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Abstract: In recent times, the massive expansion of the Internet of 

Things (IoT) has transformed various facets of everyday life and 

industries. The compelling cause behind the widespread adoption of 

IoT is the increasing availability of affordable, compact, and energy-

efficient computing devices. While these devices offer significant 

benefits, they also raise substantial security and privacy challenges. 

Consequently, safeguarding IoT networks and devices is imperative. 

To raise a robust security system for IoT networks, it is crucial to have 

an efficient anomaly-based intrusion detection system. In this study, 

we introduce a meticulous methodology to create IoT-specific 

datasets. Utilizing the Contiki-OS Cooja simulator, we generate 

datasets representative of real-world IoT security threats, including 

sinkholes, version numbers, and flooding attacks. We then evaluate 

the performance of a Convolutional Neural Network paired with an 

Aquila Optimizer (CNN-AO) using these self-generated datasets, by 

employing metrics such as accuracy, precision, recall, F1-score, 

sensitivity, specificity, and false alarm rate. Additionally, we 

compare the effectiveness of CNN and LSTM models in 

distinguishing between benign and malicious traffic. Our findings 

demonstrate that the CNN-AO model surpasses other models in 

accurately classifying normal and malicious traffic with an accuracy 

of 99.22, 99.77, and 99.55% for our self-generated malicious datasets 

based on sinkhole attack, version number attack, and flooding attack 

respectively. This novel approach not only establishes a solid 

foundation for future investigations in this domain but also provides 

valuable insights into enhancing IoT system security. In this study, we 

contribute to the field by introducing a robust methodology for IoT-

specific dataset generation and evaluating a cutting-edge CNN-AO 

model for intrusion detection. Furthermore, it is crucial to note that this 

research was conducted with utmost ethical consideration. Ethical 

guidelines and data privacy concerns were meticulously addressed 

during the generation of IoT datasets and the simulation of real-world 

attack scenarios, ensuring the responsible conduct of our study. 
 
Keywords: Internet of Things, Intrusion Detection System (IDS), 

Dataset Generation, Sinkhole Attack, Version Attack, Flooding 

Attack, Deep Learning 

 

Introduction  

IoT has seamlessly integrated technology into 

various aspects of our lives whether it be smart homes, 

the healthcare sector, or industrial automation to name a 

few presenting a dynamic landscape of advantages and 

challenges, especially in the realm of security and 

privacy (Al-Fuqaha et al., 2015; Balaji et al., 2019). The 

interconnectivity of IoT devices, characterized by 

resource constraints, low power capabilities, and diverse 
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communication protocols, inherently poses security risks 

and privacy breaches (Lin et al., 2017; Hassija et al., 

2019). Attacks like sinkholes, version numbers, and 

flooding attacks are prominent threats that have the 

potential to compromise data confidentiality, integrity, 

and availability within IoT networks. Table 1 presents the 

objectives and impacts of sinkholes, version numbers, and 

flooding attacks. This studay addresses the pressing need 

for effective IDS in the context of IoT security. 

Specifically, our work focuses on generating realistic and 

comprehensive datasets utilizing the Contiki Cooja 

simulator.We simulate attacks such as sinkholes, version 

numbers, and flooding attacks within the Routing Protocol 

for Low-power and lossy networks (RPL), a prevalent 

routing protocol tailored for resource-constrained devices 

in IoT deployments. The controlled simulation 

environment allows us to delve into the underlying 

characteristics of these attacks, providing valuable insights 

into their behavior and impact on IoT networks. 

Unlike existing research, our methodology incorporates 

detailed simulations of specific attacks using the Contiki 

Cooja simulator, enabling us to create datasets that closely 

mirror real-world scenarios. These datasets serve as a 

foundation for evaluating the effectiveness of various deep-

learning models. By comparing the effectiveness of these 

models in identifying attacks, our research aims to enhance 

the accuracy of attack detection mechanisms. 

This novel approach, emphasizing simulation fidelity 

and methodological rigor, distinguishes our study from 

previous work in the field of IoT security, contributing 

significantly to the scientific discourse on intrusion 

detection in IoT networks. 

Problem Statement 

The functionality of RPL-based IoT networks is 

compromised by attacks like sinkholes, version numbers, 

and flooding attacks to name a few. For preserving the 

confidentiality, integrity, and availability of data during 

transmission in a network, it is crucial to identify and 

correctly categorize these attacks. To tackle the challenge 

of lack of IoT-specific datasets and attack detection and 

classification in IoT-specific environments, there is a need 

to generate comprehensive malicious datasets and 

leverage the generated datasets to train various models to 

make them learn and identify complex patterns and 

features indicative of each attack type, enabling accurate 

classification of unforeseen attacks in RPL networks. 
This study's contributions include the following: 

 

 Generating malicious datasets based on sinkhole 

attacks, version number attacks, and flooding attacks 

in the Contiki Cooja simulator 

 Understanding the effects of a breached network 

while taking into account numerous factors like 

average power usage and average radio duty cycle 

 Applying the IoT-specific datasets to train a few deep 

learning models namely, CNN-AO (Choudhary et al., 

2023), Convolutional Neural Network (CNN), and 

Long Short-Term Memory (LSTM), and comparing 

their performances 

 
Table 1: Description of sinkhole attack, version number attack, and flooding attack 

Attack Objective Impact 

Sinkhole attack The primary objective of this attack is to redirect This attack leads to compromised data 

 legitimate network traffic to itself by manipulating confidentiality, integrity, and availability in  

 routing metrics and falsely advertising an attractive the network. Moreover, such an attack can 

 routing path to the intended destination thereby  also cause network congestion and  

 captivating neighboring nodes degradation of the overall performance 

  of a network, thereby disrupting the  

  network's functionality 

Version number attack The objective of this attack is to trick nodes Version number attacks can lead to routing 

 into accepting false routing information by inconsistencies and can create routing loops 

 manipulating or fabricating version numbers. This within the destination-oriented directed 

 could lead to the node updating its software with a cyclic graph. They can also cause 

 the harmful version that the attacker can control unnecessary resource wastage within the  

  network as nodes might initiate 

  unnecessary route repairs or topology 

  updates due to constant false 

  advertisements of new versions 

Flooding attack The objective of a flooding attack is to influx the  Here attacker overwhelms the network with 

 system with a lot of malicious or undesired traffic and too many packets, leading to delays in 

  packet delivery, poor throughput, 

  exhaustion of network resources and 

  potential denial of service conditions. 

  It makes the network inaccessible to 

  legitimate nodes thereby disrupting 

  communication 



Vandana Choudhary et al. / Journal of Computer Science 2024, 20 (4): 365.378 

DOI: 10.3844/jcssp.2024.365.378 

 

367 

Security and privacy concerns are inevitable owing to 

an increase in IoT device counts over the past few years. 

This situation necessitates the deployment of efficient IDSs 

to ensure the security of IoT networks. To build and utilize 

efficient IDS for safeguarding IoT environments the 

availability of appropriate datasets apt for IoT contexts is 

crucial. Existing datasets like NSL-KDD (Tavallaee et al., 

2009), ISCXIDS2012 (Shiravi et al., 2012), CICIDS2017, 

CICIDS2018 (Sharafaldin et al., 2018), etc., have been 

used extensively by the research community to develop 

and assess IDSs for IoT environments even to date.  

These datasets have contributed significantly to the 

field of research related to IDS for IoT. However, the 

rapidly changing dynamics of IoT networks due to 

advancements in technology and communication 

protocols entail the development of IoT-specific datasets. 

In this study, we review the application of datasets like 

NSL-KDD, CICIDS2017, and CICIDS2018, among 

others, in IDS research for IoT. Also, we understand the 

importance of developing IoT-specific datasets. Many 

intrusion/malware detection algorithms exist in the 

literature as described by Thakkar and Lohiya (2021); 

Asharf et al. (2020); Banaamah and Ahmad (2022); 

Alzubi et al. (2022; 2023). Table 2 exhibits a summary of 

a few different studies conducted specifically on IDS for 

IoT so far. 

 
Table 2: Summary of a few different studies conducted on IDS for IoT 

Reference Approach adopted Detection model considered Datasets considered Performance evaluation metrics 

Fatani et al. (2021) At first, the authors extract the CNN along with a binary version CIC2017, NSL-KDD, Accuracy, precision 

 associated features from the input of Aquila optimizer BoT-IoT and KDD99 sensitivity, F1-measure 

 datasets, using CNN. Then, used 

 Aquila optimizer to select the most 

 appropriate characteristics and to  

 decrease the dimensionality of the data    

Roopak et al. (2020) The authors put forward an advanced CNN with LSTM CICIDS2017 Accuracy, F1-score 

 IDS for DDoS attack detection in loT 

 networks using a multi-objective  

 optimization (NSGA-II-aJG)     

Nagisetty and Gupta  Using the Keras high-level deep Multi-Layer Perceptron (MLP), UNSW-NB15 and Accuracy, F1-score, RMSE 

(2019) learning library, a framework for Convolutional Neural Networks NSL-KDD99 

 the identification of harmful activity (CNN), Deep Neural Networks  

 in IoT networks is described in this study (DNN)and Autoencoder   

Hwang et al. (2019) The authors offered a novel word embedding LSTM ISCX2012, Accuracy, precision 

 approach and used LSTM to determine  USTC-TFC2016, recall, F1-score, FPR 

 the temporal links existing between the  Mirai-RGU, 

 fields in the packet header to extract the  Mirai-CCU 

 semantics of packets 

Almarshdi et al. (2023) Synthetic Minority Over-sampling CNN -LSTM UNSW-NB15 ACU, AUC, precision, recall,  

 Technique (SMOTE) is   F1-score 

 implemented in this study to handle 

 the imbalanced dataset to improve 

 the classification. In addition, the 

 authors assessed the performance of 

 their proposed model in comparison 

 with the CNN model using both 

 balanced and imbalanced datasets. A 

 comparison with other models and 

 related works were also exhibited 

Sayed et al. (2022) In this study, the authors tested various CNN NF-UNSW-NB15-v2 Accuracy precision-recall F1-score 

 approaches for enhancing the accuracy 

 of training DL models on unbalanced 

 datasets employing resampling and  

 cost-sensitive learning. 

 This study seeks to investigate the 

 performance of CNNs created for 

 IoT devices during cyberattacks and 

 determine whether they may be 

 utilized as anomaly-based IDS 

Henry et al. (2023) The authors of this research offer  CNN- GRU CICIDS-2017 Accuracy precision-recall false 

 a method that combines both CNN   Positive Rate (FPR), true 

 and GRU with 3 convolutional   Positive rate (TRP) and other 

 layers and 2 GRU layers   aligned metrics 

Altunay and Albayrak  The authors used CNN, LSTM and CNN, LSTM, CNN-LSTM UNSW-NB15 and X-IIoTID Accuracy, precision, recall,  

(2023) CNN-LSTM as intrusion detection   F1-score 

 algorithms to find the aberrant patterns 

 in the datasets 

Omarov et al. (2023) This study uses BiLSTM, which is a CNN-BiLSTM UNSW-NB15 Accuracy, precision, recall, 

 upgraded version of LSTM over CNN.   F-measure, execution time 

 The authors have adopted batch  

 normalization in this study 

Zhang et al. (2023) A two-stage paradigm for IoT intrusion Light GBM-CNN CSE-CIC-IDS2018 ACC, DR, FAR precision, 

 detection was put forth by the authors.   F1-score MCC, train time, 

 In Stage 1, the authors looked at six   test time 

 different machine-learning methods-  
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Table 2: Continue  

 RF, DT, LR, KNN, AdaBoost and 

 XGBoost, for classifying data and 

 used the Light GBM method to 

 discriminate between regular and 

 abnormal network traffic. The 

 experimental findings demonstrate that 

 accuracy and time cost have advantages 

 in the case of the Light GBM algorithm. 

 On the data which was anticipated to be 

 abnormal in Stage 1, the authors used CNN 

 to carry out fine-grained attack class detection 
 in Stage 2. They employed IR-SMOTE to 
 explore the impact of various class imbalance 
 ratios in the training set on the performance of 

 the model to address the issue of class imbalance. 

 Experimental results show that the two-stage 

 intrusion detection approach can deal with large- 

 scale network traffic data that is unbalanced 

Aravamudhan (2023) Two models are cascaded in the proposed  Region-based Convolution Neural NIDS V.10 2017 Accuracy, precision, recall and 

 system to aid in decision-making. The Network (R-CNN)  F-measure, MSE 

 [100011] input layer and [110] two-  

 dimensional convolution layer makeup 

 the DLN model. Here, two levels of  

 stacked fully connected layers of size [384] 

 features were eventually connected with  

 fully connected layers of size [6] with 

 the soft-max layer and classification 

 layer of the final stage. The secondary 

 model employs GBR, which analyses 

 the input feature vectors and create a 

 scatter plot of the relativity graph. These 

 two outcomes are used to form the final 
 decision model 
Aswad et al. (2023) The advantages of CNN, RNN, LSTM CNN-BiLSTM CICIDS2017 Accuracy, Precision, Recall, 
 and BiLSTM are combined into a single   F1-score 
 model by the authors in their suggested 
 CNN-BiLSTM hybrid model 

 

The research gaps addressed in our study are as follows: 
 
 Limited IoT-specific datasets: The existing datasets, 

such as NSL-KDD, CIC2017; CICIDS2018 have 

been extensively utilized in IDS research for IoT. 

However, the study emphasizes the critical need for the 

development of IoT-specific datasets (Essop et al., 

2021). This indicates a gap in the availability of 

comprehensive and tailored datasets specifically 

designed for IoT environments. To reduce this research 

gap, we aim to develop IoT-specific datasets in our study 

 Inadequate evaluation in IoT context: While the 

mentioned studies have employed various deep learning 

models, their evaluation primarily relies on existing 

datasets. This leads to a gap in evaluating intrusion 

detection models in the context of real IoT network 

scenarios, raising questions about the models' 

applicability and effectiveness in practical IoT 

environments. To reduce this research gap, we aim to 

assess the performance of a few deep learning models 

using our self-generated IoT-specific datasets 

 Limited attention to resource-constrained IoT devices: 

The research studies mentioned do not explicitly 

address the details related to resource-constrained IoT 

devices. IoT devices often have limitations in processing 

power and memory. In our study, we analyzed the average 

power consumption and average duty cycle of resource-

constrained IoT devices considered in the simulation to 

understand their impact on the overall network 

Materials and Methods 

The fundamental objective of this study is to generate 

datasets tailored for IoT applications and assess the 

performance of the CNN-AO model. A comparative 

analysis is then conducted with CNN and LSTM models 

to evaluate their respective performances. 

 We will be looking in particular into the effects of 

sinkholes, version numbers, and flooding attacks on the 

network. We have made our datasets accessible for public 

use. Table 3 shows the specifications of the hardware and 

software that were used to conduct the experiment. 

 For simulating various attack scenarios in an IoT 

environment, the Contiki Cooja simulator which provides 

a realistic emulation of IoT devices was used. We have 

considered sky motes and z1 mote with the simulation 

parameters as follows in Table 4 for carrying out attacks 

under different scenarios in IoT environments. 

 The data collected during the experiment include 

packet traces, network statistics, and any other relevant 

information that is used to assess the impact on the 

performance of a network. 

Next, we discuss a proposed methodology for 

generating malicious datasets using the Contiki Cooja 

simulator and assessing the performance of various 

models using self-generated datasets. The self-generated 

datasets will then be used for training and testing 

purposes. The methodology adopted to conduct the 

current study is outlined in Fig. 1. 
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Table 3: Specifications of the hardware and software used 

Operating system Microsoft Windows 10, Contiki-OS 3.0 

Tool used Contiki Cooja simulator, Jupyter notebook 

Processor AMD Ryzen 5, 4500U 

Memory 256 GB SSD 

RAM 8 GB of RAM 

GPU AMD Radeon graphics operating at 2.38 GHz 

 
Table 4: Simulation parameters 

Simulator parameter Value 

Root node 1 

Sender nodes 2,3,4,5,6,7,8,9,10,11,12 (attack node) 
Positioning Random positioning 

Radio medium Unit Disk Graph Medium (UDGM): 

 Distance loss 
Interface range 100 m 

Transmission range 50 m 

Mote startup delay (ms) 1000 ns 

Random seed 123,456 

Objective function Minimum rank with hysteresis 

 objective function 

 

 
 
Fig. 1: Methodology adopted to generate malicious datasets and 

to evaluate their performance 

 

 
 
Fig. 2: Network topology considered for launching sinkhole attack 

 

 
Fig. 3: Network topology considered for launching version 

number attack 

 

 
 
Fig. 4: Network topology considered for launching flooding attack 

 

Following is a detailed explanation of each step. 

Simulation Phase 

At this step, we simulate three attack scenarios in the 

Cooja Simulator. The network topology considered for 

launching three attacks namely: Sinkhole attack, version 

number attack, and flooding attack in each scenario is 

illustrated in Figs. 2-4 respectively. For each attack 

scenario, we have considered a total of 12 motes. Out of 

12 motes, green-colored are UDP-server motes, yellow-

colored motes are UDP-client motes, and purple-colored 

motes are the malicious motes. 

To simulate a sinkhole attack, sky mote was used. A 

sinkhole attack is a variant of an isolation attack and is a 

combination of a rank decrease attack and a black hole 

attack. A sinkhole attacker captivates its neighbors to 

select it as their preferred parent and becomes its child 

using a rank decrease attack. Subsequently, it discards all 

packets sent by its children, effectively isolating them 

from both the root node and the network through a black 

hole attack.
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Fig. 5: A .csv snippet for data related to the flooding attack scenario 
 

To simulate a version number attack, sky mote was 

used. RPL uses Destination Oriented Direct Acyclic 

Graph (DODAG) version number and rank mechanism to 

identify and maintain a network topology but no security 

mechanism could prevent this parameter from illicit 

changes. An attacking node can easily alter the version 

number without authorization and trigger a needless 

rebuild of the entire DODAG graph, thus declining 

network resources. 

To simulate a flooding attack, sky mote, and z1 mote 

were used. Of the 12 motes in this scenario, mote 1 is a 

UDP-server sky mote, mote 2-11 are UDP-client sky 

motes and mote 12 is the malicious z1 mote (flooding 

attacker mote). A flooding attacker floods the network 

with a significant volume of traffic, rendering nodes 

unavailable. This disruptive activity severely impacts the 

network's performance and availability. 

Data Generation and Data Preparation Phase 

The data generated during the simulation of various 

attack scenarios are captured in .pcap files using the radio 

messages tool. The .pcap files corresponding to the 

sinkhole attack, version number attack, and flooding 

attack are stored as radiolog-1689230527100.pcap, 

radiolog-1689260705200.pcap, and radiolog-

1689398858604.pcap respectively. The data is then 

analyzed and extracted from these .pcap files and stored 

as .csv files using another tool, called Wireshark. Now 

that the self-generated data is stored in .csv files we can 

preprocess and prepare the data to assure its quality and 

compatibility with the deep-learning algorithms. The 

preprocessing typically includes data cleaning, handling 

missing values, data encoding, feature selection, and data 

normalization. Figure 5 illustrates a snippet of the .csv file 

extracted from the .pcap file, showcasing data related to 

the flooding attack scenario. All the generated datasets are 

represented by features such as packet number, 

timestamp, source and destination IPv6 address, 

communication protocol, packet size, information related 

to ICMPv6, and corresponding information of the 

simulated network. 

Model Training Phase 

At this step, CNN-AO, CNN, and LSTM models were 

trained using the self-generated datasets obtained from the 

previous step. These deep learning models were chosen as 

they have the ability to learn patterns and representations 

directly from the data provided during the training 

process. They automatically learn features, reducing the 

need for manual feature engineering. Deep learning 

models use activation functions, introducing non-linearity 

into the network. This non-linearity allows them to learn 

complex relationships in the data. They use 

backpropagation algorithms to minimize the difference 

between predicted outputs and actual targets. This 

iterative process adjusts the model's parameters to 

improve its predictions. Deep learning models optimize 

their weights using gradient descent-based optimization 

algorithms. These algorithms find the optimal set of 

parameters that minimize the loss function. Deep learning 

models often benefit from specialized hardware 

accelerators like GPUs (Graphics Processing Units) and 

TPUs (Tensor Processing Units), which significantly 

speed up the training process. These attributes render 

them the ideal selection for experimental endeavors prior 

to implementing practical applications in the real world. 

The CNN-AO model is a sequential CNN 

configuration featuring two convolution layers, a max 

pooling layer, flattening, and a dense layer with sigmoid 

activation. It employs a method where the Aquila 

optimization algorithm determines the values for the 

number of units and kernel size in the second 

convolutional layer, as well as pool size and strides in the 

max pooling layer. 

Abualigah et al. (2021) stated that the Aquila optimizer 

is an innovative population-based optimization algorithm 

that draws inspiration from the hunting behaviors of the 
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Aquila bird in nature. Renowned for its exceptional visual 

acuity and hunting prowess, the Aquila bird efficiently 

captures prey. The Algorithm Operates (AO) in two main 

phases (Abualigah et al., 2020; 2021; Salcedo-Sanz, 2016): 

 

 Diversification (exploration): In this stage, the 

algorithm creates random operators to investigate 

diverse regions within the search space 

 Intensification (exploitation): In the subsequent 

phase, the algorithm concentrates on finding the 

optimal solution within the search space. An 

optimization procedure is applied to determine the 

most suitable values for different system parameters, 

enabling the system's design to be executed at 

minimal cost. Once the Aquila optimization 

algorithm identifies the best fit and solution for the 

parameters computed in the preceding step, a novel 

model is constructed accordingly 

 

CNN employs convolutional layers to scan input data, 

capturing local features and spatial relationships. On the 

other hand, LSTMs are specialized for handling 

sequential data. LSTMs possess a unique memory cell 

that enables them to capture long-term dependencies 

and patterns in sequences. This makes them invaluable 

for tasks requiring an understanding of context and 

temporal relationships. 

Evaluation Phase 

 After the models are trained, an evaluation of the 

model’s performance is done using the testing dataset for 

each of the attack scenarios. The effectiveness of various 

models namely, CNN-AO, CNN, and LSTM is evaluated 

using diverse metrics to gauge their ability to perform well 

on new, unseen data and generalize effectively. The 

performance of these models was evaluated on evaluation 

metrics namely: Accuracy, precision, recall, F1-score, 

sensitivity, specificity, and false alarm rate: 

 

 Accuracy: This metric represents the ratio of 

correctly predicted instances to the total number of 

instances in a dataset. It serves as a measure of the 

overall correctness of the model's predictions 

 Precision: It is the ratio of correctly predicted positive 

observations to the total predicted positives 

 Recall or sensitivity: It measures the ability of a 

classification model to identify all the relevant 

instances (true positives) in a dataset. It calculates the 

ratio of correctly predicted positive observations to 

all the actual positives 

 F1-score: It provides a balance between precision and 

recall when there is an uneven class distribution. It is 

a harmonic mean of precision and recall 

 Specificity: It calculates the ratio of correctly predicted 

negative observations to all the actual negatives 

 False alarm rate: It calculates the ratio of false 

positive predictions to all the actual negative 

instances. A lower false alarm rate indicates a better 

performance of the model is not misclassifying 

negative instances as positive 

 

Results and Discussion 

This section presents the CNN-AO, CNN, and LSTM 

model's performance. These models were implemented in 

Python using Jupyter Notebook with libraries such as 

pandas, numpy, Sk learn, Keras, and Tensorflow to name a 

few. Training included up to 5 epochs with early stopping.  

Figures 6-8 depict the classification report for a 

sinkhole, version number, and flooding attack scenario 

respectively using the CNN-AO model. 

The performance results of CNN-AO, CNN, and 

LSTM models for self-generated malicious datasets and 

others are summarized in Table 5.  

From Table 5, we can conclude that the CNN-AO 

model performs better in terms of accuracy and false 

alarm rate as compared to CNN and LSTM models using 

the same datasets. Additionally, the standard deviation of 

all performance metrics within each self-generated 

malicious scenario for every model has been calculated 

and is summarized in Fig. 9. 

The collective standard deviation of performance metrics 

across various scenarios for each model offers an assessment 

of the overall variability in the metrics' performance. 
Several conclusions can be drawn from Fig. 9. The 

flooding attack scenario shows relatively low variability 
(standard deviation) across most metrics, indicating 
consistent performance across different evaluation 
criteria. The version number attack scenario exhibits 
moderate variability in performance metrics, suggesting 
some fluctuations in precision and F1-score. The sinkhole 
attack scenario displays substantial variability across the 
evaluated metrics. This high standard deviation implies 
inconsistency in performance metrics, indicating 
challenges in accurately detecting and classifying 
sinkhole attacks based on the chosen criteria. 

In this study, three custom malicious datasets were 

created utilizing the Contiki Cooja simulator. These 

datasets were generated through the simulation of three 

distinct attacks: Sinkhole, version number, and flooding 

attack. This section presents the findings related to the 

sensor map, the average power consumption, and the 

average radio duty cycle of the network obtained during 

the simulation of malicious network scenarios. 

Figure 10 vividly demonstrates the impact of the 

sinkhole attack in the Cooja network simulation. In this 

attack, the sinkhole node pretends to be a legitimate 

destination and deceives other nodes into routing their 

traffic through it. Consequently, the victim nodes who 

select it as their parent are prevented from becoming part of 

the network. Nodes 2-5 and 10 are victim nodes in this case. 
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Table 5: Performance results of CNN-AO, CNN, and LSTM models for self-generated malicious datasets and others 

  Accuracy Precision Recall F1-score Sensitivity Specificity FAR  

Dataset Model (%) (%) (%) (%) (%) (%) (%) 

Self-generated malicious CNN 92.76 38.39 100.00 55.48 100.00 92.42 07.570 

Scenario 1 LSTM 98.91 80.57 100.00 89.24 100.00 98.86 01.130 

(Sinkhole attack) CNN-AO 99.22 85.39 100.00 92.12 100.00 99.19 0.807 

Self-generated malicious CNN 93.41 47.83 99.26 64.56 99.26 93.03 06.960 

Scenario 2 LSTM 98.19 77.02 100.00 87.02 100.00 98.08 01.910 

(Version number attack) CNN-AO 99.77 96.36 100.00 98.14 100.00 99.75 0.242 

Self-generated malicious CNN 98.89 99.01 99.42 99.22 99.42 97.61 02.380 

Scenario 3 LSTM 99.47 99.83 99.41 99.41 99.41 99.61 0.380 

(Flooding attack) CNN-AO 99.55 99.96 99.40 99.68 99.40 99.91 0.084 

Normal-hello flooding, CNN 96.87 94.85 99.65 97.19 99.65 - - 

Kamel and Elhamayed (2020) 

Normal selective forward, CNN 96.02 99.61 84.59 91.49 84.59 - - 

Kamel and Elhamayed (2020) 

Normal-sinkhole, CNN 98.57 99.84 96.84 98.32 96.84 - - 

Kamel and Elhamayed (2020) 

Normal-wormhole CNN 98.09 99.5 94.4 97.15 94.40 - - 

Kamel and Elhamayed (2020) 

Normal-version CNN 90.40 95.05 80.08 88.56 80.08 - - 

Kamel and Elhamayed (2020)
 

 
 
Fig. 6: Classification report for a sinkhole attack scenario using 

CNN-AO model 

 

 
 

Fig. 7: Classification report for a version number attack 

scenario using the CNN-AO model 

 

 

Fig. 8: Classification report for a flooding attack scenario using 

the CNN-AO model 

 

 

 

Fig. 9: Standard deviation of performance metrics across 

different attack scenarios 
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Fig. 10: Sensor map for a sinkhole attack scenario 

 

 

 
Fig. 11: Sensor map for a version number attack scenario 

 

 

 
Fig. 12: Sensor map for a flooding attack scenario 

  
Fig. 13: Average power consumption in case of sinkhole attack 
 

Observations 

Figure 11, illustrates a scenario involving a version 
number attack. Nodes 5-10 have selected node 12 as their 
parent to establish a connection with the sink. In this 
malicious setup, node 12 deceives neighboring nodes by 
propagating false routing information by manipulating or 
fabricating version numbers. This deceptive behavior leads 
to unnecessary resource wastage, as affected nodes may 
initiate unnecessary route repairs or topology updates in 
response to constant false advertisements of new versions. 

Figure 12 depicts a flooding attack scenario where the 
malicious node 12 inundates the network with an 
overwhelming amount of malicious or unwanted traffic. 

Average Power Consumption 

It represents the average of the overall power 
consumption of each network node. Each node's total 
power consumption comprises the power used in Low 
Power Mode (LPM), power consumption during CPU 

operation (CPU), power consumption during transmission 
(radio transmission), and power consumption during 
listening (radio listening). The power consumption of 
each node within each malicious scenario is illustrated in 
Figs. 13-15 respectively. 

Figure 13, the sinkhole attacking node prevents nodes 

2-5 and 10 from joining the network. Consequently, these 

nodes were not taken into account when calculating the 

average power consumption. 
Figure 14, depicts the version number attack, nodes 5-

10 exhibit the highest power consumption compared to 
other nodes. This increased power usage is a result of 
these nodes selecting the malicious node 12 as their 
connection to the sink. Instead of facilitating the 
connection to the sink, the malicious node misleads them, 
causing these nodes to engage in unnecessary route 
repairs and topology updates due to continuous false 
information about new versions. This deceptive behavior 
leads to significant resource wastage within the network. 

Average power consumption 
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Fig. 14: Average power consumption in case of version 

number attack 
 

  
Fig. 15: Average power consumption in case of flooding attack 

 

 
 

Fig. 16: Average radio duty cycle in case of sinkhole attack 

Illustrated in Fig. 15, the radio listening activity of nodes 

5, 7, 8, and 9 stands out as the highest among the parameters 

utilized to calculate nodes' power consumption. This 

heightened radioactivity is due to the proximity of these 

nodes to the malicious node, which persistently sends data to 

these victim nodes. 

Average Radio Duty Cycle 

The term "average radio duty cycle" describes the 
average proportion of a node's total active time over a 
certain period when its radio is active. It is calculated by 
dividing the total amount of time a node's radio is on by the 
network's total amount of simulation time. The average 
radio duty cycle of each node within each malicious 
scenario is presented in Figs. 16-18 respectively. 

Figure 16, the radio listening values for nodes 6, 7, 8, 
9, and 11 surpass the radio transmission values. 

Figure 17, the radio transmit value is higher than the 
radio listen for all nodes.  

 Figure 18, the radio listening of nodes 5, 7, 8, and 9 is 
more as compared to radio transmission as they are the 
victim of malicious flooding attack node 12. 

Further results obtained during the simulation of 
malicious network scenarios are summarized in Table 6. 
From Table 6, several conclusions can be drawn regarding 
the different malicious network scenarios: 
 
 Power consumption: Malicious scenario 3 (flooding 

attack) exhibits significantly higher power 
consumption compared to the other scenarios. This 
indicates that flooding attacks demand more energy 
resources from the network nodes due to the 
continuous influx of data 

 Duty cycles: The duty cycles, especially the listen duty 
cycle, are considerably higher in malicious scenario 3 
(flooding attack). This high listen duty cycle suggests 
that nodes are actively engaged in receiving data for 
a significant portion of the time, contributing to the 
increased power consumption in this scenario 

 Packet discrepancies: Malicious scenario 2 (version 
number attack) generates a higher number of attack 
packets compared to the other scenarios, indicating a 
more aggressive nature of the attack. This higher 
number of attack packets can potentially overwhelm 
the network, leading to disruptions in communication 

 Normal packets: Malicious scenario 1 (sinkhole attack) 
has a notably higher number of normal packets, 
suggesting that despite the attack, a substantial 
amount of legitimate communication is still 
occurring. This could imply that the sinkhole attack 
is more subtle in nature, selectively diverting specific 
traffic without completely disrupting the network 

 Total number of packets: Malicious scenario 3 
(flooding attack) results in the highest total number 
of packets, indicating an extensive network activity 
due to the constant influx of both normal and attack 
packets. This overwhelming traffic can lead to 
network congestion and degradation of performance 

Average power consumption 

Average power consumption 

Average radio duty cycle 
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Table 6: Simulation results obtained during the simulation of various malicious network scenarios

     Average Listen Transmit Number of Number of Total 
 CPU LPM Listen Transmit power duty duty normal  attack  number of  

Scenario power power power power consumption cycle cycle packets packets packets 

Malicious 0.341 0.153 0.420 0.033 0.947 0.700 0.061 165152 7825 173004 

scenario 1 

(Sinkhole 
attack) 

Malicious 

scenario 2 
(Version  0.812 0.139 2.045 2.591 5.587 3.408 4.880 177486 11103 188589 

number 
attack) 

Malicious 

scenario 3 
(Flooding 1.102 0.130 7.275 2.331 10.837 12.124 4.390  67479 161593 229072 

attack)  

 

 
 

Fig. 17: Average radio duty cycle in case of version number 

attack 

 

 
 
Fig. 18: Average radio duty cycle in case of a flooding attack 
 

In summary, the table highlights the varying impact of 

different malicious scenarios on power consumption, duty 

cycles, and packet generation. Each scenario presents 

unique challenges, making it crucial to implement tailored 

security measures to mitigate the impact of these attacks 

on the network. 

Conclusion  

In this study, we addressed the crucial challenge of 

enhancing the security of IoT networks by focusing on 

the evaluation of IDS for IoT. The rapid expansion of 

IoT devices, while providing numerous advantages, has 

also introduced significant security and privacy 

concerns. To combat these challenges, we devised a 

meticulous methodology for generating IoT-specific 

datasets utilizing the Contiki Cooja simulator. Through 

controlled simulations, we replicated real-world IoT 

security threats, specifically sinkhole attacks, version 

number attacks, and flooding attacks, within the 

context of RPL networks. 

Our contributions to this research encompassed 

several key aspects. First and foremost, we meticulously 

crafted malicious datasets, capturing the intricacies of 

each attack type, in order to create a foundation for 

evaluating the performance of intrusion detection models. 

Leveraging these self-generated datasets, we trained 

advanced deep-learning models including CNN-AO, 

CNN, and LSTM. Comparative analyses were conducted, 

highlighting the superior performance of the CNN-AO 

model in accurately classifying normal and malicious 

network traffic. This study incorporates seven evaluation 

measures accuracy, precision, recall, F1-score, sensitivity, 

specificity, and false alarm rate, and found that CNN-AO 

has an accuracy of 99.22, 99.77, and 99.55% for our self-

generated malicious datasets: Sinkhole attack, version 

number attack and flooding attack respectively. 

Our study not only advanced the field by introducing 

a robust methodology for IoT-specific dataset generation 

but also shed light on the critical importance of simulation 

fidelity in creating datasets that mirror real-world 

scenarios. This unique approach differentiated our 

research from existing studies in IoT security. By 

providing a comprehensive analysis of our experiments 

and their outcomes, we pave the way for future research 

endeavors aimed at strengthening IoT security. 

Furthermore, our study advocates for the continued 

Average radio duty cycle 

Average radio duty cycle 
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exploration and development of IoT-specific datasets to 

meet the evolving challenges posed by emerging 

technologies and communication protocols. 

Acknowledgment 

I would like to express my sincere gratitude to my 

guide, Dr. Sarvesh Tanwar, and co-guide Prof. (Dr.) 

Tanupriya Choudhury, for their invaluable guidance, 

unwavering support, and expert mentorship throughout 

the entire research process. 

Funding Information  

This research did not receive any specific grant from 

funding agencies in the public, commercial, or not-for-

profit sectors.  

Author’s Contributions 

Vandana Choudhary: Conducted background study 

and experiments, analyzed data, and wrote the manuscript. 

Sarvesh Tanwar: Helped in drafting the manuscript 

critical insights, and provided valuable guidance and 

mentorship throughout the research process ensuring the 

paper's quality and rigor. 

Tanupriya Choudhury: Helped in drafting the 

manuscript, critical insights and provided valuable 

guidance and mentorship throughout the research process 

ensuring the paper's quality and rigor. 

Ethics 

The corresponding author declared that this study has 

not been submitted elsewhere. 

Future Work  

This study marks a considerable advancement in the 

generation and classification of attacks in RPL networks, 

but there is still a need to perform further investigation 

by expanding the datasets to incorporate more attacks, 

different network topologies, and increased simulation 

time. The performance and reliability of the attack 

classification of the models can also potentially be 

increased by examining the features to a greater extent 

that were collected from the generated dataset and 

employing other deep-learning models. Additionally, 

assessing the trained model's performance in actual IoT 

deployments and confirming its efficacy against real-

world threats will offer insightful information and 

further confirm the model's applicability and utility. We 

may contribute to the establishment of more reliable and 

accurate IDS for IoT by exploring these potential future 

research directions. 

Data Availability 

All data generated or analyzed during this study are 
included in this published article and are available at 
https://amityedu96491-
my.sharepoint.com/:f:/g/personal/vandana_choudhary_s_a

mity_edu/Ep6C6T-
tFlNLoO46OHjqi10B4WOcbqlk7cwcrY6O7XIuuw?e=LrJ
0Hb.  

Conflict of Interest 

The authors declare that they do not have any conflicts 

of interest that influence the work reported in this study.  

References 

Abualigah, L., Diabat, A., & Geem, Z. W. (2020). A 

comprehensive survey of the harmony search 

algorithm in clustering applications. Applied 

Sciences, 10(11), 3827. 

https://doi.org/10.3390/app10113827 

Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., 

Al-Qaness, M. A., & Gandomi, A. H. (2021). Aquila 

optimizer: A novel meta-heuristic optimization 

algorithm. Computers and Industrial Engineering, 

157, 107250. 

https://doi.org/10.1016/j.cie.2021.107250 

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, 

M., & Ayyash, M. (2015). Internet of things: A 

survey on enabling technologies, protocols, and 

applications. IEEE Communications Surveys and 

Tutorials, 17(4), 2347-2376. 

https://doi.org/10.1109/COMST.2015.2444095 

Almarshdi, R., Nassef, L., Fadel, E., & Alowidi, N. 

(2023). Hybrid deep learning based attack detection 

for imbalanced data classification. Intelligent 

Automation and Soft Computing, 35(1). 

https://doi.org/10.32604/iasc.2023.026799 

Altunay, H. C., & Albayrak, Z. (2023). A hybrid CNN+ 

LSTM based intrusion detection system for industrial 

IoT networks. Engineering Science and Technology, 

an International Journal, 38, 101322. 

https://doi.org/10.1016/j.jestch.2022.101322 

Alzubi, O. A., Alzubi, J. A., Al-Zoubi, A. M., Hassonah, 

M. A., & Kose, U. (2022). An efficient malware 

detection approach with feature weighting based on 

Harris Hawks optimization. Cluster Computing, 1-19.  

https://doi.org/10.1007/s10586-021-03459-1 

Alzubi, O. A., Alzubi, J. A., Alzubi, T. M., & Singh, A. 

(2023). Quantum Mayfly optimization with encoder-

decoder driven LSTM networks for malware 

detection and classification model. Mobile Networks 

and Applications, 1-13. 

https://doi.org/10.1007/s11036-023-02105-x 

https://amityedu96491-my.sharepoint.com/:f:/g/personal/vandana_choudhary_s_amity_edu/Ep6C6T-
https://amityedu96491-my.sharepoint.com/:f:/g/personal/vandana_choudhary_s_amity_edu/Ep6C6T-
https://amityedu96491-my.sharepoint.com/:f:/g/personal/vandana_choudhary_s_amity_edu/Ep6C6T-
https://amityedu96491-my.sharepoint.com/:f:/g/personal/vandana_choudhary_s_amity_edu/Ep6C6T-


Vandana Choudhary et al. / Journal of Computer Science 2024, 20 (4): 365.378 

DOI: 10.3844/jcssp.2024.365.378 

 

377 

Aravamudhan, P. (2023). A novel adaptive network 

intrusion detection system for internet of things. Plos 

One, 18(4), e0283725. 

https://doi.org/10.1371/journal.pone.0283725 

Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, 

W., & Wahab, A. (2020). A review of intrusion 

detection systems using machine and deep learning in 

internet of things: Challenges, solutions and future 

directions. Electronics, 9(7), 1177.  

https://doi.org/ 10.3390/electronics9071177 

Aswad, F. M., Ahmed, A. M. S., Alhammadi, N. A. M., 

Khalaf, B. A., & Mostafa, S. A. (2023). Deep 

learning in distributed denial-of-service attacks 

detection method for Internet of Things networks. 

Journal of Intelligent Systems, 32(1), 20220155. 

https://doi.org/10.1515/jisys-2022-0155 

Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT 

technology, applications and challenges: A 

contemporary survey. Wireless Personal 

Communications, 108, 363-388. 

https://doi.org/10.1007/s11277-019-06407-w 

Banaamah, A. M., & Ahmad, I. (2022). Intrusion detection 

in IoT using deep learning. Sensors, 22(21), 8417. 

https://doi.org/10.3390/s22218417 

Choudhary, V., Tanwar, S., & Choudhury, T. (2023). 

Evaluation of contemporary intrusion detection systems 

for internet of things environment. Multimedia Tools 

and Applications, 1-41.  

https://doi.org/10.1007/s11042-023-15918-5 

Essop, I., Ribeiro, J. C., Papaioannou, M., Zachos, G., 

Mantas, G., & Rodriguez, J. (2021). Generating 

datasets for anomaly-based intrusion detection 

systems in IoT and industrial IoT networks. Sensors, 

21(4), 1528. 

https://doi.org/10.3390/s21041528 

Fatani, A., Dahou, A., Al-Qaness, M. A., Lu, S., & Elaziz, 

M. A. (2021). Advanced feature extraction and 

selection approach using deep learning and Aquila 

optimizer for IoT intrusion detection system. 

Sensors, 22(1), 140. 

https://doi.org/10.3390/s22010140 

Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., 

& Sikdar, B. (2019). A survey on IoT security: 

Application areas, security threats and solution 

architectures. IEEE Access, 7, 82721-82743. 

https://doi.org/10.1109/ACCESS.2019.2924045 

Henry, A., Gautam, S., Khanna, S., Rabie, K., Shongwe, 

T., Bhattacharya, P., ... & Chowdhury, S. (2023). 

Composition of hybrid deep learning model and 

feature optimization for intrusion detection system. 

Sensors, 23(2), 890. 

https://doi.org/10.3390/s23020890 

Hwang, R. H., Peng, M. C., Nguyen, V. L., & Chang, Y. 

L. (2019). An LSTM-based deep learning approach 

for classifying malicious traffic at the packet level. 

Applied Sciences, 9(16), 3414. 

https://doi.org/10.3390/app9163414 

Kamel, S. O. M., & Elhamayed, S. A. (2020). Mitigating 

the impact of IoT routing attacks on power 

consumption in IoT healthcare environment using 

convolutional neural network. International Journal 

of Computer Network and Information Security, 

12(4), 11-29. 

https://doi.org/10.5815/ijcnis.2020.04.02 

Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, 
W. (2017). A survey on internet of things: 

Architecture, enabling technologies, security and 
privacy and applications. IEEE Internet of Things 
Journal, 4(5), 1125-1142.  
https://doi.org/ 10.1109/JIOT.2017.2683200 

Nagisetty, A., & Gupta, G. P. (2019, March). 
Framework for detection of malicious activities in 
IoT networks using keras deep learning library. 
In 2019 3rd International Conference on 
Computing Methodologies and Communication 
(ICCMC) (633-637) IEEE. 

https://doi.org/10.1109/ICCMC.2019.8819688 

Omarov, B., Auelbekov, O., Suliman, A., & Zhaxanova, 

A. (2023). CNN-BiLSTM hybrid model for network 

anomaly detection in internet of things. International 

Journal of Advanced Computer Science and 

Applications, 14(3).  

https://doi.org/ 10.14569/IJACSA.2023.0140349 

Roopak, M., Tian, G. Y., & Chambers, J. (2020, January). 

An intrusion detection system against DDOS attacks in 

IOT networks. In 2020 10th Annual Computing and 

Communication Workshop and Conference 

(CCWC) (0562-0567). IEEE. 

https://doi.org/10.1109/CCWC47524.2020.9031206 

Salcedo-Sanz, S. (2016). Modern meta-heuristics based 

on nonlinear physics processes: A review of 

models and design procedures. Physics Reports, 

655, 1-70. 

https://doi.org/10.1016/j.physrep.2016.08.001 

Sayed, N., Shoaib, M., Ahmed, W., Qasem, S., Albarrak, 

A., & Saeed, F. (2022). Augmenting IoT Intrusion 

Detection System Performance Using Deep Neural 

Network. Computers, Materials and Continua, 

74(1), 1351-1374. 

https://doi.org/10.32604/cmc.2022.030831 

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. 

(2018). Toward generating a new intrusion detection 

dataset and intrusion traffic characterization. 

ICISSp, 1, 108-116. 

https://doi.org/ 10.5220/0006639801080116 



Vandana Choudhary et al. / Journal of Computer Science 2024, 20 (4): 365.378 

DOI: 10.3844/jcssp.2024.365.378 

 

378 

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. 

(2012). Toward developing a systematic approach to 

generate benchmark datasets for intrusion detection. 

Computers and Security, 31(3), 357-374. 

https://doi.org/10.1016/j.cose.2011.12.012 

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. 

(2009, July). A detailed analysis of the KDD CUP 99 

data set. In 2009 IEEE Symposium on Computational 

Intelligence for Security and Defense 

Applications (1-6). IEEE. 

https://doi.org/10.1109/CISDA.2009.5356528 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thakkar, A., & Lohiya, R. (2021). A review on machine 

learning and deep learning perspectives of IDS for 

IoT: Recent updates, security issues and challenges. 

Archives of Computational Methods in Engineering, 

28, 3211-3243. 

https://doi.org/10.1007/s11831-020-09496-0 

Zhang, H., Zhang, B., Huang, L., Zhang, Z., & Huang, H. 

(2023). An efficient two-stage network intrusion 

detection system in the internet of things. 

Information, 14(2), 77. 

https://doi.org/10.3390/info14020077 


