2 and b2 

respectively, while by replacing <1,1> of a1 and b1 with 

<1,3> we obtain a3 and b3. It is apparent that the 

multiplication of both a2 and b2 by !c(1,1;2,1) and the 

multiplication of both a3 and b3 by !c(1,1;2,1) * !c(1,2;2,1) 

are the best solutions from the viewpoint of the values of 

the new marks produced by (a1+a2+a3) * (b1+b2+b3). 

The same considerations hold exactly for the products 

a2 * b2 and a3 * b3. 

Now consider the product (a1+a4+a7) * (b1+b4+b7). 
By replacing <2,1> with (2,2) in all the compatibilities 

of a1 and b1 we obtain a4 and b4, in the first step, and by 

replacing <2,1> with (2,3) in all the compatibilities of a1 

and b1 we obtain a7 and b7, in a second step. It is apparent 

that the multiplications of a4 by !c(2,1;4,1), b4 by 

!c(2,1;3,1), a7 by !c(2,1;4,1) * !c(2,2;4,1), b7 by 

!c(2,1;3,1) * 1c(2,2;3,1) are the best solutions for the 

new marks. 

The same conclusions hold also for the products: 

 

       2 5 8 2 5 8 3 6 9 3 6 9* *a a a b b b and a a a b b b       
 

 

Notice that only the complemented variables are 

absolutely necessary in order that ai * bj = 0 for all i<>j that 

appear in the list of values of ai and bj. This is equivalent 

to proving that Eq. (29) is the total value of the “best” 

product A*B producing all the marks and all the prime 

implicants of core function with some exceptions. Indeed, 

the prime implicants containing variables characterized 

by triplet indexes equal to 3 or 4 but different from those 

appearing in the completion code x (in our example: 

<3,2>, <3,3>, <4,2>, <4,3>) do not appear in the list of 

prime implicants which have been generated. 

For example, we can extend the list (a1 +a2 + …+a9) 

with (a10 + a11 + … + a18) and the list (b1 + b2 +… +b9) 

with (b10 + b11 + … +b18) 

where: 
 
a10 = c(1,1;2,1) * c(1,1;3,1) * c(2,1;3,1) 

b10 = c(1,1;4,2) *c(2,1;4,2) * c(1,1;2,1) 
 
a11 = c(1,2;2,1) * c(1,2;3,1) * c(2,1,3,1) * !c(1,1;2,1) 

b11 = c(1,2;4,2) * c(2,1;4,2) * c(1,2;2,1) * !c(1,1;2,1)  
 
a12 = c(1,3;2,1) * c(1,3;3,1) * c(2,1;3,1) * !c(1,1;2,1) * 

!c(1,2;2,1) 
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b12 = c(1,3;4,2) *c(2,1;4,2) * c(1,3;2,1) * !c(1,1;2,1) * 

!c(1,2;2,1) 

 

a13 = c(1,1;2,2) * c(1,1;3,1) * c(2,2;3,1) * !c(2,1;4,2) 

b13 = c(1,1;4,2) * c(2,2;4,2) * c(1,1;2,2) * !c(2,1;3,1) 

 

a14 = c(1,2;2,2) * c(1,2;3,1) * c(2,2;3,1) * !c(1,1;2,2) * 

!c(2,1;4,2)  

b14 = c(1,2;4,2) * c(2,2;4,2) * c(1,2;2,2) *!c(1,1;2,2) * 

!c(2,1;3,1) 

 

a15 = c(1,3;2,2) * c(1,3;3,1) * c(2,2;3,1) * !c(1,1;2,2) * 

!c(1,2;2,2) * !c(2,1;4,2) 

b15 = c(1,3;4,2) * c(2,2;4,2) * c(1,3;2,2) * !c(1,1;2,2) * 

!c(1,2;2,2) * !c(2,1;3,1) 

 

a16 = c(1,1;2,3) * c(1,1;3,1) * c(2,3;3,1) * !c(2,1;4,2) 

*!c(2,2;4,2) 

b16 = c(1,1;4,2) * c(2,3;4,2) * c( 1,1;2,3) * !c(2,1;3,1) 

*!c(2,2;3,1) 

 

a17 = c(1,2;2,3) * c( 1,2;3,1) *c(2,3;3,1) * !c(1,1;2,3) * 

!c(2,1;4,2) *!c(2,2;4,2) 

b17 = c(1,2;4,2) * c(2,3;4,2) * c(1,2;2,3) * !c(1,1;2,3) * 

!c(2,1;3,1) *!c(2,2;3,1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a18 = c(1,3;2,3) * c(1,3;3,1) * c(2,3;3,1) * !c(1,1;2,3)* 

!c(1,2;2,3) * !c(2,1;4,2) *!c(2,2;4,2) 

b18 = c(1,3;4,2) * c(2,3;4,2) * c(1,3;2,3) * !c(1,1;2,3) * 

!c(1,2;2,3) * !c(2,1;3,1) *!c(2,2;3,1)  

 

This increment of the lists (a1 + a2 +…) and (b1 + b2 

+…) can be updated as follows: 

 









1 10 19 28 37

46 55 67 73

1 10 19 28 37

46 55 67 73

 

 

a a a a a

a a a a

b b b b b

b b b b

    

    

    

    

 

 

where also the completion code should be updated: 

 

       

         

3,1;4,1 * 3,1;4,2 * 3,1;4,3 * 3,2;4,1

* 3,2;4,2 * 3,2;4,3 * 3,3;4,1 * 3,3;4,2 * 3,3;4,3

x c c c c

c c c c c



 
 

Thus, the 81 prime implicants of CF (4) will be 

generated, but the values of many of them will be very 

small because all the products a1 * bj must be equal to 0. 

Besides, the multiplication of every mark by the 

completion code x will dramatically reduce the value of 

the corresponding prime implicants. 


