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Abstract: Air pollution is a global issue. PM2.5 is considered to be the most 

dangerous pollutant. Prediction of PM2.5 concentration is important so that 

effective measures can be taken beforehand. A multitude of machine learning 

methodologies have been employed in forecasting PM2.5 levels, utilizing 

diverse combinations of ensemble classifiers and regressors. However, there 

are three important issues that need to be addressed in order to construct 

ensemble classifiers and regressors. The first concern pertains to the selection 

of the base regressor or classifier technique. The second issue revolves 

around the choice of the amalgamation technique utilized to assemble 

multiple regressors or classifiers. Lastly, the third issue relates to determining 

the optimal number of regressors or classifiers to be ensembled. There is a 

limited number of related studies addressing these issues. We conducted a 

comprehensive comparative analysis of ensemble methods, including 

bagging and boosting for homogeneous ensemble methods and blending and 

super-learning (stacking) for heterogeneous ensemble methods, to predict 

PM2.5 concentration levels. Ensemble regressors and classifiers' 

performance based on these techniques has not been wholly scrutinized in 

the literature. The issues that we have addressed have not previously 

undergone scrutiny in the context of PM2.5 concentration prediction. We 

have used artificial neural networks, support vector machines and decision 

trees to construct 24 different ensemble regressors and classifiers. In 

constructing the decision tree, we employed the information gain approach 

to determine the most suitable property for each node within the generated 

tree. For SVM we have used the Radial Basis Function (RBF) kernel to create 

our models. For the ANN model we have used we have used Adam (adaptive 

moment estimation) optimizer. In each layer, the softmax activation function 

is used. We have done a model comparison using execution time, accuracy 

and error metrics on three air pollution datasets of Guwahati City, Delhi City 

and Kolkata City obtained from the central pollution control board, India. 

The results reveal that on average heterogenous ensemble techniques, 

namely, stacking (90-100%) and blending (80-100%) offer better prediction 

accuracy than homogenous ensemble techniques, namely, bagging (50-98%) 

and boosting (50-97%) over all the datasets. The root means square error 

reveals that heterogenous ensemble classifiers and regressors fit better as 

compared to homogenous classifiers and regressors. In conclusion, our 

findings indicate that an innovative approach to PM2.5 concentration 

prediction could incorporate both homogeneous and heterogeneous ensemble 

techniques into their algorithms. Our ethical data collection approach relies 

on the open dissemination of information by the central pollution control 

board, fostering a spirit of shared responsibility in advancing air quality 

research and public health initiatives.  
 
Keywords: Ensembled Learning, PM2.5 Concentration Prediction, Bagging, 

Boosting, Stacking, Blending 
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Introduction  

In recent decades, due to the increase in progress, 

urbanization and improved lifestyle in cities, air pollution 

has increased at a tremendous rate. We have selected 

Guwahati as the area of study because it has been recorded 

as one of the cities with the highest black carbon levels in 

the world (Barman and Gokhale, 2019). The particulate 

matter concentration in Guwahati is much higher than the 

permissible value. The high concentration of PM2.5 is 

extremely dangerous for both adults and children 

(Amnuaylojaroen and Parasin, 2023; Oliveira et al., 

2016). Associations of PM2.5 with health issues such as 

cardiovascular diseases, respiratory diseases, asthma, cancer, 

metabolic diseases and obesity can be observed in papers 

(Evans et al., 2013; Laden et al., 2006; Rojas-Rueda et al., 

2013). It is of utmost importance to predict the PM2.5 

concentration in advance so that effective measures can 

be taken beforehand to reduce its extremely harmful 

effects (Pope III et al., 2015; Yang et al., 2022). The 

headquarters of the Pollution Control Board of Assam 

(PCBA) is Situated in Bamunimaidan, Guwahati. It 

monitors the city’s ambient air quality and has notified 

that the level of PM2.5 concentration has been well above 

the prescribed values since 2008 (Kioumourtzoglou et al., 

2016). Recent studies have revealed that Guwahati falls 

under one of the cities with the highest concentrations of 

black carbon (Medhi et al., 2023). The major reasons for 

the poor air quality are rapid urbanization and poor 

environmental control. Serious steps must be taken to deal 

with this problem. That is why it is of utmost importance 

to predict the PM2.5 concentration beforehand so that 

effective measures can be taken ahead of time. 

PM2.5 and Air Quality Standard 

PM2.5 refers to particulate matter with a diameter of 

less than 2.5 microns or less. These particles exist in solid 

and liquid forms suspended in the air, including examples 

such as ash, soot and dust (Khyat et al., 2023). Because of 

their exceptionally small size, PM2.5 particles have the 

ability to deeply penetrate the respiratory tract and easily 

reach the lungs. Exposure to PM2.5 is linked to a spectrum 

of health problems, encompassing both short-term 

effects and long-term consequences. (Kloog et al., 2013; 

Zhang et al., 2019). Short-term health effects attributed to 

PM2.5 exposure encompass irritation of the nose, throat 

and lungs, accompanied by symptoms such as coughing, 

sneezing, shortness of breath, runny nose and eye 

irritation (Banerjee et al., 2019). Long-term exposure may 

lead to serious health problems related to lung function, 

asthma and heart diseases (Gonzalez et al., 2015; Janssen 

et al., 2013; Kim et al., 2015). According to the World 

Health Organization (WHO), approximately three percent 

of cardiopulmonary deaths and five percent of lung cancer 

deaths globally are attributed to exposure to PM2.5 

(Hadei et al., 2017; Han et al., 2022; Feng et al., 2020). 

PM2.5 comprises metals, nitrates, sulfates, acids and 

particles with diverse chemical compositions. Due to its 

tiny size, PM2.5 has the ability to traverse over longer 

distances and easily penetrate indoor areas (Martins and 

Da Graca, 2018). Monitoring stations are responsible for 

monitoring PM2.5 levels. 

All the issues mentioned highlight the significant 

danger posed by PM2.5. Monitoring stations track PM2.5 

levels, which are used to calculate the Air Quality Index 

(AQI) value. Governments utilize AQI numbers to inform 

the public about air quality, as shown in Table 1 (Safar-

India) (Pope III and Dockery, 2006). An increase in AQI 

indicates higher air pollution levels and vice versa. As per 

the Central Pollution Control Board (CPCB), air quality 

is categorized into 6 stages: Good, satisfactory, moderate, 

poor, very poor and severe. An AQI value between 0 and 

50 is considered good. PM2.5 concentration breakpoints 

determine air quality depending on the PM2.5 

concentrations. For instance, air quality is considered 

good if PM2.5 concentrations range from 0.0-30.0 μg/m³. 

Table 1 illustrates the values for each category. This study 

considers four major pollutants for calculating AQI: 

Particulate Matter 2.5 (PM2.5), Nitrogen Dioxide (NO2), 

Sulfur Dioxide (SO2) and Particulate Matter 10 (PM10). 

AQI is computed for all the pollutants, with the maximum 

value determining the final AQI value for a specific 

location at a given time. According to the Indian central 

pollution control board, AQI is computed using the 

formula provided in Eq. 1 (Beig et al., 2010).  

 

𝐴𝑄𝐼 =
[𝐼ℎ𝑖𝑔ℎ−𝐼𝑙𝑜𝑤]

[𝐵𝑃ℎ𝑖𝑔ℎ−𝐵𝑃𝑙𝑜𝑤]
∗ (𝐶𝑃 − 𝐵𝑃𝑙𝑜𝑤) + 𝐼𝑙𝑜𝑤 (1) 

 

where: 
 
AQI = Air quality index 

CP = Pollutant concentration 

BPhigh = Concentration breakpoint that is ≥CP  

BPlow = Concentration breakpoint that is <CP  

Ihigh = AQI value corresponding to BP 

Ilow = AQI value corresponding to BPlow 
 
Table 1: AQI values of PM2.5 

 Air quality index 

 ---------------------------------------------------- 

   PM2.5 breakpoints 

Category of AQI Index value  (μg/m3, 24 h average) 

Good 000-050 000.0-030.0 

Satisfactory 051-100 031.0-060.0 

Moderate 101-200 061.0-090.0 

Poor 201-300 091.0-120.0 

Very poor 301-400 121.0-250.0 

Severe 401-500 250.0+000.0 
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Several computational models based on the machine 

learning paradigm and soft computing have been utilized 

for air pollution prediction and analysis. Supervised ML 

methodologies such as Support Vector Machine (SVM) 

(Leong et al., 2020) and Neural Networks (Cabaneros et al., 

2019; Maleki et al., 2019) have been found to outperform 

traditional arithmetic methods like ridge regression and 

logistic regression in terms of accuracy and error metrics. 

However, ensemble learning methods, which combine 

various machine learning techniques, have shown 

promise. Ensemble methods, such as stacking and 

blending, create committees to enhance predictions, 

where bagging aims to reduce variance and boosting aims 

to decrease bias. The use of ensemble learning 

consistently outperforms single classifiers and regressors 

(Sun and Li, 2020; Xu et al., 2019). 

Application of ensemble learning can be found in 

various sectors like health (Sarmadi et al., 2021), 

agriculture (Zhang et al., 2019), finance (Zhu et al., 2019) 

and energy (Wang et al., 2019), demonstrating improved 

performance over single classifiers or regressors. As a 

result, the advancement of superior ensemble models for 

both classification and regression tasks has emerged as a 

vibrant research domain within supervised learning. 

Although numerous studies support the superior 

performance of ensemble techniques over single 

classifiers or regressors, most papers focus on ensemble-

specific classifiers or regressors for air pollution prediction, 

namely, SVM (Gonzalez et al., 2015), NN (Bai et al., 2019; 

Ganesh et al., 2018) and DD (Danesh Yazdi et al., 2020; 

Gao et al., 2021). There has been a scarcity of research 

focused on the comparison of ensemble classifiers and 

regressors utilizing various amalgamation methods, 

employing either identical or diverse types of base 

learners, specifically for predicting air quality. Therefore, 

after reviewing existing literature, we have identified a 

gap in comprehensive comparative studies evaluating the 

accuracy of heterogeneous and homogeneous ensemble 

classifiers and regressors for PM2.5 concentration 

prediction. As a result, this study undertakes an extensive 

and comprehensive comparative study of homogeneous 

and heterogeneous ensemble learning models for both 

classification and regression in PM2.5 prediction. The 

following are the objectives of our study: 

 

1. Perform a literature review of recently published 

research papers on ensembled learning for supervised 

machine learning tasks, namely, classification and 

regression in PM2.5 prediction 

2. Set up homogenous and heterogenous ensembled 

classifiers and regressors with NN, DT and SVM 

using combination techniques, namely, bagging, 

boosting, blending and stacking 

3. Examination and comparison of the models using 

accuracy, execution time and error metrics for 

three data sets 

 

The objective of this study is to offer clearer insights 

into the best suitable ensemble methods for machine 

learning tasks in predicting the concentration of PM2.5. 

Furthermore, it provides guidance and support to 

newcomers in the machine learning domain, aiding them 

in making well-informed decisions regarding ensemble 

methods that swiftly deliver optimal and accurate 

outcomes in PM2.5 concentration prediction scenarios. 

Lastly, to the best of our knowledge, this research 

contributes to the existing literature by presenting the 1st 

comprehensive comparative analysis of ensemble 

techniques in PM2.5 prediction. 

The remaining section of the paper is organized as 

follows: The "literature review" section presents a review 

of the related studies done. In the "system evaluation" 

section, representation of the type of system that is used for 

performing the processing is represented. Details of the 

basic supervised machine learning methods and basic and 

advanced ensembled methods used in the study are 

discussed. Evaluation criteria used to evaluate the methods 

are also discussed. In the "proposed architecture” section, 

the overall model proposed in our study is discussed in 

detail. The last section is “Results and Discussion" where 

the outcomes of our experiment are discussed. 

In the past decade, many supervised ML techniques 

and ensemble learning techniques were utilized to solve 

various problems related to air pollution prediction. In this 

section, the thematic literature review is conducted to 

showcase a few of the prominent works in this field. In 

the paper by Kaewkiriya and Wisaeng (2023), a customer 

predictive model for investment is developed using the 

voting ensemble technique, where the neural network is 

found to be the most effective. A review is also conducted 

to present the dangerous effects of PM2.5. In the study by 

Zhu et al. (2019), the prediction of air pollutants like 

sulfur dioxide, PM2.5 and O3 is performed using 

regularization and optimization techniques. Datasets from 

two stations are utilized, with Root Mean Square Error 

(RMSE) utilized for evaluation of accuracy. The main 

drawback is that linear regression fails to properly predict 

unforeseen events and generalization is limited as only two 

stations are considered. In the research by Betancourt et al. 

(2022), the authors predict ozone using the random forest 

regression technique. The limitations related to the 

computational model are studied, including the 

consideration of only one pollutant and a small dataset 

size. These are the drawbacks of the system. 
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Mitchell et al. (2012), the optimal classifier from 

Bayes is utilized, employing a classification technique 

based on the assumption that data is conditionally 

independent from the labeled classes to make calculations 

more feasible. Usmani et al. (2018) employed a 

comprised model using four supervised machine learning 

techniques, namely, single-layer perceptron, radial basis 

function, multiple-layer perceptron and SVM, achieving 

up to ninety-five percent in predicting stock exchange 

accuracy. Breiman (1996) conducted a study to obtain a 

better-performing model using ensemble learning, 

utilizing bagging predictors with each model assigned the 

same weight and drawing random subsets for training 

while boosting was employed to ensemble the models for 

improved accuracy. Zheng and Zhong (2011) investigated 

the performance of ensemble learning in time series 

prediction using ARIMA and ANN, showing that the 

ensemble model was able to decrease prediction error. 

Zamani Joharestani et al. (2019) studied the feature 

importance of particulate matter 2.5 to implement 

XGBoost, Random Forest and deep learning approaches, 

where XGBoost outperformed other methods. 

PM2.5 is considered the most dangerous pollutant, as 

detailed in Janssen et al. (2013); Pope III and Dockery 

(2006), which studied various diseases caused by PM2.5 

exposure. The Global Burden of Disease Project 

conducted by the World Health Organization (WHO) 

revealed that a high percentage of health issues result from 

PM2.5 exposure (Yazdani, 2021). WHO also presented a 

study indicating that 5% of lung cancer deaths and 3% of 

cardiopulmonary deaths occur due to PM2.5 exposure. 

Due to its minute size, PM2.5 particles can penetrate deep 

into the lungs and remain suspended for prolonged 

durations. Medhi and Gogoi (2021) emphasized that high 

PM2.5 levels pose more adverse effects on children, 

infants and aged adults with heart and lung diseases and 

asthmatics. Various reasons why PM2.5 is considered 

very dangerous are studied by Wilson and Suh (1997). 

Jebamalar and Kamalakannan (2021) predict particulate 

matter 2.5 using an enhanced technique employing a 

stacking ensemble machine learning model, 

outperforming other ensemble techniques. Liu et al. 

(2019) proposed a prediction model to find PM2.5 

concentration. It uses a Bagging-Gradient Boosting 

Decision Tree (GBDT), based on a bagging ensemble 

learning framework. Our proposed model outdoes SVM 

and Random Forest (RF) models, better-reducing 

prediction bias and variance. 

In the paper by Jarah et al. (2023), a new algorithm for 

earthquake prediction using machine learning is proposed 

and observations are made that the neural network model 

performs better than the other machine learning models. 

Devi et al. (2022), three different modeling techniques, 

namely MLP, ANN and Bagged Artificial Neural 

Network (BANN), were used to predict SO2 pollution 

trends. The models were evaluated using evaluation 

criteria, namely, Coefficient Correlation (CC), MAE, 

RMSE, Nash-Sutcliffe Efficiency (NSE), Willmott Index 

(WI) and normalized RMSE. It was found that BANN 

outperformed ANN and MLP. In the review by Liu et al. 

(2019), an introduction is provided on simple prediction 

models along with their background, advantages, 

limitations and applications. To enhance prediction 

ability, a review is conducted on data processing and 

two auxiliary methods, namely, ensemble learning and 

metaheuristic optimization. The review also considers 

spatiotemporal aspects and provides direction on 

research areas that can be explored for air pollution 

prediction. A thorough comparison of various 

ensemble methods is essential to gain a comprehensive 

understanding of their effectiveness. 

A summarized study on prediction done with 

ensemble techniques is presented in Table 2. The criteria 

considered for the study include (i) Selection and quantity 

of base learner (ii) ML task (regression or classification) 

(iii) Amalgamation technique used and (iv) Evaluation 

metrics used. As evident from Table 2, the modeling of 

ensemble classifiers and regressors for predictive 

purposes has garnered considerable attention in recent 

studies. Most of the studies (Booth et al., 2014; Breiman, 

1996; Devi et al., 2022; Jacobsen et al., 2020; Liu et al., 

2019; Mabu et al., 2015; Weng, 2017) are based on 

bagging and boosting amalgamation methods. Very few 

studies (Macchiarulo, 2018; Morales et al., 2012; 

Pasupulety et al., 2019; Wang et al., 2019) concentrated 

on the use of stacking and blending combination 

techniques. Another observation is that most studies 

compared ensemble classifiers or ensemble regressors but 

not both. A literature survey reveals that most ML 

techniques have the ability to be applied for both 

classification as well as regression, with some of the 

techniques better suitable for one task over the other. 

Therefore, a comprehensive comparison should be 

conducted for both classification and regression using the 

same base learners. The quantity of base learners used in 

the studies is also diverse, with some using a fixed number 

while others using different numbers. To the best of our 

knowledge, prior studies have not conducted 

comparisons of ensemble classifiers and regressors 

utilizing the same amalgamation technique. Based on 

the points discussed in Table 2, there exists a research 

gap that warrants a comprehensive comparative study 

of ensemble classifiers and regressors. This study 

would consider utilizing the same or different numbers 

of weak learners, employing various amalgamation 

techniques for predicting PM2.5 concentration. 



Shrabani Medhi and Minakshi Gogoi / Journal of Computer Science 2024, 20(9): 931.954 

DOI: 10.3844/jcssp.2024.931.954 

 

935 

Table 2: Comparison of related studies 

    Machine 

   Amalga learning task 

  Number of mation --------------------------------- Evaluation 

Articles Base learners base learner method Classification Regression criteria 

Mabu et al. (2015) MLP - BAG √  - 
Devi et al. (2022) MLP, ANN, - BAG √  CC, MAE, 

 BANN     RMSE, NSE, 

      WI 

Booth et al. (2014) RF 200 BAG  √ CV, MAPE, 

      RMSE 

Jacobsen et al. (2020) BMA WALS 

 and LASSO - BAG-BOT √  R2 

Macchiarulo (2018) SVM and NN - STK √  Cross-validation 

Pasupulety et al. (2019) Extra tree 

 and SVM 1-250 STK  √ RMSE 

Mehta et al. (2019) Multiple - - √  Accuracy 

 regression, 

 SVM, LSTM 

Liu et al. (2019) GBDT, SVM, RF - BAG √  RMSE, MAE, R2 

Morales et al. (2012) LSTM and trees 50-150 BOT, STK √  F-score, AUC, 

      accuracy 

Zamani Joharestani et al. XGBoost, RF, DL - - √  Accuracy 

(2019) 

Wang et al. (2019) RNN - STK √  AUC, accuracy 

Weng. (2017) DT, ANN, RF - BAG-BOT  √ MAPE, R2, 

      RMSE 

Gonzalez et al. (2015) SVM 10 MV √  10-fold CV 

De Mello Assis et al. (2018) NN 30 - √  Recall and 

      Precision 

Breiman (1996) 
ML - BAG-BOT √ √  RMSE, MAE, 

      R2 

 

Background Study 

Predictive Models 

Based on the studies conducted, we have chosen three 

machine learning algorithms as the base learners, namely, 

DT, ANN and SVM, considering their effectiveness in 

ensemble learning for air pollution prediction. 

Decision Tree (DT) 

A flowchart-like tree structure is utilized in Decision 

Trees (DT). This technique employs branching to 

determine the most probable outcome of a decision. DT is 

commonly employed for classification tasks due to its 

advantageous features, including simplicity, 

interpretability, low computational cost and its graphical 

representation (Miller et al., 2019). The selection of the 

optimal property for each and every node within the 

generated tree relies on Information Gain (IG). This 

entails choosing the attribute with the highest IG as the 

test attribute for each current node. 

The operations on data are as follows. Entropy En(S) 

of a dataset is given in Eq. 2: 
 
𝐸𝑛(𝑆) = ∑ −𝑞𝑖𝑙𝑜𝑔2𝑞𝑖

𝑘
𝑖=1  (2)  

where, En(S) represents the entropy of a dataset, k 

represents the number of classes in the dataset, qi 

represents the number of instances that belong to class i.  

Information gain of an attribute D is calculated for a 

collection S and is represented by Eq. 3: 
 

( ) ( ) ( ) ( ),
S

IG S D En S values D En S
S


 = −  −  (3) 

 
where, En(S) represents the entropy of the entire dataset 

and Su represents a set of instances that has value u for 

attribute D. 

Support Vector Machine (SVM) 

SVM is a supervised ML technique that is utilized for the 

task of both classification and regression (Agarwal et al., 

2017). Between two data nodes, SVM serves as the linear 

separator. SVM is employed to discern between two 

distinct classes within multidimensional environments. 

SVM is implemented using the following steps. 

Let S be the training dataset. S = {(pj, qj, . . . (pn,qn))} 

where j=1, 2, . . . , n. SVM denotes the dataset as points in 

the n-dimensional space. A hyperplane is constructed to 

divide the space into distinct class labels available in the 
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dataset with the right error margin. The algorithm for 

SVM optimization is given in Eqs. 4-5: 
 

( )
1

1
,

2

nT

i
min d bw W W C wi

=
+   (4) 

 

( )( )1-TSubject to yi W θ xi+b wi ,wi >0  (5) 
 

Each vector xi in the dataset is mapped to a function 𝜃 

within the higher-dimension space. In the higher space, 

SVM tries to find a linearly separating hyperplane that has 

the optimal margin. The formula of the kernel function is 

given by 𝐾𝐹(𝑥𝑖, 𝑦𝑖)  = 𝜃(𝑥𝑖)𝑇𝜃(𝑥𝑗).  

Neural Network (NN) 

NN is a network that consists of components that are 

interrelated. It performs the task of accepting inputs, 

actuating and forwarding them to the next layer. In our 

study, we have adopted MLP for NN. MLP is a supervised 

machine learning technique. It works on a function f (nn) 

= NI 
→ NJ. The training is conducted on dataset S, where 

I represent the input data dimension and J represents the 

output dimension. MLP can perform both classification 

and regression by using a non-linear function 

approximator. Many optimizers are available. For our study, 

we have used the Adam (adaptive moment estimation) 

optimizer. In each layer, the softmax activation 

function (Eq. 6) is used in each and every layer. The 

function for mapping each and every layer is represented 

by Eq. 7: 
 

𝜎(𝑧) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

  (6) 
 
where, 𝜎 is the softmax, z is the input vector, 𝑒𝑧𝑖is the 

standard exponential function for the input vector, k is the 

number of classes in the classifier and  𝑒𝑧𝑗is the standard 

exponential function for the output vector: 
 
𝑀𝐹 = 𝑊[𝑙]𝑇 × 𝑎𝑙−1 + 𝑏𝑙  (7) 
 

where, 𝑊 [𝑙] is the weight matrix and 𝑏𝑙is the bias.  

Ensemble Methods (EM) 

EM techniques are responsible for merging multiple 

single regressors and classifiers to form a committee. It is 

done to achieve better decisions and accurate results 

compared to a single regressor or classifier (Guzman et al., 

2015; Srisuradetchai and Panichkitkosolkul, 2022). In the 

ensemble process, many diverse single classifiers or 

regressors are trained independently using the same or 

different dataset. The same parameters are not used. The 

final prediction is determined by averaging the outputs of 

all individual base classifiers or regressors. There are 

three important issues that need to be put into 

consideration while creating an ensemble classifier and 

regressor model. (1) The type of regression and 

classification method that should be used out of the many 

methods that are available. (2) The number of base 

learners that should be used to obtain better accuracy. (3) 

The combination technique that should be applied to 

amalgamate the results of single base learners so as to obtain 

the final output. Some of the basic and advanced 

combination techniques are discussed below. 

Basic Ensemble Techniques 

We are going to discuss three basic ensemble 

techniques: (i) Weighted Averaging (WAv) (ii) Max 

Voting (MV) (iii) Averaging 

Weighted Averaging (WAv) 

WAv represents the extension of the averaging 

technique. Various types of weights, for example (0.5, 

0.2, 0.7, etc.,) are assigned to each of the models (M1, M2, 

M3, etc.,) based on the importance of each model for 

prediction. The final prediction (Fwa) is given in Eq. 8: 

 

𝐹𝑤𝑎 = ((0.5 × 𝑧1) + (0.2 × 𝑧2) + (0.7 × 𝑧3) + ⋯ (8) 
 

where, z1, z2, z3, … are the forecasting output of the 

models M1, M2, M3, … 

Max Voting (MVo) 

MVo is primarily used for classification tasks. Several 

single classifiers are used to train the dataset. The output 

of each of the individual classifiers is used as a 'vote. The 

final output is determined by taking the majority vote. The 

training of the individual models is done using the same 

training dataset and applying the same testing set. The 

ultimate prediction is determined by aggregating a 

majority vote among the individual predicted outputs. 

Averaging 

The technique of averaging can be applied to both 

classification and regression tasks. It bears similarity to 

the Majority Voting (MVo) technique. In this approach, 

the final output is determined by calculating the average 

of all forecasting outputs from the individual classifiers or 

regressors. Here, each individual model is trained and 

tested separately using the same dataset. The ultimate 

Forecasting (Fa) using averaging is given in Eq. 9: 
 

𝐹𝑎 = ∑
(𝑧1+𝑧2+⋯ )

𝑛

𝑛
𝑖=1  (9) 

 
where, z1, z2, … are the forecasting outputs of the distinct 

models M1, M2, … n is the number of individual 

classifiers used. 

Advanced Ensemble Learning Techniques 

Here we will discuss four unconventional 

amalgamation techniques in brief. 
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Bagging (BAGG) 

BAGG is also known as bootstrap aggregating. The 
forecast of several models (e.g., n number of decision 
trees) is combined to achieve the final result. The 
bootstrapping technique involves creating multiple 

subsets, referred to as bags, of the original training dataset 
with replacement. Bags aid in acquiring an unbiased 
representation of the entire dataset (Tsai et al., 2014). The 
size of the bags is less than the original dataset. The 
variance of the models can be decreased by using bagging. 

Boosting (BOTT) 

Another name for BOTT is meta-algorithm. It is a 
progressive process wherein each succeeding model 
attempts to correct the errors, weaknesses, etc., of the 
preceding model. The performance of the successive 

model is dependent on the preceding model (Mayr et al., 
2014). The aim of BOTT is to reduce the bias of the 
models. A strong learner is formed by lumping together 
several weak learners. Single models may perform better 
for some parts of the dataset. They may not obtain 
necessarily better accuracy for the entire dataset. Each 

model progressively enhances the performance of the 
entire ensemble. Examples of BOTT algorithms include 
CatBoost, AdaBoost, gradient boosting machine, extreme 
gradient boosting and others. 

Stacking (STK) 

In Stacking (STK), the individual predictions from 
multiple models are utilized to construct the final model 
(Chaurasia and Pal, 2021). The final model is used to 
perform prediction on the testing dataset. The aim of 
stacking is to improve the forecasting power of a regressor 
or classifier (Khairalla et al., 2018). To implement 

stacking in our study mlens library was used. The process of 
stacking is represented in Eq. 10: 
 
𝐹𝑠𝑡𝑘 = ∑ 𝑤𝑖𝑓𝑖(𝑥)𝑛

𝑖=1  (10) 
 

Here, Fstk represents the final output, n represents the 
total number of models, wi is the weight vector learned by 
the models M1, M2, …, Mn and output of the individual 
models M1, M2, …, Mn is represented by fi(x). 

Blending (BLD) 

BLD is analogous to the stacking technique. In 

stacking test dataset is used for prediction. While in 

blending a validation dataset from the training dataset is 

used for prediction. The final model for prediction on the 

testing dataset is obtained by using the outcome of the 

predicted dataset and the validation dataset.  

Materials and Methods 

 All our experiments are conducted on an 11th gen intel 

(R) core (TM) i7-1165G7 @ 2.80GHz, 2803 Mhz, 4 core (s), 

8 logical processor(s) running on Microsoft windows 

11, home single language. Data preprocessing, time 

series evaluation and modeling of ensemble classifiers 

and regressors using base learners ranging from 1-200 

are implemented using Python programming and its 

various libraries. Performance evaluation of the models 

is done using sklearn metrics. Figure 1 depicts our 

proposed framework. The combination methods that 

we have used are BAG, BOT, STK and BLD. The base 

learner models that we have adopted are DT, SVM and 

NN. These concepts are already discussed in the 

previous section. We have developed both 

homogeneous and heterogeneous ensemble regressors 

and classifiers for predicting PM2.5 concentration. 

Subsequently, we compare their accuracy and error 

metrics. There are three phases of our proposed 

framework: (i) Data pre-processing (ii) Construction of 

homogeneous and heterogenous classifiers and 

regressors and (iii) Comparison of error metrics and 

accuracy of the models. 

Data Source 

For Guwahati city, Delhi city and Kolkata city, the 

Continuous Ambient Air Quality Monitoring Station 

(CAAQMS) data is obtained from the Central Pollution 

Control Board, India Central Pollution Control Board 

(CPCB). A total of 3 years of data from 2019-2022 is 

collected for each city. The features utilized in the study 

are provided in Tables 3-4 present descriptive statistics for 

the Guwahati city dataset, including meteorological 

conditions, criteria gases and particulate measures such as 

count, mean, standard deviation, minimum, 25th 

percentile, 50th percentile, 75th percentile, maximum, 

skewness, kurtosis and variance. Notably, there is no high 

value of skewness in the data, suggesting no sharp 

increases in the dataset. However, the high value of 

kurtosis in PM2.5 indicates the presence of data 

discontinuities. Similar analyses are conducted for the 

datasets of Delhi city and Kolkata city. The objective is to 

predict the 1-h ahead PM2.5 concentration for both 

classification and regression and descriptive statistics 

have been performed for all datasets. 

 

 
 
Fig. 1: Proposed framework 
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Stationarity Check 

It is crucial to verify whether the time series data is 

stationary or not. We have used three methods to check 

the stationarity of the time series data. From the methods 

described below it is found that our data is stationary. 

Time Plots 

For time series analysis, time plots are very 

important as they are used as a descriptive tool that may 

show both seasonality and trend, outliers and 

discontinuities. This allows us to make better decisions 

in choosing the appropriate technique to perform the 

prediction. The time plots of PM2.5 for the Guwahati 

city dataset are shown in Fig. 2. The time plots of all 

the features used are created to check for stationarity. 

From the plots, it can be observed that the distribution 

for each of the data is non-linear. A time series is 

stationary if the variance remains the same over time. The 

plot in Fig. 2 indicates the stationarity of the data. 

Gaussian Distribution 

Data is stationary if it follows a Gaussian distribution. 

The histogram of the Guwahati data is plotted in Fig. 3 

and it shows a Gaussian distribution indicating the 

stationarity of data. 

 
 

Fig. 2: Time plots of the Guwahati city data 

 

Table 3: Summary of measurement site and observed variables 

Measurement site Type Variables 

Guwahati city Meteorological Relative humidity, wind 

Data count: conditions speed, wind direction, 

33067  temperature, Rainfall, 

Delhi city  pressure 

Data count: Criteria gases NO2, SO2, NO, NOx, 

59030  NH3, CO, Ozone, 

Kolkata city  Benzene, Eth-Benzene, 

Data count: Particulates MP-Xylene 

48953  PM2.5, PM10

 

Table 4: Dataset descriptive statistics 

 Base 

Parameters count mean Std min 25% 50% 75% max skew kurt Var 

PM2.5 33067 59.3 61.9 0.0 18.0 36.0 80.0 450.0 2.2 6.7 3841.9 

PM10 33067 114.0 123.0 0.5 34.0 71.0 145.0 1000.0 2.6 10.7 15200.0 

NO 33067 14.9 25.7 0.0 2.6 5.4 14.9 398.6 2.9 9.6 665.0 

NO2 33067 9.8 11.1 0.0 2.6 5.7 12.1 107.0 3.0 12.4 123.2 

Nox 33067 23.6 40.0 0.0 5.2 6.2 22.0 347.4 3.1 11.3 1607.9 

NH3 33067 7.9 6.4 0.0 3.4 6.1 10.8 161.0 2.0 15.0 41.1 

SO2 33067 17.1 7.0 1.5 11.7 15.3 22.3 172.6 1.7 14.7 49.8 

CO 33067 0.7 0.6 0.0 0.3 0.5 0.9 6.6 2.3 7.2 0.4 

Ozone 33067 25.8 18.0 0.0 17.2 20.0 26.9 171.2 2.4 7.0 327.0 

Benzene 33067 1.8 12.8 0.0 0.1 0.8 1.8 491.5 21.5 562.2 164.7 

Eth-Benzene 33067 3.2 20.7 0.0 0.2 3.2 3.2 492.7 17.4 329.7 432.4 

MP-Xylene 33067 2.5 20.9 0.0 0.1 0.5 2.5 492.7 17.3 327.0 438.6 

WS 33067 1.1 00.7 0.0 0.5 0.9 1.4 23.7 2.4 31.1 0.5 

WD 33067 153.8 59.0 13.9 103.6 141.6 197.0 328.1 0.6 -0.7 3487.5 

SR 33067 241.9 187.9 0.0 90.3 241.9 256.5 923.2 0.9 0.7 35327.0 

BP 33067 971.8 34.2 703.1 971.8 971.8 995.7 1011.8 -2.3 7.3 1175.3 

AT 33067 24.7 4.9 6.1 21.6 25.1 28.1 38.2 -0.4 -0.2 24.4 

RF 33067 0.0 0.2 0.0 0.0 0.0 0.00 3.7 6.2 60.3 0.0 
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Fig. 3: Histogram of Guwahati dataset 

 
Table 5: Mean and variance of partitioned data of Guwahati dataset 

 Mean-variance 

Partition 1 49.36 6506.42 

Partition 2 49.15 5971.78 

 

Summary Statistics 

For all datasets, the data is divided into two parts and 

a thorough examination is conducted to identify any 

notable and noteworthy variances in summary statistics. 

The mean and variance of the two partitions for the 

Guwahati dataset are shown in Table 5. It can be seen that 

the mean and variance of the two partitioned data are 

almost the same indicating the stationarity of the data. 

Data Preprocessing 

The performance of an ML model is often influenced 

by the data preprocessing step (Wilson and Suh, 1997). 

The data preprocessing part is divided into two parts (i) 

Data cleaning and (ii) Data transformation. An imputer 

function is used to perform the process of interpolation. 

Techniques like filling in missing values and 

rectifying inconsistencies are pivotal for data cleaning, 

ensuring robustness in subsequent modeling endeavors. 

Furthermore, outlier identification through outlier 

classification aids in pinpointing maximum and minimum 

outliers, offering insights into data distribution 

characteristics. For instance, upon analysis, it was noted 

that "rainfall” exhibited the highest number of missing 

values, while “relative humidity, wind speed and 

pressure” displayed relatively fewer instances of missing 

data. Imputation techniques, employing strategies such as 

mean value interpolation, are utilized to address missing 

data instances effectively. Moreover, outliers are detected 

using the Inter Quantile Range (IQR) method, with 

quantile-based flooring and capping approaches 

employed for outlier management.  

Given the diverse units of multiple input variables, 

normalization emerges as a critical step to standardize 

data attributes onto a consistent scale. Normalization is 

done so that an attribute having lesser significance with a 

large scale doesn’t suppress another attribute of greater 

significance. Min-max scaler is used for normalization.  

It involves subtracting the minimum value from the 

attribute and then dividing it by the range. The 

difference is defined by the difference between the 

maximum and the minimum value. The mathematical 

formula used to normalize the dataset is given in Eq. 11 

(Patro et al., 2015). 

 

Xscaled =
X−Xmin

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
∗ (𝐷 − 𝐶) + 𝐶 (11) 

 

Construction of Homogeneous and Heterogeneous 

Classifiers and Regressors 

Table 6, for the homogenous ensemble experiment, the 

number of base learners used ranges from 1-100. We have 

constructed 12 homogenous ensemble classifiers and 

regressor models with the help of bagging and boosting 

techniques. As seen in Table 7, we have constructed 

12 heterogeneous ensemble classifier and regressor 

models based on stacking and blending. 

 

Table 6: Homogenous ensemble classifier and regressor models 

 Classification Regression  

Base -------------------- ------------------  Number of 

learner BAGG BOTT BAGG BOTT estimator 

DT √ √ √ √ 1-100 

SVM √ √ √ √ 1-100 

MLP √ √ √ √ 1-100 

(BAGG: Bagging; BOTT: Boosting) 

 

Table 7: Heterogenous ensemble classifier and regressor models 

 Meta Classification Regression 

Base estimator ------------------ ------------------- 

learner or STK BLD STK BLD 

DT- 

SVM MLP √ √ √ √ 

SVM-MLP DT √ √ √ √ 

MLP- 

DT SVM √ √ √ √ 

(STK: Stacking; BLD: Blending) 
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In our paper, we implemented a 10-fold Cross-

Validation (10-CVa) approach to achieve a refined 

evaluation of accuracy during training. Utilizing the 

(10-CVa) technique involved partitioning the training 

dataset into 10 distinct subsets, with nine of these sub-sets 

employed in training each model. Concurrently, the 

remaining subset (1) was designated as the test data. This 

iterative process was replicated ten times, aligning with 

the number of folds in the (10-CV) approach. Notably, 

80% of each dataset was dedicated to the training phase, 

while the residual 20% was exclusively reserved for 

testing purposes. 

Model Evaluation 

The performance of classifiers and regressors can be 

measured by using various evaluation metrics (Nti et al., 

2020). We have selected twelve accuracy and closeness 

evaluation metrics for our study which is given in Table 8. 

These metrics were used based on the effectiveness of 

these metrics for classification and regression purposes.  

Results and Discussion 

Here, we present the results and discuss the findings 

of our experiment. 

 

Table 8: Evaluation metrics used 

Acronym Full name Formula 

MAE Mean  
n

i=1

1
MAE = (yi - yp)

2
  

 absolute  

 error 

RMSE Root mean 
n

i=1

1
RMAE = (yi - yp)

n
  

 square error 

R2 F1-score 
2 1

RSS
R

TSS
=  

STD Standard deviation 

AUC Area under ROC curve 
( )

( )

1

0

TP

TP FN
AUC

FP
d

FP TN

+
=

+

  

EVS Explained variance score 

MedAE Median absolute error 

( )

( )

( )

,

1 1

,...,

MedAE y y

median y y

yn yn

=  −

 − 

  

RMSLE Root mean squared 
( )

( )

log 1

,log 1

yn
RMSLE MSE

yn

 +
 =
 +
 

 

 logarithmic error 

Analysis of Homogenous Ensemble Classifier by 

Bagging and Boosting 

The forecasting accuracy of the homogenous ensemble 

classifier by bagging and boosting over the Guwahati, Delhi 
and Kolkata datasets is shown in Figs. 4-6, respectively. 
The number of base learners is represented by the X-axis 
and the Y-axis represents the prediction accuracy. We 
observe that the Decision Tree Boosting Classifier 
(DTBoC) and Decision Tree Bagging Classifier (DTBC) with 

an accuracy above 99% with (20-100) estimators 
outperformed all other bagging and boosting classifiers over 
the Guwahati, Delhi and Kolkata dataset. The 
performance of the Multi-Layer Perceptron Bagging 
Classifier (MLPC) and Multi-Layer Perceptron Boosting 
Classifier (MLPBoC) is lower than bagging and boosting 

obtained using Decision Tree (DT) but higher than 
bagging and boosting obtained using Support Vector 
Machine (SVM) for all the datasets. MLP ensemble using 
a bagging classifier obtained an accuracy of (94-98)% 
over the Guwahati dataset, (92-100)% over the Delhi 
dataset and 100% over the Kolkata dataset. SVM bagging 

classifier recorded (88-89)% over Guwahati, (92-93)% 
over Delhi and (96-97)% over Kolkata. The performance 
of the SVM Boosting Classifier (SVMBoC) is lowest for 
all the datasets with an accuracy of an average of 52% for 
all the range of estimators. It is found that for the DT 
ensemble classifier, the accuracy increases as the 

estimator quantity increases. Thus, we can conclude that 
to achieve higher and improved accuracy, it is advisable 
to increase the number of estimators for the decision tree 
ensemble classifier. However, in the case of the SVM 
ensemble classifier, the accuracy remains unaffected by 
the number of estimators utilized. Therefore, we can 

conclude that the accuracy of the SVM ensemble 
classifier is not impacted by the number of estimators 
employed. The same trend is seen for all the datasets. The 
variation in accurately predicting the PM2.5 concentration 
using homogenous classifiers over different datasets 
suggests that homogenous ensemble methods depend on 

the data that is being analyzed which supports the 
literature (Feng et al., 2016; Triana and Osowski, 2020). 
 

 
 
Fig. 4: Bagging and boosting classifier accuracy of the 

Guwahati dataset 
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Fig. 5: Bagging and boosting classifier accuracy of the 

Delhi dataset 

 

 
 
Fig. 6: Bagging and boosting classifier accuracy of Kolkata dataset 

Merely relying on accuracy scores is insufficient to 

evaluate the performance of classifier and regressor 

models. That is why we calculated some more error 

metrics. Tables 9-14 The performance of MLP, DT and 

SVM ensemble classifiers built on bagging and boosting 

over Guwahati, Delhi and Kolkata datasets is shown using 

the error metrics.  

For DT ensemble classifiers with (1-100) estimators 

the Area Under Curve (AUC) falls between (0.91-1) for 

all the datasets. This explains the best accuracy of DT 

ensemble classifiers that are obtained among all the 

homogenous ensemble classifiers. The R2 score of DT 

ensemble classifiers demonstrates a balance between the 

recall and precision values of the models. DT ensemble 

classifier with (10-100) estimators obtained RMSE and 

MAE values of approximately 0.000. This observation 

proves that the accuracy of DT ensemble classifiers is 

significantly influenced by the quantity of estimators. The 

AUC values of (0.94-0.99), (1.00-1.00) and (1.00-1.00) 

over Guwahati, Delhi and Kolkata datasets, 

respectively are obtained with (1-100) estimators. This 

implies that the MLP bagging classifier outperformed 

the MLP boosting classifier in PM2.5 concentration 

prediction for all the datasets. 

Overall, it is concluded that the SVM ensemble 

classifier performed low compared to DT and MLP 

ensemble classifiers for all the datasets. It is affirmed by the 

literature (Medhi et al., 2023; Obodoeze et al., 2021; 

Srisuradetchai and Panichkitkosolkul, 2022). 
 
Table 9: Error metrics of bagging ensemble classifier over the Guwahati dataset 

 No. of 

Models estimators MAE RMSE R2 MN STD PS RC AUC TrT TeT 

DTBC 01 0.074 0.342 0.702 0.841 0.046 0.927 0.926 0.916 0.096 0.010 

SVMBC  0.274 0.462 0.548 0.849 0.041 0.964 0.886 0.857 0.251 0.005 

MLPBC  0.062 0.278 0.761 0.941 0.047 0.949 0.942 0.937 3.034 0.267 

DTBC 05 0.037 0.258 0.875 0.871 0.036 0.954 0.963 0.957 0.356 0.036 

SVMBC  0.264 0.471 0.478 0.848 0.041 0.851 0.858 0.832 0.524 0.026 

MLPBC  0.051 0.362 0.815 0.964 0.026 0.946 0.943 0.936 10.573 0.726 

DTBC 10 0.028 0.248 0.915 0.873 0.027 0.964 0.975 0.963 0.579 0.057 

SVMBC  0.217 0.471 0.548 0.854 0.047 0.867 0.884 0.856 0.972 0.051 

MLPBC  0.026 0.278 0.913 0.967 0.036 0.963 0.971 0.962 19.745 2.746 

DTBC 15 0.024 0.227 0.938 0.864 0.035 0.974 0.975 0.978 0.652 0.067 

SVMBC  0.238 0.461 0.515 0.852 0.046 0.856 0.886 0.843 2.165 0.032 

MLPBC  0.024 0.258 0.934 0.976 0.025 0.971 0.975 0.975 32.786 3.647 

DTBC 20 0.008 0.028 0.964 0.873 0.035 0.986 0.981 0.983 0.843 0.095 

SVMBC  0.256 0.472 0.503 0.859 0.041 0.857 0.876 0.846 2.634 0.061 

MLPBC  0.034 0.274 0.906 0.973 0.025 0.963 0.964 0.964 49.637 4.764 

DTBC 50 0.000 0.000 1.000 0.885 0.026 1.000 1.000 1.000 2.874 0.267 

SVMBC  0.216 0.475 0.506 0.858 0.043 0.857 0.876 0.836 4.674 0.245 

MLPBC  0.026 0.274 0.936 0.961 0.036 0.973 0.974 0.975 139.856 8.462 

DTBC 100 0.000 0.000 1.000 0.885 0.025 1.000 1.000 1.000 4.846 0.317 

SVMBC  0.251 0.417 0.514 0.851 0.045 0.856 0.885 0.846 11.486 0.456 

MLPBC  .006 0.092 0.968 0.963 0.027 0.983 0.983 0.974 270.547 14.573 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time) 
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Table 10: Error metrics of boosting ensemble classifier over Guwahati dataset 

 No of 

 estim 

Model ators MAE RMSE R2 MN STD PS RC AUC TrT TeT 

DTBoC 01 0.053 0.256 0.615 0.852 0.032 0.945 0.926 0.928 0.062 0.004 

SVMBoC  0.367 0.683 -0.593 0.634 0.036 0.648 0.647 0.510 0.365 0.007 

MLPBoC  0.128 0.318 0.418 0.834 0.071 0.867 0.871 0.852 0.014 0.002 

DTBoC 05 0.032 0.167 0.837 0.824 0.027 0.961 0.975 0.965 0.276 0.015 

SVMBoC  0.387 0.635 -0.518 0.665 0.031 0.647 0.648 0.500 1.256 0.018 

MLPBoC  0.165 0.383 0.359 0.813 0.078 0.885 0.862 0.842 0.163 0.025 

DTBoC 10 0.000 0.000 1.000 0.846 0.027 1.000 1.000 1.000 0.695 0.047 

SVMBoC  0.365 0.623 -0.528 0.632 0.031 0.648 0.648 0.506 1.432 0.013 

MLPBoC  0.185 0.318 0.524 0.851 0.046 0.891 0.893 0.875 0.274 0.025 

DTBoC 15 0.000 0.000 1.000 0.876 0.026 1.000 1.000 1.000 0.639 0.048 

SVMBoC  0.362 0.654 -0.563 0.614 0.038 0.643 0.647 0.529 1.365 0.024 

MLPBoC  0.128 0.398 0.529 0.895 0.047 0.895 0.893 0.863 0.254 0.035 

DTBoC 20 0.000 0.000 1.000 0.893 0.027 1.000 1.000 1.000 0.828 0.074 

SVMBoC  0.369 0.632 -0.539 0.617 0.032 0.647 0.648 0.532 1.386 0.015 

MLPBoC  0.113 0.359 0.521 0.852 0.058 0.882 0.886 0.864 0.263 0.009 

DTBoC 50 0.000 0.000 1.000 0.893 0.016 1.000 1.000 1.000 1.945 0.164 

SVMBoC  0.360 0.632 -0.518 0.616 0.036 0.645 0.642 0.527 1.328 0.036 

MLPBoC  0.115 0.381 0.475 0.858 0.014 0.861 0.875 0.847 0.241 0.017 

DTBoC 100 0.000 0.000 1.000 0.893 0.027 1.000 1.000 1.000 5.764 0.375 

SVMBoC  0.378 0.643 -0.528 0.615 0.032 0.648 0.648 0.513 1.742 0.027 

MLPBoC  0.127 0.391 0.427 0.862 0.028 0.913 0.862 0.863 0.421 0.013 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time) 

 
Table 11: Error metrics of bagging ensemble classifier over Delhi dataset 

 No. of 

 estimate 

Models tors MAE RMSE R2 MN STD PS RC AUC TrT TeT 

DTBC 1 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.094 0.011 

SVMBC  0.082 0.271 0.625 0.915 0.047 0.964 0.917 0.895 0.097 0.012 

MLPBC  0.081 0.261 0.638 0.973 0.028 0.848 0.914 0.931 0.926 0.042 

DTBC 5 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.279 0.026 

SVMBC  0.062 0.231 0.715 0.915 0.031 0.983 0.937 0.927 0.432 0.052 

MLPBC  0.015 0.112 0.947 0.987 0.011 0.987 0.996 0.995 4.235 0.267 

DTBC 10 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.319 0.061 

SVMBC  0.072 0.261 0.657 0.916 0.025 0.984 0.926 0.904 0.748 0.138 

MLPBC  0.001 0.052 0.982 0.995 0.010 0.994 0.994 1.000 9.451 0.724 

DTBC 15 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.562 0.037 

SVMBC  0.074 0.263 0.663 0.916 0.026 0.982 0.926 0.904 2.452 0.216 

MLPBC  0.000 0.000 1.000 0.995 0.011 1.000 1.000 1.000 13.231 0.846 

DTBC 20 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 2.519 0.067 

SVMBC  0.021 0.143 0.900 0.963 0.023 0.996 0.973 0.973 5.273 0.275 

MLPBC  0.000 0.000 1.000 0.991 0.005 1.000 1.000 1.000 110.861 1.156 

DTBC 50 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 1.263 0.165 

SVMBC  0.021 0.143 0.900 0.915 0.024 0.993 0.973 0.974 4.174 0.538 

MLPBC  0.000 0.000 1.000 0.993 0.010 1.000 1.000 1.000 56.372 3.178 

DTBC 100 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 2.673 0.265 

SVMBC  0.072 0.263 0.678 0.915 0.031 0.985 0.927 0.904 9.375 1.219 

MLPBC  0.000 0.000 1.000 0.991 0.010 1.000 1.000 1.000 112.362 8.271 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time)
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Table 12: Error metrics of boosting ensemble classifier over the Delhi dataset 

 No. of 

 estim 

Model ators MAE RMSE R2 MN STD PS RC AUC TrT TeT 

DTBoC 01 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.056 0.002 

SVMBoC  0.384 0.618 -0.617 0.594 0.065 0.000 0.615 0.502 0.334 0.016 

MLPBoC  0.026 0.275 0.738 0.915 0.058 0.947 0.946 0.935 0.042 0.003 

DTBoC 05 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.074 0.010 

SVMBoC  0.321 0.623 -0.528 0.595 0.062 0.000 0.617 0.509 1.167 0.105 

MLPBoC  0.064 0.157 0.838 0.936 0.047 0.962 0.963 0.935 0.264 0.053 

DTBoC 10 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.075 0.010 

SVMBoC  0.364 0.636 -0.624 0.593 0.062 0.000 0.614 0.500 1.135 0.103 

MLPBoC  0.012 0.163 0.836 0.931 0.048 0.968 0.967 0.956 2.354 0.064 

DTBoC 15 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.074 0.004 

SVMBoC  0.376 0.639 -0.684 0.596 0.063 0.000 0.614 0.502 1.763 0.052 

MLPBoC  0.052 0.264 0.836 0.947 0.048 0.936 0.957 0.967 4.265 0.562 

DTBoC 20 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.078 0.003 

SVMBoC  0.386 0.624 -0.685 0.594 0.067 0.000 0.615 0.503 1.756 0.056 

MLPBoC  0.016 0.163 0.925 0.936 0.036 0.935 0.985 0.985 7.354 0.724 

DTBoC 50 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.067 0.004 

SVMBoC  0.386 0.643 -0.673 0.598 0.064 0.000 0.613 0.500 2.845 0.036 

MLPBoC  0.031 0.182 0.857 0.935 0.038 0.964 0.967 0.962 14.764 0.823 

DTBoC 100 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.067 0.004 

SVMBoC  0.317 0.617 -0.634 0.597 0.064 0.000 0.614 0.504 5.756 0.052 

MLPBoC  0.023 0.183 0.873 0.952 0.025 0.952 0.964 0.967 53.276 4.278 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time) 
 
Table 13: Error metrics of bagging ensemble classifier over the Kolkata dataset 

 No. of 

 estim 

Models ators MAE RMSE R2 MN STD PS RC AUC TrT TeT 

DTBC 1 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 000.096 00.007 

SVMBC  0.036 0.175 0.874 0.986 0.016 0.984 0.967 0.973 000.165 00.008 

MLPBC  0.000 0.000 1.000 0.992 0.005 1.000 1.000 1.000 000.563 00.060 

DTBC 5 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 000.253 00.025 

SVMBC  0.018 0.116 0.942 0.986 0.016 0.988 0.984 0.997 000.452 00.019 

MLPBC  0.000 0.000 1.000 0.991 0.002 1.000 1.000 1.000 002.762 00.245 

DTBC 10 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 000.264 00.036 

SVMBC  0.025 0.158 0.905 0.986 0.010 0.974 0.975 0.985 000.976 00.038 

MLPBC  0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 006.263 00.527 

DTBC 15 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 000.462 00.078 

SVMBC  0.025 0.164 0.895 0.985 0.007 0.963 0.975 0.972 001.473 00.063 

MLPBC  0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 012.473 00.623 

DTBC 20 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 000.567 00.105 

SVMBC  0.028 0.156 0.905 0.986 0.010 0.978 0.977 0.986 000.728 00.115 

MLPBC  0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 011.473 01.538 

DTBC 50 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 002.836 01.067 

SVMBC  0.023 0.163 0.892 0.984 0.009 0.963 0.972 0.972 010.362 00.754 

MLPBC  0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 086.272 08.383 

DTBC 100 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 009.478 00.835 

SVMBC  0.026 0.162 0.896 0.984 0.005 0.967 0.975 0.975 032.563 01.173 

MLPBC  0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 215.473 18.362 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time)
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Table 14: Error metrics of boosting ensemble classifier over Kolkata dataset 

 No. of 

Model estimators MAE RMSE R2 MN STD PS RC AUC TrT TeT 

DTBoC 1 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.053 0.002 

SVMBoC  0.437 0.634 -0.896 0.537 0.034 0.527 0.527 0.502 0.964 0.027 

MLPBoC  0.063 0.267 0.723 0.953 0.040 0.952 0.936 0.932 1.543 0.052 

DTBoC 5 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.056 0.003 

SVMBoC  0.427 0.674 -0.896 0.537 0.031 0.527 0.527 0.500 2.856 0.153 

MLPBoC  0.004 0.063 0.984 0.979 0.010 1.000 0.995 0.993 3.176 0.268 

DTBoC 10 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.053 0.004 

SVMBoC  0.417 0.634 -0.895 0.534 0.035 0.528 0.523 0.500 5.763 0.026 

MLPBoC  0.047 0.256 0.805 0.975 0.031 0.986 0.956 0.950 2.567 0.186 

DTBoC 15 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.052 0.005 

SVMBoC  0.467 0.632 -0.892 0.532 0.035 0.527 0.523 0.500 4.782 0.016 

MLPBoC  0.041 0.267 0.803 0.974 0.031 0.988 0.953 0.954 4.267 0.264 

DTBoC 20 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.052 0.003 

SVMBoC  0.428 0.623 -0.893 0.532 0.036 0.524 0.528 0.502 4.267 0.186 

MLPBoC  0.026 0.176 0.899 0.965 0.061 0.984 0.975 0.974 5.273 0.276 

DTBoC 50 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.063 0.004 

SVMBoC  0.427 0.625 -0.895 0.534 0.036 0.527 0.527 0.50 3.726 0.115 

MLPBoC  0.046 0.156 0.845 0.974 0.030 0.975 0.964 0.963 17.487 1.186 

DTBoC 100 0.000 0.000 1.000 1.000 0.000 1.000 1.000 1.000 0.062 0.148 

SVMBoC  0.476 0.627 -0.895 0.538 0.032 0.525 0.524 0.502 4.267 0.116 

MLPBoC  0.063 0.236 0.745 0.976 0.035 0.952 0.936 0.937 21.483 0.500 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time)

 

Analysis of Homogenous Ensemble Regressor by 

Bagging and Boosting 

To test the efficiency of some ML models as 

ensemble classifiers and regressors, the ML models 

DT, SVM and MLP were used as homogenous 

ensemble regressors using combination techniques of 

bagging and boosting techniques. 

The performance of DT, SVM and MLP ensemble 

regressors based on bagging and boosting over the Guwahati, 

Delhi and Kolkata datasets is shown in Table 15-20 

using the error metrics.  

It is evident that homogeneous MLP ensemble 

regressors consistently exhibit superior accuracy 

compared to DT and SVM ensemble regressors across 

all datasets. No significant difference is seen between 

the Multi-Layer Perceptron Bagging Regressor 

(MLPBR) and Multi-Layer Perceptron Boosting 

Regressor (MLPBoR).  

Out of all the regressor models, SVM ensemble regressors 

performed worst. Still, if we compare Tables 9-14 it can 

be observed that the SVM Bagging Regressor 

(SVMBR)and SVM Boosting Regressor (SVMBoR) 

perform better than the SVM Bagging Classifier 

(SVMBC) and SVM Boosting Classifier (SVMBoC). 

From this, we can conclude that the SVM ensemble is 

more suitable for regression tasks as compared to 

classification task supporting literature (Choubin et al., 2019; 

Ren et al., 2016). Homogenous ensemble regressors take 

more training time and testing time as compared to 

homogenous ensemble classifiers which support literature 

(Adhikari and Agrawal, 2013; Bian and Wang, 2007). On 

average, out of all the models, the MLP ensemble 

regressor and classifier take the highest amount of 

testing and training time as compared to other models 

over all the datasets.  

Analysis of Heterogenous Ensembled Classifier and 

Regressor by Stacking and Blending 

In this section, we have discussed the empirical results 

of heterogeneous ensembled models developed using DT, 

SVM and MLP. Stacking and blending are used as the 

combination technique. Three stacked ensembled 

classifier models are created, namely, S-DSMC (base 

learner: DT, SVM and Meta-Learner: MLP), S-SMDC 

(base learner: SVM, MLP and meta-learner: DT) and 

S-DMSC (base learner: DT, MLP and meta-learner: 

SVM). Similarly, three blended ensembled classifier 

models are created, namely, B-DSMC (base learners: 

DT, SVM and meta-learner: MLP), B-SMDC (base 

learners: SVM, MLP are base-learners and DT meta-

learner) and B-DMSC (base learners: DT, MLP and 

meta learner: SVM).  

Figure 7 it is observed that all the stacking ensemble 

classifiers achieved an average accuracy of 98, 100% and 

100%, respectively over the Guwahati, Delhi and Kolkata 

datasets. However, blending ensemble classifiers 

obtained an average accuracy of 93, 100 and 100%, 

respectively, for the Guwahati, Delhi and Kolkata 

datasets. We can conclude that the performance of 

stacking ensemble is better than bagging and blending 

ensemble classifiers over all the datasets which is 

supported by literature (Dou et al., 2020; Kumar et al., 2022)
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Table 15: Error metrics of bagging ensemble regressor over the Guwahati dataset 

 No. of 

 estim 

Model ators MAE RMSE R2 ExVS  MdAE RMSLE TrT TeT 

DTBR 01 0.001 0.002 0.968 0.963 0.001 0.002 0.007 0.003 

SVMBR  0.008 0.010 -0.261 0.000 0.009 0.008 0.006 0.002 

MLPBR  0.009 0.011 0.713 -0.669 0.009 0.011 0.362 0.015 

DTBR 05 0.002 0.002 0.988 0.983 0.001 0.001 0.020 0.004 

SVMBR  0.009 0.011 -0.221 0.000 0.009 0.009 0.025 0.004 

MLPBR  0.004 0.005 0.773 0.769 0.003 0.004 0.527 0.005 

DTBR 10 0.002 0.002 0.988 0.983 0.001 0.001 0.047 0.006 

SVMBR  0.009 0.010 -0.221 0.000 0.009 0.009 0.049 0.006 

MLPBR  0.004 0.005 0.873 0.784 0.002 0.003 1.597 0.009 

DTBR 15 0.001 0.001 0.988 0.983 0.983 0.001 0.047 0.004 

SVMBR  0.008 0.010 -0.221 0.000 0.220 0.009 0.039 0.005 

MLPBR  0.001 0.004 0.973 0.984 0.984 0.003 2.817 0.008 

DTBR 20 0.001 0.001 0.988 0.973 0.001 0.001 0.316 0.076 

SVMBR  0.008 0.010 -0.217 0.000 0.009 0.009 0.386 0.265 

MLPBR  0.001 0.001 0.977 0.994 0.001 0.001 8.156 0.045 

DTBR 50 0.001 0.001 0.978 0.973 0.001 0.001 0.181 0.026 

SVMBR  0.008 0.010 -0.212 0.000 0.009 0.009 0.258 0.035 

MLPBR  0.001 0.001 0.987 0.944 0.001 0.001 5.753 0.055 

DTBR 100 0.001 0.001 0.978 0.973 0.001 0.001 0.267 0.029 

SVMBR  0.008 0.010 -0.211 0.000 0.009 0.009 0.193 0.072 

MLPBR  0.001 0.001 0.995 0.992 0.001 0.001 21.673 0.381 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time)
 
Table 16: Error metrics of boosting ensemble regressor over the Guwahati dataset 

 No. of 

 estim 

Model ators MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

DTBoR 1 0.002 0.003 0.867 0.882 0.002 0.003 0.004 0.002 

SVMBoR  0.008 0.010 -0.215 0.000 0.009 0.009 0.005 0.002 

MLPBoR  0.008 0.010 -0.341 -0.328 0.006 0.010 0.015 0.002 

DTBoR 5 0.002 0.002 0.936 0.936 0.001 0.002 0.016 0.002 

SVMBoR  0.008 0.010 -0.217 0.000 0.009 0.009 0.156 0.012 

MLPBoR  0.004 0.007 0.406 0.408 0.003 0.006 1.945 0.003 

DTBoR 10 0.002 0.001 0.936 0.984 0.001 0.001 0.075 0.022 

SVMBoR  0.008 0.010 -0.217 0.000 0.009 0.009 0.178 0.016 

MLPBoR  0.003 0.005 0.825 0.825 0.002 0.004 2.278 0.006 

DTBoR 15 0.001 0.001 0.983 0.982 0.984 0.001 0.049 0.004 

SVMBoR  0.008 0.010 -0.211 0.000 0.216 0.009 0.043 0.005 

MLPBoR  0.002 0.003 0.863 0.873 0.863 0.003 2.296 0.050 

DTBoR 20 0.001 0.001 0.981 0.982 0.001 0.001 0.104 0.009 

SVMBoR  0.008 0.010 -0.214 0.000 0.009 0.009 0.095 0.015 

MLPBoR  0.001 0.002 0.959 0.973 0.001 0.002 7.365 0.023 

DTBoR 50 0.001 0.001 0.991 0.994 0.001 0.001 0.645 0.026 

SVMBoR  0.008 0.010 -0.212 0.000 0.009 0.009 0.217 0.094 

MLPBoR  0.001 0.001 0.984 0.987 0.001 0.001 15.547 0.042 

DTBoR 100 0.001 0.001 0.993 0.996 0.000 0.001 0.385 0.024 

SVMBoR  0.008 0.010 -0.216 0.000 0.009 0.009 0.246 0.035 

MLPBoR  0.001 0.001 0.988 0.989 0.001 0.001 20.216 0.041 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time)
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Table 17: Error metrics of bagging ensemble regressor over the Delhi dataset 

 No. of 

 estim 

Model ators MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

DTBR 1 0.215 0.264 0.447 0.457 0.216 0.124 0.014 0.005 

SVMBR  0.067 0.118 0.903 0.901 0.058 0.057 0.009 0.002 

MLPBR  0.038 0.065 0.973 0.974 0.023 0.023 0.167 0.003 

DTBR 5 0.069 0.091 0.937 0.937 0.057 0.041 0.015 0.002 

SVMBR  0.057 0.084 0.946 0.948 0.042 0.039 0.014 0.003 

MLPBR  0.016 0.028 0.991 0.995 0.008 0.014 0.678 0.003 

DTBR 10 0.069 0.084 0.945 0.945 0.063 0.039 0.038 0.004 

SVMBR  0.057 0.077 0.957 0.957 0.048 0.037 0.034 0.011 

MLPBR  0.015 0.022 0.994 0.994 0.010 0.010 4.256 0.008 

DTBR 15 0.075 0.089 0.938 0.935 0.073 0.046 0.062 0.006 

SVMBR  0.057 0.075 0.951 0.952 0.041 0.032 0.044 0.016 

MLPBR  0.015 0.022 0.997 0.991 0.017 0.010 5.352 0.023 

DTBR 20 0.064 0.078 0.953 0.951 0.053 0.038 0.116 0.015 

SVMBR  0.055 0.073 0.962 0.967 0.041 0.037 0.225 0.053 

MLPBR  0.010 0.016 0.998 0.993 0.007 0.008 14.564 0.024 

DTBR 50 0.061 0.075 0.951 0.953 0.057 0.036 0.327 0.042 

SVMBR  0.055 0.073 0.958 0.952 0.043 0.036 0.558 0.162 

MLPBR  0.010 0.014 0.998 0.998 0.006 0.007 35.238 0.053 

DTBR 100 0.056 0.075 0.954 0.951 0.052 0.037 0.339 0.048 

SVMBR  0.052 0.073 0.968 0.968 0.046 0.033 0.453 0.116 

MLPBR  0.015 0.014 0.992 0.998 0.008 0.008 31.531 0.085 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time) 

 

Table 18: Error metrics of boosting ensemble regressor over the Delhi dataset 

 No. of 

 Estim 

Model ators MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

DTBoR 01 0.073 0.106 0.915 0.912 0.056 0.042 00.004 0.000 

SVMBoR  0.056 0.084 0.947 0.948 0.042 0.045 00.005 0.001 

MLPBoR  0.021 0.035 0.996 0.992 0.025 0.019 00.145 0.001 

DTBoR 05 0.062 0.086 0.956 0.953 0.048 0.038 00.016 0.001 

SVMBoR  0.047 0.064 0.972 0.978 0.042 0.036 00.025 0.004 

MLPBoR  0.018 0.025 0.998 0.997 0.017 0.013 00.795 0.003 

DTBoR 10 0.056 0.063 0.964 0.968 0.042 0.031 00.095 0.013 

SVMBoR  0.042 0.052 0.978 0.974 0.045 0.026 00.225 0.031 

MLPBoR  0.018 0.015 0.993 0.992 0.008 0.007 04.634 0.025 

DTBoR 15 0.053 0.075 0.954 0.954 0.045 0.036 00.053 0.006 

SVMBoR  0.048 0.059 0.976 0.978 0.041 0.022 00.084 0.026 

MLPBoR  0.019 0.012 0.992 0.993 0.008 0.006 04.729 0.009 

DTBoR 20 0.037 0.047 0.984 0.984 0.036 0.028 00.211 0.013 

SVMBoR  0.042 0.052 0.979 0.976 0.048 0.024 00.175 0.031 

MLPBoR  0.009 0.018 0.994 0.998 0.006 0.006 22.638 0.015 

DTBoR 50 0.031 0.034 0.984 0.982 0.026 0.026 00.313 0.024 

SVMBoR  0.044 0.051 0.979 0.977 0.048 0.028 00.785 0.341 

MLPBoR  0.008 0.015 0.994 0.996 0.006 0.005 28.452 0.036 

DTBoR 100 0.033 0.031 0.988 0.991 0.022 0.016 00.341 0.025 

SVMBoR  0.042 0.054 0.972 0.972 0.047 0.028 00.153 0.014 

MLPBoR  0.008 0.015 0.994 0.995 0.006 0.005 24.634 0.184 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time) 
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Table 19: Error metrics of bagging ensemble regressor over Kolkata dataset 

 No. of 

 Estim 

Models ators MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

DTBR 01 0.034 0.041 0.906 0.904 0.028 0.024 0.004 0.002 

SVMBR  0.031 0.048 0.896 0.898 0.025 0.021 0.004 0.002 

MLPBR  0.018 0.015 0.992 0.993 0.015 0.006 0.137 0.003 

DTBR 05 0.025 0.024 0.952 0.956 0.028 0.017 0.013 0.002 

SVMBR  0.039 0.041 0.893 0.896 0.024 0.023 0.016 0.001 

MLPBR  0.006 0.008 0.996 0.992 0.004 0.004 2.164 0.002 

DTBR 10 0.022 0.023 0.954 0.954 0.023 0.013 0.025 0.007 

SVMBR  0.036 0.048 0.887 0.893 0.028 0.028 0.028 0.009 

MLPBR  0.006 0.008 0.992 0.992 0.005 0.004 3.572 0.025 

DTBR 15 0.027 0.023 0.964 0.962 0.027 0.015 0.038 0.006 

SVMBR  0.034 0.048 0.894 0.894 0.023 0.021 0.031 0.007 

MLPBR  0.007 0.009 0.997 0.992 0.005 0.004 3.682 0.019 

DTBR 20 0.017 0.026 0.978 0.973 0.027 0.012 0.088 0.009 

SVMBR  0.034 0.047 0.892 0.898 0.023 0.026 0.072 0.024 

MLPBR  0.007 0.009 0.992 0.995 0.006 0.004 8.238 0.026 

DTBR 50 0.015 0.023 0.973 0.978 0.013 0.017 0.157 0.012 

SVMBR  0.038 0.049 0.895 0.892 0.028 0.023 0.157 0.026 

MLPBR  0.007 0.009 0.991 0.992 0.006 0.004 19.643 0.056 

DTBR 100 0.016 0.025 0.974 0.973 0.014 0.013 0.275 0.052 

SVMBR  0.032 0.048 0.896 0.895 0.022 0.028 0.168 0.036 

MLPBR  0.007 0.009 0.993 0.991 0.006 0.004 24.642 0.071 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time)

 
Table 20: Error metrics of boosting ensemble regressor over the Kolkata dataset 

 No. of 

 Estim 

Model ators MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

DTBoR 1 0.037 0.048 0.897 0.895 0.037 0.025 0.004 0.001 

SVMBoR  0.031 0.042 0.893 0.898 0.021 0.023 0.004 0.001 

MLPBoR  0.006 0.008 0.994 0.992 0.004 0.004 0.157 0.001 

DTBoR 5 0.017 0.018 0.986 0.984 0.017 0.009 0.015 0.002 

SVMBoR  0.031 0.045 0.892 0.898 0.021 0.027 0.013 0.002 

MLPBoR  0.004 0.007 0.995 0.992 0.003 0.003 0.494 0.002 

DTBoR 10 0.018 0.017 0.983 0.985 0.018 0.009 0.094 0.009 

SVMBoR  0.035 0.041 0.898 0.892 0.022 0.022 0.147 0.022 

MLPBoR  0.005 0.007 0.991 0.997 0.004 0.003 2.551 0.007 

DTBoR 15 0.013 0.012 0.982 0.986 0.017 0.008 0.045 0.005 

SVMBoR  0.039 0.047 0.894 0.892 0.021 0.027 0.043 0.005 

MLPBoR  0.005 0.007 0.994 0.995 0.004 0.003 3.492 0.009 

DTBoR 20 0.018 0.018 0.985 0.982 0.018 0.008 0.115 0.016 

SVMBoR  0.032 0.043 0.892 0.894 0.022 0.022 0.148 0.013 

MLPBoR  0.005 0.007 0.997 0.994 0.004 0.003 6.852 0.014 

DTBoR 50 0.015 0.012 0.992 0.995 0.015 0.006 0.427 0.022 

SVMBoR  0.039 0.043 0.894 0.892 0.025 0.025 0.297 0.068 

MLPBoR  0.005 0.007 0.994 0.997 0.004 0.003 6.781 0.014 

DTBoR 100 0.009 0.012 0.995 0.992 0.008 0.005 0.506 0.047 

SVMBoR  0.032 0.049 0.892 0.894 0.025 0.029 1.015 0.173 

MLPBoR  0.005 0.007 0.997 0.994 0.004 0.003 6.624 0.013 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time)
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Fig. 7: Stacking and blending classifier accuracy 

 
Table 21: Stacking and blending ensemble classifier error metrics over the Guwahati dataset 

Models MAE RMSE R2 MN STD PS RC AUC TrT TeT 

S-DSMC 0.068 0.257 0.725 0.895 0.027 0.935 0.936 0.935 3.635 0.146 

S-SMDC 0.000 0.000 1.000 0.961 0.025 1.000 1.000 1.000 9.362 0.934 

S-DMSC 0.000 0.000 1.000 0.967 0.016 1.000 1.000 1.000 7.957 0.193 

B-DSMC 0.137 0.361 0.452 0.846 0.047 0.857 0.852 0.856 24.275 3.624 

B-SMDC 0.073 0.276 0.697 0.941 0.025 1.000 0.936 0.939 22.583 0.836 

B-DMSC 0.000 0.000 1.000 0.954 0.011 1.000 1.000 1.000 18.582 2.845 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time) 
 
Table 22: Stacking and blending ensemble classifier error metrics over the Delhi dataset 

Models MAE RMSE R2 MN STD PS RC AUC TrT TeT 

S-DSMC 0 0 1 1.000 0.000 1 1 1 1.873 0.026 

S-SMDC 0 0 1 0.985 0.016 1 1 1 1.368 0.163 

S-DMSC 0 0 1 0.997 0.009 1 1 1 1.974 0.075 

B-DSMC 0 0 1 1.000 0.000 1 1 1 6.473 0.473 

B-SMDC 0 0 1 0.984 0.016 1 1 1 8.382 0.482 

B-DMSC 0 0 1 1.000 0.000 1 1 1 6.463 2.573 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time) 
 
Table 23: Stacking and blending ensemble classifier error metrics over the Kolkata dataset 

Models MAE RMSE R2 MN STD PS RC AUC TrT TeT 

S-DSMC 0 0 1 1 0 1 1 1 2.863 0.0372 

S-SMDC 0 0 1 1 0 1 1 1 3.273 0.076 

S-DMSC 0 0 1 1 0 1 1 1 2.452 0.047 

B-DSMC 0 0 1 1 0 1 1 1 7.283 0.372 

B-SMDC 0 0 1 1 0 1 1 1 8.137 0.462 

B-DMSC 0 0 1 1 0 1 1 1 9.483 0.492 

(MN: Mean; STD: Standard Deviation; PS: Precision; RC: Recall; TrT: Training Time; TeT: Testing Time) 
 
Table 24: Stacking and blending ensemble regressors error metrics over the Guwahati dataset 

Models MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

S-DSMR 0.065 0.072 0.992 0.994 0.058 0.017 0.248 0.004 

S-SMDR 0.152 0.284 0.945 0.947 0.175 0.046 7.296 0.001 

S-DMSR 0.043 0.059 0.995 0.998 0.057 0.014 4.836 0.001 

B-DSMR 0.582 0.572 0.582 0.914 0.413 0.158 0.386 0.472 

B-SMDR 0.172 0.238 0.932 0.904 0.137 0.062 3.638 0.573 

B-DMSR 0.053 0.067 0.994 0.996 0.041 0.015 2.836 0.479 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time) 
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Table 25: Stacking and blending ensemble regressors error metrics over the Delhi dataset 

Models MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

S-DSMR 0.045 0.063 0.982 0.984 0.036 0.036 0.372 0.002 

S-SMDR 0.094 0.261 0.915 0.915 0.067 0.062 3.826 0.001 

S-DMSR 0.067 0.072 0.984 0.984 0.067 0.047 0.986 0.001 

B-DSMR 0.195 0.381 0.672 0.936 0.372 0.184 0.482 0.372 

B-SMDR 0.104 0.234 0.875 0.874 0.098 0.083 0.782 0.682 

B-DMSR 0.049 0.064 0.980 0.982 0.046 0.037 2.583 0.371 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time) 

 
Table 26: Stacking and blending ensemble regressors error metrics over the Kolkata dataset 

Models MAE RMSE R2 ExVS MdAE RMSLE TrT TeT 

S-DSMR 0.026 0.026 0.983 0.985 0.008 0.008 0.264 0.001 

S-SMDR 0.029 0.037 0.972 0.974 0.026 0.026 3.284 0.000 

S-DMSR 0.047 0.055 0.892 0.893 0.037 0.036 3.184 0.003 

B-DSMR 0.053 0.063 0.866 0.884 0.046 0.038 0.692 0.452 

B-SMDR 0.068 0.084 0.748 0.747 0.067 0.046 2.539 0.492 

B-DMSR 0.042 0.057 0.926 0.947 0.035 0.036 0.682 0.463 

(ExVS: Explained Variance Score; MdAE: Median Absolute Error; TrT: Training Time; TeT: Testing Time) 

 

The performance of SVM, DT and MLP ensemble 

regressors created on the basis of bagging and boosting is 

shown in Table 15-19 using the error metrics. Though we 

have used 1-100 base estimators in bagging and boosting, 

still stacking and blending with only two base learners and 

one meta-learner offered better accuracy. The overall 

training time and testing time for stacking and blending is 

less than bagging and boosting which supports the 

literature (Chaurasia and Pal, 2021; Wu et al., 2021). 

Stacking and blending error metrics over the Guwahati, 

Delhi and Kolkata dataset is represented in Tables 21- 23. 

From the tables it is observed that the overall testing and 

training time for blending is high as compared to stacking. 

This exposes that the accuracy of a heterogenous ensemble 

classifier is independent of the amount of time taken by a 

classifier to perform forecasting. In Tables 24- 26 we can 

observe that the S-DSNR model outperformed all other 

stacking and blending ensemble regressors. This reveals 

that the appropriate choice of base learners and meta-

learners is very important in order to achieve better 

predictive models. We can sum up that stacking performed 

best among all other techniques used to ensemble classifiers 

and regressors. DT homogenous ensemble with bagging and 

boosting with (10-100) estimators offered good accuracy. 

Despite its higher accuracy, SVM and MLP ensemble 

models are more stable as compared to DT. SVM and MLP 

were less affected by the number of estimators. 

In order to find the relations among the different 

models and to verify the results statistical significance test 

is performed so as to validate our data and results and then 

make some conclusions. We have calculated p-values 

using the F-test (one-way ANOVA) for each performance 

metric across the 24 models. By observing the values, we 

observed that SVM methods (SVMBC, SVMBoC, 

SVMBR, SVMBoR) generally have lower p-values 

compared to other methods, indicating they often perform 

differently from other methods. On the contrary, MLP 

methods (MLPBC, MLPBoC, MLPBR, MLPBoR) tend 

to have higher p-values suggesting they may not perform 

significantly differently from other methods in many 

cases. All the stacking models have generally higher p-

values compared to blending models indicating less 

variability in performance. 

Conclusion 

In this study, we have tried to perform PM2.5 

concentration prediction over three datasets using 

ensembled methods, namely, bagging and boosting for 

homogenous model construction and stacking and 

boosting for heterogeneous model construction. Till now 

an extensive comparative analysis of PM2.5 prediction 

using ensembled classifiers and regressors based on these 

techniques has not been thoroughly scrutinized in the 

literature. In this study, we have tried to address the 

following issues: 

 

1. The combination technique (namely, bagging, 

boosting, blending, stacking) that is best suited for 

classification and regression tasks in PM2.5 

concentration prediction 

2. The appropriate number of base learners is 

required to build a homogenous ensemble 

classifier and regressor 

3. Selection of base regressor and classifier in order to 

achieve maximum accuracy 

 

In order to deal with the above issues, three popular 

ML models: SVM, MLP and DT are used. We have 

constructed twenty-four (24) different ensembled 

classifiers and regressors for PM2.5 concentration 

forecasting. The outputs found reveal the following: 
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1. Considering accuracy as the major factor, the 

stacking model for building a classifier and regressor 

outperforms other techniques like bagging, boosting 

and blending. The second best is performed by 

blending classifier and regressor followed by DT 

ensemble by bagging and boosting 

2. Though stacking and blending offer better precision 

than DT bagging and boosting still they are 

computationally expensive because of the high time 

taken during training and testing. Because of this 

reason, if computation cost is a major factor, then DT 

ensemble with (10-100) estimators by boosting can 

be considered as a good option to perform prediction 

of PM2.5 concentration 

3. The performance of the SVM ensemble by boosting 

and blending was stable but its performance was 

poor. The performance of SVM improved 

significantly when for base learners MLP and was 

used and for meta learners, SVM was used. Typical 

SVM makes an assumption that the parameters of the 

dataset provide an equivalent contribution to the 

target variable which is not true in the case of real-

life problem situations 

 

Through our study, we addressed key issues in PM2.5 

concentration prediction, including identifying the most 

effective combination technique, determining the ideal 

quantity of base learners and selecting appropriate base 

classifiers and regressors for maximum accuracy. 

Leveraging popular machine learning techniques, namely 

SVM, MLP and DT, we built twenty-four different 

ensemble classifiers and regressors. 

On the basis of these findings, we offer the 

following recommendations: 

 

1. Practitioners seeking optimal accuracy should prioritize 

stacking for PM2.5 concentration prediction 

2. For those constrained by computational resources, 

DT ensembles with boosting are a favorable choice 

3. Consider leveraging a combination of diverse base 

learners to enhance the performance of SVM ensembles 

 

By providing specific recommendations grounded in 

our empirical findings, our study aims to guide 

practitioners in selecting the most effective ensemble 

techniques for PM2.5 concentration prediction, thereby 

contributing to improved air quality monitoring and 

public health management. 
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