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Abstract: This study considered a set of topical issues aimed at improving 

the methodology of the early recognition of episodes of myocardial ischemia. 

It aims to solve a set of problems in the substantiation and development of a 

methodological approach for building a model of interference-free 

processing of multichannel electrocardio signal recordings. Based on 

theoretical and experimental studies, this will create new methods of 

increased interference resistance to recognize the phases of cardiac muscle 

ischemia. This study focused on the development of multiple simulations of 

changes in electrical cardiac impulse in several branches during the progress 

of cardiac muscle ischemia, including the influence of muscle noise. This 

study analyzed existing methodological approaches for the early detection of 

Ischemic Heart Disease (IHD) and electrocardio signal processing, analysis 

and classification, which are the most promising methods for detecting and 

classifying myocardial ischemia. The relevance of a technique for detecting 

IHD phases using multiple simulations of electrical cardiac impulses and 

their change in ST segments in different branches, considering the combined 

effect of the noise component, was substantiated. The importance of its 

implementation within the framework of an operational automated system 

for detecting life-threatening episodes of myocardial ischemia has been 

emphasized. The proposed solution makes it possible to rely on the automatic 

and interference-resistant detection of IHD phases in interference-distorted 

segments of electrical cardiac impulses. The results demonstrated the 

practical coincidence of the experimentally and theoretically obtained data 

on the probability of decision-making for one of the IHD phases. A study 

undertaken in conjunction with the I.M. Sechenov First Moscow State 

Medical University, as part of a world-class research centre, revealed that the 

discrepancy between practical and theoretical data was less than 5%. 
 
Keywords: Electrical Cardiac Impulse, Electro Cardio Graphy (ECG), 
Interference-Free, Methodological Approach, Myocardial Ischemia, Processing 

 

Introduction 

Ischemic Heart Disease (IHD) is a well-known and 

dangerous disease of the Cardio Vascular System (CVS). 

This disease is inherent in the absolute or relative disturbance 

of blood flow in the heart muscle. The progression of the 

IHD phase usually depends on increased emotional or 

physical strain, which in most cases is aggravated by painful 

sensations. Nevertheless, IHD can also occur in fully painless 

forms (as a rule, more than one-third of patients do not realize 

the existence of IHD) (Franco et al., 2011). 

Currently, the most common method for diagnosing 

this disease is electrical cardiography, which is performed 

against the background of monitoring Electrical Cardiac 

Impulses (ECI) or stress tests. Simultaneously, during 

registration, the format of electrical cardiac impulses is 



Sergey Alexandrovich Sheptunov et al. / Journal of Computer Science 2025, 21 (5): 1003.1014 

DOI: 10.3844/jcssp.2025.1003.1014 

 

1004 

affected by interfering components and distortions that 

significantly complicate the decoding of the received 

electrical cardiac impulses. Particular difficulties relate to 

the processing of screen recordings taken during 24 h, 

which contain noisy segments of electrical cardiac 

impulses recorded under load when the registration of 

IHD phases seems most likely. 

The results of the experiments show that if the data 
describing the structure and crucial characteristics of 
electrical cardiac impulses are recorded on several branches, 
it is possible to significantly improve the accuracy of the IHD 
phase diagnosis. Currently, many channel complexes are 
used to monitor the electrical cardiac impulses. As a result, 
specialized professionals can quickly recognize IHD in 
patients, preventing the dangerous progression of conditions 
that threaten their physical existence. Simultaneously, 

creating methods and tools to evaluate the multichannel 
recordings of electrical cardiac impulses is a complicated 
problem (Polezhaev et al., 2023). 

Currently, computerized methods capable of efficiently 
evaluating multichannel recordings of electrical cardiac 
impulses against the background of complex interfering 
components are necessary. The development of methods 
for the automated assessment of electrical cardiograms, 
especially multichannel ones, is limited by difficulties in 
simultaneously simulating changes in electrical cardiologic 
impulses along several branches and the cumulative effect 
of their noise components. 

To solve these problems, it is necessary to develop 
special techniques and programmable systems to process 
multichannel electrical cardiac impulses. 

This study aimed to solve problems related to the 
substantiation and development of a methodological 
approach for building a model of an interference-free 
circuit for processing multiple-channel registrations of 
electrical cardiac impulses. This will be the basis for 
special techniques with increased resistance to interfering 
components during automated diagnosis of IHD phases. 
Despite the multitasking nature of this process, this study 
focused on developing a multistage simulation of changes 

in electrical cardiac impulses recorded on several 
branches during the progression of the IHD phases, 
including the influence of the interfering component. 

Literature Review 

Several research methods can be used to diagnose 

cardiac muscle ischemia Fig. (1). 
The diagnosis of IHD based on the predominant 

research techniques shown in Fig. (1) usually relies on 
assumptions. For this reason, it is more common to use 
device-based investigations, in other words, to perform 
diagnostic procedures using specialized medical systems. 
They help detect ischemia of the cardiac muscle in the early 
stages with more significant reliability, identify the features 
of the course of this pathology, and perform forecasts of 
further development. For these purposes, a broad range of 

techniques (electrical cardiography, gamma scanning of the 
cardiac muscle, stress testing, etc.) are used (as reflected in 
Table 1), the critical of which is Electro Cardio Graphy 
(ECG). This technique relies on recording electrical cardiac 
impulses on several branches, further revealing the 
differences in the biological potentials formed during 
contraction. Evaluation of the results of this technique 
opens up the possibility of reliable recognition of the 
development of IHD phases and identification of the 

affected areas of the cardiac muscle, which is necessary for 
cardiologists (Ansari et al., 2017). 

The assessment of the presented methods for 

diagnosing cardiac muscle ischemia allowed us to draw 
several conclusions: 

 

 Techniques are applicable exclusively in medical 

institutions and their implementation requires the 

participation of trained specialists. Therefore, the use 

of these techniques in the initial stages of cardiac 

muscle ischemia diagnosis is challenging 

 CT-based methods have some inherent limitations 

owing to the need for exposure to radiation loads and 

the need to administer contrast agents to patients 

 

Recording changes in electrical cardiac impulses on 

electrocardiograms is reliable and sufficient for 

recognizing IHD because the technique has low 

sensitivity. However, detecting a more serious change 

requires further examination of patients because the 

technique is sufficiently specific. 

 

 
 
Fig. 1: Classification of IHD diagnostic techniques 
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Table 1: Assessment of techniques for hardware diagnosis of cardiac muscle ischemia 

Technique Advantages Disadvantages 

Performing a stress electrocardiogram Widespread, uncomplicated procedure, a reasonable cost Need for physical activity 

Scintigraphic study of perfusion Standard and common research procedure Presence of radiation exposure 

Computer Tomography (CT) Accelerated acquisition of medical data, visualization of 

affected areas 

Limited use of the technique 

Magnetic Resonance Tomography (MRT) Clear visualization of cardiac muscle structure and features. 

Possible visualization of the consequences of Acute 

Myocardial Infarction (AMI) 

Use of expensive medical systems 

Computed Tomography angiography (CT 

angiography) 

Accelerated acquisition of medical data, ability to visualize 

adjacent tissues 

Presence of radiation exposure, use of 

contrast agents 

Magnetic Resonance Angiography (MRA) No radiation exposure Comparatively low visualization clarity 

Electron-Beam Tomography (EBT) Possibility to visualize the smallest areas Use of contrast agents, the technique is 

characterized by high and technical costs 

Materials and Methods 

To analyze the diverse methodological approaches 

used to assess the most common existing processing 

techniques and study electrical cardiac impulses for 

recognizing cardiac muscle ischemia, we summarized 

their features and properties in Table (2). 

The data summarized in Table (2) reflect the 

development and practical use of a wide range of 

diverse methodological approaches for the assessment 

and classification of electrical cardiac impulses for 

IHD recognition. 

Most available techniques for the automatic 

detection of cardiac muscle ischemia rely on wave 

transformations, decision rules, neural networks and 

base gradients. In the majority of the transform 

methods that have been presented, such as the wavelet 

transform and Fourier transform, the presence of noise 

signals on the system input results in interference from 

the power grid, which is a problematic element in the 

analysis. This is due to the fact that the frequency of 

the noise signals is within the same range as the 

frequency of the ECG signals. Consequently, to 

enhance the noise immunity of the algorithm for 

automated detection of episodes of myocardial 

ischemia, it is imperative to develop a method for 

signal transformation that is resistant to interference. 

The specificity of cardiac muscle ischemia 

diagnostics is necessary to register a patient's electrical 

cardiac impulses in a calm state and under load. 

Monitoring for 24 h has several advantages over 

recording electrical cardiac impulses in a calm state. 

These advantages open up the possibility of recognizing 

life-threatening phases of cardiac ischemia, whereby the 

duration of heart rhythms, frequency and other 

parameters can be recorded for 24 h. Therefore, it is 

necessary to develop automatic medical complexes 

capable of recognizing critical IHD phases with high 

accuracy to reduce screen image decoding time and 

workload of cardiologists (Alexandrov et al., 2023). 

Accurate identification of IHD phases requires branch 

groups such as those that capture the most informative 

electrical cardiac impulses for more reliable IHD 

identification. However, specialists must generalize the 

data obtained during the assessment of the multichannel 

recordings of electrical cardiac impulses. 

The techniques available for assessing multiple-channel 

recordings of electrical cardiac impulses Table (3) can be 

categorized as follows: 
 

 The ability to simultaneously assess electrical cardiac 

impulses from any branch to summarize this 

information 

 The application to identify medical information from 
a single branch 

 
The main research results in Table (3) confirm that the 

considered variants of data summarization were obtained 

without creating a multistage simulation of electrical 

cardiac impulses, which considers the presence of mutual 

connections between the impulses and interfering 

components of the electrical cardiac impulse recorded for 

several branches. 

Creation of a Simulation of Interference-Resistant 

Assessment of Multichannel Registrations of 

Electrical Cardiac Impulses Necessary for 

Recognizing Phases of Cardiac Muscle Ischemia 

The problem caused by the creation of the 

myographic interference simulation is that the 

considered interfering component present in ith branches 

of the electrical cardiac impulse is broadband noise 

described by the ratio (𝜎𝑗
⟨𝑖⟩)

2
representing a constant 

value in the given jth cardiac period. The physical basis 

of this simulation is as follows: The interfering 

component forms owing to muscle fiber motion 

characterized by different frequency oscillations at 

various time intervals and this, considering the central 

theory of limits, forms the base mathematical 

simulation. However, this simulation can describe noise 

only in certain (ith) branches, but the problem of creating 

a simulation representing myographic interference 

recorded in all branches at once is still relevant (Blanco-
Velasco et al., 2008). 
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Table 2: List of the most common assessment techniques for electrical cardiac impulses concerning the detection and classification of cardiac 

muscle ischemia 

Approach to analyzing and classifying ECG 

signals Features Notes 

Classification based on the linear discriminant 

assessment and the decision tree technique 

(Wang et al., 2015) 

A list of frequency and temporal indicators of 

the QRS system, including their potential, 

QRS system rise and fall and highest QRS 

system power and frequencies here represent 

initial information 

Standardized information arrays, e.g., 

PhysioNet and others, were used 

A technique based on the application of main 

components (Castells et al., 2007) 

It relies on the simultaneous use of main 

component techniques and neural networks 

The obtained information can be more 

accurately classified to reduce their 

dimensionality, which provides a more 

reliable diagnosis of cardiac muscle ischemia 

A technique based on the application of the 

electrocardiogram QRS system dependence 

with high detail (Farashi, 2016) 

Electrocardiograms are processed by wave 

transformations of averaged cardiac impulses 

of 240-250-point dimension and then key 

features are separated owing to the use of 

linear assessment and the main component 

techniques 

Using linear assessments and the main 

component technique allows for a more 

accurate separation of helpful characteristics 

Classification of electrical cardiac impulses 

using neural networks (Jayachandran et al., 

2010) 

Several options are used to classify the 

electrocardiogram impulses through neural 

network techniques and base gradients 

The technique can detect various diseases and 

perform biometric studies. 

A technique based on the application of 

filtering neural networks (Pławiak, 2018) 

The convolutional neural network (CNN) 

deep machine learning process is performed 

It makes it possible to detail various types of 

electrocardiograms in 94-95.2% of cases 

A technique based on special impulses of stress 

electrocardiograms, where it is possible to 

separate the main parts of cardiograms, for 

example, QRS systems (Anbalagan et al., 

2023) 

ST segment estimation is performed on 

frequencies and time 

Different ST segment amplitudes can be 

recorded in various courses of cardiac muscle 

ischemia 

A technique based on neural network 

simulation capable of reducing the size of 

information arrays formed by multichannel 

registration of electrocardiograms (Taddei et 

al., 1992) 

The helpful simulation features built on 

training are considered, while the neural 

network performs the impulse classification 

The technique makes it possible to separate 

helpful characteristics for their further 

classification 

A technique based on the assessment of R-

elevations and R-R segments of the 

electrocardiogram (Park et al., 2012) 

The main sorter is the k-nearest neighbor 

methodology, solving trees and base 

gradients 

The reliability of classification is 89-92% 

A technique based on the detection of 

pathologies displayed by ST segments 

(Murugan and Radhakrishnan, 2010) 

A structured feature gradient is used to 

analyze the ST segment data, classifying it 

using the base gradient technique 

The methodology demonstrates reliability at 

the level of 93.29% 

A technique for diagnosing cardiac muscle 

ischemia using electrocardiograms and QRS 

dependencies (Kumar and Singh, 2016) 

The first step involves segmenting the 

electrocardiogram impulses into some 

cardiac periods and then using wave 

transformation. It is not uncommon to apply 

sorters such as base gradients 

The classification is performed using the 

minimum base gradients technique and the 

accuracy is 99.29% 

A technique for detecting ischemic episodes in 

long electrocardiographic recordings in 

automated IHD diagnosis (Xie et al., 2020) 

The technique is based on neural networks 

trained by Bayesian smoothing and main 

component estimation 

The accuracy of the technique is about 89-

90% 

Automatic classification of cardiac muscle 

ischemia using neural networks (Elgendi et al., 

2017) 

The neural network applied is a multilevel 

artificial neuron. The gradient of 

characteristics resulting from the processing 

is minimized by the technique of main 

components 

The accuracy of the technique is about 93-

94% 

Application of mathematical simulations of 

cardiac muscle ischemia diagnostics (Hussein 

et al., 2019) 

The simulation of cardiac muscle ischemia 

diagnostics is based on the application of the 

classification evaluation technique 

The technique is based on splitting the routes 

of moving row tables, obtaining helpful 

characteristics sent to the input channels of 

neural network sorters 

An approach based on morphologic and 

energetic features of ECG (Han and Shi, 2019) 

The main characteristics are QRS systems, P, 

T spectra, ST segments, PR and QT intervals. 

Classification of information is performed 

using the technique of base gradients 

The specificity of the obtained 

electrocardiogram is considered; automatic 

categorization of cardiograms into the 

categories of “no ischemia” and “ischemia 

present” is performed 

A technique based on computer-assisted 

detection of ST segment changes (Correa et al., 

2013) 

The base is a wave transformation, necessary 

to identify QRS systems in electrical cardiac 

impulses. Here, the neural network acts as a 

sorter 

The accuracy of the technique is 89-90% 
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Table 3: Techniques capable of automatically evaluating the multichannel recordings of electrical cardiac impulses 

The essence of the approach realized in the method Features Notes 

Data from several branches of electrical cardiac impulses 

are summarized by selecting the maximum value of ST 

segment shift for three branches of electrical cardiac 

impulses (Ghaffari et al., 2011) 

The weakness of this technique is that there is 

insufficient data on noise in the branches of the 

electrical cardiac impulses. This results in data 

distortion if there is much noise in one branch 

and during subsequent generalization of the 

information 

The technique implements the 

principle of parallel processing of 

each of the two or three different 

branches 

The technique is based on the noise assessment for each 

of the two branches of the electrical cardiac impulses 

(Chiarugi et al., 2007) 

Initial recognition of QRS systems is performed 

on all branches, followed by noise analysis for 

each branch of the electrical cardiac impulses. 

The final decision on the QRS system location 

comes after carefully assessing the branch with 

the lowest noise 

The technique implements the 

principle of considering the 

information of only one of two 

different branches having the 

lowest noise level 

A technique demonstrating the accuracy of detection and 

identification of QRS systems of different registrations of 

electrical cardiac impulses (Chen and Chuang, 2017) 

The assessment excludes those branches where 

the chain of fifteen counts of assessed electrical 

cardiac impulses would be the largest or the 

smallest 

The technique makes it possible 

to avoid processing low-

informative parameters of 

electrical cardiac impulses 

QRS systems are detected in any branch (Laguna et al., 

1994) 

The locations of individual i-th QRS systems are 

recorded in all branches. In case the results of the 

location analysis belong to the established time 

interval, the recognition of i-th QRS system is 

finished 

The only branch that best meets 

the predetermined requirement is 

used 

Parallel channel-by-channel analysis with further 

integration (according to some or other principles) of 

electrical cardiac impulses from different multichannel 

branches into a single signal (Papageorgiou et al., 2022) 

Before combining into a single signal, the initial 

detection of QRS complexes in each channel 

occurs independently 

Several generalizing factors may 

be used, such as quadratic, 

selection of the maximum 

magnitude of ST segment shift 

across all branches and 

calculation of the combination of 

electrical cardiac impulses in 

several branches 

A technique that provides multichannel estimations of the 

format of QRS systems using an ideal electrical cardiac 

impulse (Boostani and Sabeti, 2018) 

Classification of QRS systems is separate for 

each branch by calculating Dj distances among 

the QRS systems under study and j-th perfect 

impulses 

The average distance for each 

branch is calculated by the ratio 

𝐷𝑗𝑐𝑝 = √∑ 𝑝𝑛
2𝑁

𝑛=1 (𝐷𝑗
2)2  here, N-

the number of branches, n-branch 

index, j-classification index, pn-

mass indicators corresponding to 

the expression 
1

𝑁−1
 

A technique based on the application of base gradients 

obtained from normally situated branches X, Y and Z 

(Murat et al., 2020) 

The technique relies on helpful characteristics 

describing the QRS contour: The maximum 

potential of the gradient forming the QRS 

contour and the value of Z, which defines the 

potential of the gradient forming the ST segment 

𝛥𝑆𝑇 = √𝛥𝑆𝑇𝑋
2 +   𝛥𝑆𝑇𝑌

2 +   𝛥𝑆𝑇2
2 In 

this case,   𝛥𝑆𝑇𝑋
2 +   𝛥𝑆𝑇𝑌

2 +   𝛥𝑆𝑇2
2  

display ST segment shift values 

by several branches 

Parallel channel-by-channel analysis of the system of 

features of different branches of electrical cardiac 

impulses with the subsequent study of the obtained 

dataset using the technique based on the decision tree 

(Gnanvo et al., 2016) 

Each cardiac period involves calculating the 

values of eighteen helpful characteristics based 

on the key protrusions and intervals of the 

impulse chain for several branches of the 

electrical cardiac impulses. A table is created and 

assessed using decision trees and vector 

magnification techniques 

No information on branch noise 

is considered 

 

Therefore, primary attention should be paid to the 

informative electrical cardiac impulses of ith branch, 

generally described by the dependence 𝑆⟨𝑖⟩(𝑞) reflecting 

the changes in the actual electrical cardiac impulse, when 

it, with some assumptions, can be assessed without the 

interfering component. In other words, the electrical 

cardiac impulse in ith branch is the sum of the base impulse 

potential 𝑆⟨𝑖⟩(𝑞) and interference 𝑛⟨𝑖⟩(𝑞): 
 
𝑦⟨𝑖⟩(𝑞) = 𝑆⟨𝑖⟩(𝑞) + 𝑛⟨𝑖⟩(𝑞) (1) 
 

Here, q = 1,2,3..., N is the index of the studied impulse, N 

is the number of counts of the considered chains, i represents 
a particular branch of the electrical cardiac impulse. 

To separate the interfering component from the chain of 

the electrical cardiac impulse 𝑦⟨𝑖⟩(𝑞), several methods can 

be used to estimate the actual format of the electrical 

cardiac impulse 𝑆̂⟨𝑖⟩(𝑞) in ith branch. However, the most 

interesting aspect is the assessment technique of the format 

of the electrical cardiac impulse by the approximation of 

polynomials corresponding to the 1st and 2nd levels of 
protrusions and intervals of the cardiac period. 

The developed technique facilitates the isolation of 

'true' ECG signals by extracting the myographic 

interference. This is achieved by dividing the unnoised 

cardiac cycle into segments, which are then approximated 

using second-order polynomials. 
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Fig. 2: External view of the proposed simulation of the recorded 

electrical cardiac impulse 
 

In the simulation, the main difficulties with the 

interfering component separation were overcome by 

refusing to draw marking lines on the studied cardiac period 

and assessing the format of the electrical cardiac impulse 

𝑆̂⟨𝑖⟩(𝑞)  in ith branches. This was done because of the 

approximation of relatively small segments of electrical 

cardiac impulses using polynomials, with a reduction to a 

common average of the approximated graphs (Fig. 2). 

The essence of this proposal in formalized form is 
reduced to the following: The observed implementation of 

the electrocardiosignal splits 𝑦̂⟨𝑖⟩(𝑞)  into small-count 

fragments 𝑦𝑘
⟨𝑖⟩(𝑞) = 𝑦⟨𝑖⟩(𝑘 + 𝑞 − 1), 𝑘 = 1,2, . . . , 𝑁 −

𝐼 + 1 of length I: 
 

𝑆𝑘
⟨𝑖⟩(𝑞) = 𝑆⟨𝑖⟩(𝑘 + 𝑞 − 1) = 𝑏2,𝑘

⟨𝑖⟩ 𝑞2 + 𝑏1,𝑘
⟨𝑖⟩ 𝑞 + 𝑏0,𝑘

⟨𝑖⟩
 (2) 

 
Here, q = 1,2,3…, I, I is the number of counts of the 

defined interval, k = 1,2,3…, N-I+1 is the index of the current 

interval and 𝑏2,𝑘
⟨𝑖⟩ 𝑞2 + 𝑏1,𝑘

⟨𝑖⟩ 𝑞 + 𝑏0,𝑘
⟨𝑖⟩

 is a polynomial index. 

At any k-th interval, a polynomial of the 2nd level 𝑆̂⟨𝑖⟩(𝑞) 
was used, which expresses the format of interference-free 

electrical cardiac impulses recorded in ith branches: 
 

𝑆⟨𝑖⟩(𝑞) = 𝑏̂2,𝑘
⟨𝑖⟩ 𝑞2 + 𝑏̂1,𝑘

⟨𝑖⟩ 𝑞 + 𝑏0,𝑘
⟨𝑖⟩  

 
Accordingly, k-th interval of the detectable chain of 

electrical cardiac impulses can be expressed as follows: 

 

𝑦𝑘
⟨𝑖⟩(𝑞) = 𝑆𝑘

⟨𝑖⟩(𝑞) + 𝑛𝑘
⟨𝑖⟩(𝑞) = 𝑏2,𝑘

⟨𝑖⟩ 𝑞2 + 𝑏1,𝑘
⟨𝑖⟩ 𝑞1 + 𝑏0,𝑘

⟨𝑖⟩ 𝑞 +

𝑛⟨𝑖⟩(𝑘 + 𝑞 − 1) (3) 

 

The averaged value 𝑦𝑘
⟨𝑖⟩
(𝑞)  will be identical to 

𝑚{𝑦𝑘
⟨𝑖⟩
(𝑞)} = 𝑏2,𝑘

⟨𝑖⟩
𝑞2 + 𝑏1,𝑘

⟨𝑖⟩
𝑞1 + 𝑏0,𝑘

⟨𝑖⟩
 and also 

𝐷{𝑦𝑘
⟨𝑖⟩
(𝑞)} = (𝜎𝑘

⟨𝑖⟩)
2
. 

Simultaneously, the polynomial indices 𝑏2,𝑘
⟨𝑖⟩
𝑞2 +

𝑏1,𝑘
⟨𝑖⟩ 𝑞 + 𝑏0,𝑘

⟨𝑖⟩
are located in isolation concerning the current 

branch and are described by assessing the actual format of 

the electrical cardiac impulse recorded randomly in one of 

the branches. 
In addition, we performed mass averaging of the 

intersecting approximate plots displaying sliding windows 

𝑆̂(𝑞) = ∑ 𝛽𝑥𝑆̂𝑞−𝑥+1(𝑥)
𝐼
𝑥=1 , where 𝛽𝑥 is the current mass 

exponent at which the variance of informative values will 

take the smallest value 𝐷{𝑆̂(𝑞)} . This opens up the 

possibility of separating the interfering components: 
 
𝑛̂⟨𝑖⟩(𝑞) = 𝑦⟨𝑖⟩(𝑞) − 𝑆⟨𝑖⟩(𝑞) (4) 
 

In a noisy cardiac cycle, the greatest error in the 

estimation of the true shape of an Electro Cardio Gram 

(ECG) is observed in the region of the QRS complex. 

Consequently, the estimate of the average power of the 

extracted myographic noise is significantly different from 
its true value. However, if the QRS complex samples are 

excluded from consideration, the difference would be 

minimal. On average, the changes in the values are 35-40% 

Experimentally, we obtained the average values of the 

interdependence indices of counts of multichannel muscle 

interference components extracted from the screen 

images, which represent 𝑚(𝑟̂)  in this case (it is an 

interdependence indicator) if the number of counts is N 

≈100. Among the counts of interfering components fixed 

in neighboring branches; a mutual relationship is 

determined by the type of muscle load: 
 

𝑟̂ =
∑ 𝑛̂⟨𝑖⟩𝑁
𝑞=1 (𝑞)𝑛̂⟨𝑗⟩(𝑞)

√∑ (𝑛̂⟨𝑖⟩𝑁
𝑞=1 (𝑞))2∑ (𝑛̂⟨𝑗⟩𝑁

𝑞=1 (𝑞))2
 (5) 

 
Figure (3) shows the noise counts by branch: (a) V4-

V5 and (b) V5-V6. 

The obtained information makes it possible to 

establish normalized moment values. Their 

correspondence to zero and the identity of their current 

orders confirm that the counts n(q) chaotically forms 

normal gradients. In this case, the counts obtained at 

different time intervals do not depend on each other. 
The range of results of the analytical and practical 

experiments obtained and described above allows us to 

conclude that the interfering component 𝑛⟨𝑖⟩(𝑞) in ith branch 

of the electrical cardiac impulse is broadband (𝜎𝑘
⟨𝑖⟩)

2
 and its 

magnitude remains unchanged in k-th cardiac period. 

The counts 𝑛⟨𝑖⟩(𝑞) at several time intervals 𝑞1 and on 

i-th branches of the electrical cardiac impulse are 

represented by non-interrelated values 

𝑚{𝑛⟨𝑖⟩(𝑞1)𝑛
⟨𝑖⟩(𝑞2)} = 0, 𝑞1 ≠ 𝑞2. Simultaneously, 

among the counts of the noise component recorded on 

several branches of the electrical cardiac impulse, there is 

a specific interrelation and only on some time segments. 

Figure (4) shows the interfering component 𝑛⟨1⟩(𝑞) and 

the noise component 𝑛⟨2⟩(𝑞)  recorded over several 

branches of the electrical cardiac impulse: 
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Fig. 3: External view of lines characterized by certain noise 

counts for branches (a) V4-V5; (b) V5-V6 

 

 
 
Fig. 4: External view of the noise component in two branches of 

the considered electrical cardiac impulse 
 

𝑛 = (𝑛⟨1⟩(1), 𝑛⟨2⟩(1), 𝑛⟨1⟩(2), 𝑛⟨2⟩(2), . . . , 𝑛⟨1⟩(𝑁), 𝑛⟨2⟩(𝑁))
𝑇
 (6) 

 

where, 𝑛(𝑞) = (𝑛⟨1⟩(𝑞), 𝑛⟨1⟩(𝑞))𝑇 , 𝑞 = 1,2, . . . , 𝑁 is the 

count’s number. 

It makes sense to use the correlation matrix Σ 

concerning multistage simulation chains of counts of 

normal gradients n within an assessed cardiac period 

(interval N of counts); that is, 𝑁 ×𝑁: 

 

∑ =

(

 
 

𝐾 0 0 . . . 0
0 𝐾 0 . . . 0
0 0 𝐾 . . . 0
. . . . . . . . . . . . 0
0 0 0 0 𝐾)

 
 

 (7) 

 

where, K is the correlation matrix of the gradient 𝑛(𝑞), 
corresponding to: 

 

𝐾 = (
𝜎1
2 𝐾12

𝐾21 𝜎2
2 ) (8) 

 

𝐾12 = 𝐾21 = 𝑚{𝑛
⟨1⟩(𝑞)𝑛⟨2⟩(𝑞)}  is the 

correspondence of counts on two branches of the electrical 

cardiac impulse on a one-time interval 𝑞, 𝑞 =
1,2, . . . , 𝑁,𝐷{𝑛⟨𝑖⟩(𝑞)} = 𝜎𝑖

2. This shows the splitting of the 

noise component in ith branch (i = 1, 2), representing a 

constant value within the investigated cardiac period. The 

opposite situation is ∑−1 when ∑ can be described as: 

∑ =

(

 
 

𝐾−1 0 0 . . . 0
0 𝐾−1 0 . . . 0
0 0 𝐾−1 . . . 0
. . . . . . . . . . . . 0
0 0 0 0 𝐾−1)

 
 

 (9) 

 
where, ∑ has a stable relationship with K ratio: 
 

𝑑𝑒𝑡(∑) = (𝑑𝑒𝑡(𝐾))𝑁 
 

When 𝐾𝑖𝑗 = 𝐾𝑗𝑖: 
 

𝑑𝑒𝑡(𝐾) = 𝜎1
2𝜎2

2 −𝐾12
2 = 𝜎1

2𝜎2
2(1− 𝜌12

2 ) 
 

Here, 𝜌12 =
𝐾12

𝜎1𝜎2
 is an indicator of the interconnection 

between the noise component counts of the two branches 

at the same time interval. 

Given that the table movement is identical for all of its 
components, we represent the multiloop probability 

density function of gradient n: 
 

𝑤(𝑛) =
1

√(2𝜋)2𝑁 𝑑𝑒𝑡(∑)
𝑒𝑥𝑝 (

−1

2
𝑛𝑇∑−1𝑛) =

∏
1

√(2𝜋)2 𝑑𝑒𝑡(𝐾)
𝑒𝑥𝑝(

−1

2
(𝑛(𝑞))𝑇𝐾−1𝑛(𝑞)) =𝑁

𝑞=1

∏ 𝑤(𝑛(𝑞))𝑁
𝑞=1  (10) 

 
Therefore, we express the joint probability density 

𝑤(𝑛) of the counts of the noise component of the 1st 

cardiac period recorded over the two branches of the 

electrical cardiac impulse through 𝑤(𝑛(𝑞)): 
 

𝑤(𝑛(𝑞)) =
1

√(2𝜋)2 𝑑𝑒𝑡(𝐾)
𝑒𝑥𝑝 (

−1

2
𝑛𝑇𝐾−1𝑛) =

1

√(2𝜋)2 𝑑𝑒𝑡(𝐾)
𝑒𝑥𝑝 (

−1

2
∑ ∑ 𝑛⟨𝑖⟩(𝑞)𝑘𝑖𝑗𝑛

⟨𝑗⟩(𝑞)2
𝑗=1

2
𝑖=1 ) (11) 

 
Let us represent the component 𝑘𝑖𝑗of table 𝐾−1, which 

is the opposite of table K: 
 

𝐾−1 =
𝑎𝑑𝑗(𝐾)𝑇

𝑑𝑒𝑡(𝐾)
 

 
where, 𝑎𝑑𝑗(𝐾) is a consolidated table: 
 

𝑎𝑑𝑗(𝐾) = (
𝑘11 𝑘12
𝑘21 𝑘22

) 

 
Here, 𝑘𝑖𝑗  is an annex to the initial table: 
 

𝑘11 = 𝜎2
2 𝑘12 = −𝐾21

𝑘21 = −𝐾12 𝑘22 = 𝜎1
2  

 
The opposite table 𝐾−1corresponds to the following 

expression: 
 

𝐾−1 =
𝑎𝑑𝑗(𝐾)𝑇

𝑑𝑒𝑡(𝐾)
=

1

𝜎1
2𝜎2
2−𝐾12

2 (
𝜎2
2 −𝐾12

−𝐾21 𝜎1
2
) =

1

𝜎1𝜎2−(1−𝜌12
2 )
(

𝜎2

𝜎1
−𝜌12

−𝜌21
𝜎1

𝜎2

) (12) 
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Applying the simulation represented by M cardiac 

periods, we express the probability density of the counts 

of the interfering component on the branches of the 

electrical cardiac impulse as 𝑤(𝑛,𝑀) = ∏ 𝑤𝑘(𝑛)
𝑀
𝑘=1 . In 

this case, 𝑤𝑘(𝑛) is the density probability of the gradient n. 

A closer assessment of the changes in the most 

informative electrical cardiac impulse revealed that the 

magnitude of the ST segment shift also changes when the 

current phase of the IHD is recorded on the branches of 

the electrical cardiac impulse. 

The process of ventricular polarity recovery changes 

when blood flow deteriorates in some areas of the heart. 

Simultaneously, further IHD progression showed a 

synchronous change in the ST segment configuration in 

the neighboring branches of the electrical cardiac 

impulse (Fig. 5). 

When necrosis occurred, splitting of the ST segment 

was observed (Fig. 6) and ST elevation was recorded as it 

progressed (Fig. 7). 

 

 
 
Fig. 5: External view of multichannel registration of electrical 

cardiac impulse where ST segment shift in neighboring 
branches is noted 

 

 
 
Fig. 6: External view of ST segment depressions 

 

 
 
Fig. 7: External view of ST segment elevations 

The following polynomial expresses the simulation of 

the k-th ST sectors of ith branch 𝑆𝑆𝑇𝑘
⟨𝑖⟩ (𝑡): 

 

𝑆𝑆𝑇𝑘
⟨𝑖⟩ (𝑞) = 𝑏2,𝑘𝑞

2 + 𝑏1,𝑘𝑞 + 𝑏0,𝑘 , 𝑞 = 1,2, . . . , 𝑁 

 

At a definite phase of IHD, a function of IHD 

progression from the value of the ST-segment shift in 

neighboring branches is formed. Consequently, we 

applied a simulation that described the change in the 

electrical cardiac impulse within the ST segment: 

 
𝑏2,𝑘 = 𝑏2 + 𝑘𝛥𝑏2 

 

𝑏1,𝑘 = 𝑏1,𝑘 + 𝑘𝛥𝑏1 (13) 

 
𝑏0,𝑘 = 𝑏0,𝑘 + 𝑘𝛥𝑏0 

 

where, 𝑏2, 𝑏1, 𝑏0  are unchanged components of 

polynomial indices; 𝛥𝑏2, 𝛥𝑏1, 𝛥𝑏0  are values describing 

the change in polynomial indices during the 1st beating of 
the heart muscle during IHD and k is the index of the 

cardiac period starting at the ST-segment shift. Figure (8) 

shows the algorithm scheme for detecting myocardial 

ischemia. In the context of cardiac cycles, myographic 

interference is extracted based on an estimation of the true 

cardiac cycle shape. This facilitates the adaptation of the 

proposed model to diverse ECG signals from patients. 

The following formula was proposed to obtain the 

threshold value for the ST segment, which determines 

whether the patient has ischemia: 

 

𝑍 = ∑ ∑ ∑ 𝐼𝑘,𝑖(𝑦𝑆𝑇𝑘
⟨𝑖⟩2

𝑖=1
𝑁𝑘
𝑞=1

𝑀
𝑘=1 (𝑞) − 𝑆𝑑𝐾

⟨𝑖⟩(𝑞)) (14) 

 

 
 
Fig. 8: Myocardial ischemia detection algorithm 
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Results 

This study created a methodology for the multistage 

simulation of the electrical cardiac impulse. It forms the 

basis of an ordered chain of operations for recognizing 

IHD phases by examining the multichannel registrations 

of the electrical cardiac impulse that is resistant to the 

interfering component. The simulation describes the 

change in the electrical cardiac impulse within the ST 

segment during the progression or next phase of IHD. 

To test the proposed methodology, data were obtained 

from the European ST-T database (Taddei et al., 1992), 

total 140 screen images were obtained and tested using 

the proposed algorithm. This database has been 

demonstrated to be a valuable tool for evaluating 

ambulatory ECG monitoring systems, offering a 

comprehensive set of metrics for analysis. The database 

encompasses a wide range of information, including ST 

segment (ST) and T-wave (T) alterations, along with 

onset, offset and peak beats. In addition, it provides 

detailed annotations of the QRS, beat types, rhythm and 

signal quality variations. A total of 372 ST and 423 T 

changes were documented in the recordings, making it 

a valuable resource for researchers in this field. The 

subjects were 70 men aged 30-84 years and eight 

women aged 55-71 years. Table (4) shows the results 

of the proposed methodology compared with those of 

other algorithms using binary sensitivity and 

specificity assessments, presenting the proposed 

method under the first number. 

The simulation provides automatic interference-resistant 

detection of IHD phases in sections of the electrical cardiac 

impulse exposed to significant noise, for example, when 

performing the registration shown in Fig. (9). 

It is evident that the study did not consider atypical 

ECG signals or cardiac conditions as experiential data. 

Consequently, this is one of the limitations when 

measuring the performance of the proposed algorithm in 

patients with these types of diseases. 

Thus, the results obtained in this study can be useful for 

further improving methods and algorithms for processing 

and analyzing polymodal biomedical data, which is 

relevant for improving systems for supporting medical 

diagnostic decision-making in medical information 

systems (Gorelov et al., 2020; Alexandrov et al., 2022; 

Lampezhev et al., 2021). 

 
Table 4: Comparison of algorithm performance in detecting 

myocardial ischemia 

No Sensitivity % Specificity % Reference 

1 91.5 92.9 This study 
2 89.7 94.6 Liu et al. (2021) 

3 90.3 87.9 Wang et al. (2016) 
4 91 85 Sun et al. (2012) 

 
 
Fig. 9: External view of the automatic interference-resistant 

detection of IHD phases in significantly noise-prone 
segments of an electrical cardiac impulse 

 

Discussion 

This article presents a novel solution to modelling 

interference-resistant processing of multichannel ST 

segment ECG recordings for preliminary diagnosis of 

ischemia stages of cardiac muscle. The findings of the 

study suggest that the intervention created could 

successfully reduce the impact of muscle noise 

interference, which is crucial for improving diagnostic 

results in practice. The majority of interference-resistant 
solutions are characterized by wave transformations or 

processing through neural networks. In contrast, the 

proposed solution relies purely on polynomial 

approximation of multiple short segments of lead ECGs, 

providing a superior assessment of the "true" signal 

despite a broader array of descriptions with broadband 

noise aspects. The sensitivity and specificity of 91.5 and 

92.9%, respectively, are consistent with the findings of 

Liu et al. (2021) and surpass those of Wang et al. (2016); 

Sun et al. (2012) for nearly all other assessments. This 

suggests that the proposed method is effective in assessing 
the variability of ST segment features, which is essential 

for rapid diagnosis and the prevention of further ischemic 

development. The emphasis on establishing the 

connection of noise components between channels is 

particularly noteworthy, as it ensures accurate assessment 

of ECG parameters and renders the algorithm less 

susceptible to variances in signal quality from prolonged 

registration. When considered in conjunction with other 

machine learning systems, this advancement has the 
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potential to enhance diagnostic accuracy and broaden the 

feasibility of its application in automated systems that 

support clinical decision-making. 

Conclusion 

To create a technique capable of automatically 

recognizing IHD phases, it is essential to apply a multistage 

simulation that describes the change in the electrical cardiac 

impulse, considers the change in the recorded impulse 

during the progression of the IHD phases and is robust to 
the influence of interfering components in different 

branches of the electrical cardiac impulse. The 

methodological approach proposed in this study makes it 

possible to develop an effective solution for this problem. 

This is confirmed by the results of experiments on the 

confirmation or non-confirmation of the IHD phase using 

test and archived electrocardiosignals. The level of 

reliability of the data obtained in the results compared to 

the proposed methods reached p = 96%. In a consortium 

with I.M. Sechenov first Moscow State Medical 

University as part of a world-class research center, it was 

found that the difference between practical data and 
theoretical data was less than 5%. 

Robust ML models rely on the availability of 

sufficient, accurate data. Consequently, a potential avenue 

for enhancing the efficacy of the proposed algorithm 

involves its integration with machine learning systems, 

with the objective of enhancing the accuracy of detecting 

myocardial infarction. 
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