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Abstract: Over the past ten years, there has been a lot of emphasis focused
on the development of Artificial Intelligence (AI) and Machine Learning
(ML)-based mental health treatments. To increase practitioners' and patients'
trust in AI applications, AI systems need to explain their actions. This is
called Explainable AI (XAI). While significant progress has been achieved
in stress prediction models, XAI has not advanced as much. To overcome
this gap, this work presents an explainable AI-based Multi-Layer Pyramid
Convolutional Neural Network (XAI_MLPCNN) architecture for stress
detection. Multi-channel EEG recordings can be deconstructed into distinct
frequency bands and their non-linearity and non-stationarity removed using
the Discrete Wavelet Transform (DWT). When processing features, the
Power Spectral Density (PSD) is employed. Conversely, the decomposed
signals are employed in the automatic feature extraction process through
MLPCNN, and the dual BiLSTM with self-attention layer (DBiL_SA) is
utilized to predict stress. MLPCNN-DBiL_SA and PSD features are
combined to improve prediction. To provide explanations or assess how
explainable the predictions are, explainable artificial intelligence techniques
like Shapley additive explanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME) are employed. The Python platform is used to
implement the model. Performance is further assessed using a several
performance metrics, such as accuracy, recall, precision, and f1-measure.
Furthermore, the proposed approach is compared to other methods that are
currently in use, like CNN-DWD and PSD, LSTM-DWD and PSD, BI-
LSTM-DWD and PSD, RNN-DWD and PSD, and GRU-DWT AND PSD.

Keywords: Explainable AI, Stress Detection, EEG Recordings, Local
Interpretable Model-Agnostic Explanations, Shapley Additive Explanations

Introduction
Stress has become a crucial issue of concern in the

healthcare sphere since it is a major contributor to a
variety of psychological and physical diseases (Amid et
al., 2023). To mitigate the negative consequences of
stress and improve people's general well-being, early
detection and intervention are crucial (Aristizabal et al.,
2021). However, the subjectivity and lack of real-time
analysis of standard stress assessment techniques
(Goumopoulos and Stergiopoulos, 2022), which
frequently rely on self-reported measures and clinical
evaluations, limit their applicability (Moser et al., 2024).
The formation of AI and ML-based methods for stress
diagnosis has attracted a lot of attention in response to
these limitations (Islam and Washington, 2023).

With models like CNNs and RNNs, AI and ML can
provide objective, data-driven insights into stress levels,
potentially revolutionizing mental health care (Naegelin
et al., 2023). These are technologies that have
explainability problems even though they operate
promptly and monitor continuously. According to
Sasikala and Sachan (2024), in the healthcare sector,
XAI is a means of checking AI predictions, establishing
confidence among patients (Han et al., 2022), and
ensuring equity by removing biases. XAI thus creates
opportunities for speedy and non-discriminatory mental
health services by making the decisions of the AI
understandable and dependable for both patients and
medical professionals (Yang et al., 2021). The current
paper presents a new framework for the identification of
the status of stresses, entrenched in deep-learning-based
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explainability. This framework embeds feature
attribution, visualization tools, and model-agnostic
methods as a compromise between interpretability and
accuracy. The subsequent structure for building trust will
enhance transparency and interpretation in AI forecasting
for users and practitioners. This will finally lead to better
clinical results and help integrate AI into mental health
treatment.

The research is vital as it addresses the critical gaps
in traditional stress assessment methods, which often
lack real-time analysis and can lead to misdiagnosis. By
leveraging Explainable AI and deep learning, our study
not only enhances the precision of stress detection but
also fosters transparency and trust in the results. This
approach ensures that healthcare professionals and
patients alike can understand the reasoning behind stress
assessments, ultimately transforming how mental health
conditions are diagnosed and managed. As stress
continues to pose significant threats to overall well-
being, our framework paves the way for timely
interventions and personalized care, making it a crucial
contribution to the evolving landscape of mental health
treatment.

The paper introduces the XAI_MLPCNN framework,
which combines a type of neural network called
MLPCNN with Explainable AI methods to analyse stress
levels from multi-channel EEG recordings. One of the
main strengths of this model is that it helps bridge the
gap in understanding how AI makes its decisions in
mental health applications, providing clear insights for
both patients and healthcare professionals. To enhance
transparency, the study employs techniques like SHAP
and LIME, which make it easier to understand the
model's predictions, thus increasing trust in AI-driven
mental health treatments. The framework also processes
EEG signals by breaking them down into different
frequency bands and using Discrete Wavelet Transform
(DWT) to handle complexities in the data. By applying
Power Spectral Density (PSD) for feature extraction, the
model can predict stress levels more accurately through
the integration of DBiL_SA and MLPCNN. In light of
the innovative approach, the literature review in Part 2
will explore existing research on stress detection
methods, highlighting gaps that this new framework aims
to address and providing a foundation for understanding
its contributions to the field.

Literature Review

Some of the Recent Research Works Related to the
Deep Learning Framework for Stress Identification Were
Reviewed in this Section.

To classify stress levels, Campanella et al. (2023)
used machine learning methods, such as Random Forest,
Logistic Regression (LR), and Support Vector Machine
(SVM), and to analyze data from Empatica E4 bracelet.
The chi-square test and Pearson's correlation coefficient

were used to choose features. In terms of stress
evaluation measures, Random Forest showed the best
stability and consistency.

Shahbazi and Byun (2023) investigated the possible
long-term health impacts of Early Life Stress (ELS)
during pregnancy. The research investigated the
relationship between stress and inflammatory imbalance
by examining retrospective accounts of childhood or
pregnancy challenges in a broad group of women. CNNs
are used to identify stress through short-term
physiological signals like heart rate and galvanic skin
response.

In Kumar et al. (2021) concentrated on employing
IoT-based wearable sensors for the detection of mental
stress. To analyze bio-signals based on the wrist and
chest, it presented a multi-level deep neural network with
hierarchical convolutional capabilities. The model
outperformed previous techniques and advanced early
stress detection by combining high-level information to
classify stress into three categories.

A unique EEG-based method for stress detection that
concentrates on short-duration signals was presented by
Sharma et al. (2022). Using supervised machine learning
methods, entropy-based features from stationary
wavelet-transformed EEG data were categorized. SVM
performance was improved by using evolutionary-
inspired techniques, such as whale optimization,
indicating the technique's potential for accurate and
timely stress detection.

A mental stress detection system for drivers of
automobiles was proposed by Siam et al. (2023). It
makes use of biosignals such as breathing rate, GSR,
ECG, and EMG. The system uses a variety of machine
learning models for signal pre-processing, feature
extraction, and classification in conjunction with Driver
Assistance Systems. When it came to differentiating
between levels of stress and relaxation, the Random
Forest classifier performed better.

Stress can have serious negative effects on one's
physical and mental health, particularly if it is ignored or
improperly managed. Studies from Campanella et al.
(2023); Siam et al. (2023) demonstrate the state of
current research, which has investigated the use of ML
and DL approaches for physiological signal-based stress
detection. However, there are still difficulties in
obtaining high precision, real-time detection, and
application in a variety of settings. The objective of this
study is to integrate physiological data from wearable
sensors with machine learning models and advanced
signal processing techniques to create a robust,
dependable, and efficient stress detection system.
Improving the model's performance and generalizability
will be the main goal, especially in terms of
differentiating between different stress and relaxation
levels.
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Materials
The study proposes an XAI_PCNN framework for

stress detection using multi-channel EEG signals.

EEG signals, which are non-linear and non-
stationary, are decomposed using Discrete Wavelet
Transform (DWT). Feature extraction is performed using
Pulse Coupled Neural Network (PCNN) and Power
Spectral Density (PSD). These features are fed into a
Deep Bidirectional LSTM with Self-Attention
(DBiL_SA) model for prediction. The combined PCNN-
DBiL_SA-PSD model enhances stress prediction
accuracy. To ensure interpretability, SHAP and LIME
explainable AI methods are used.

They provide insights into how each feature
contributes to the prediction. The implementation is done
using the Python programming language. The
OpenNeuro dataset, containing emotional EEG signals,
is used for model training and testing. All experiments
are carried out on a system with Intel Core i7 processor.
The system is equipped with 16 GB RAM and an
NVIDIA GTX 1660 GPU. This hardware supports
efficient training of deep learning models. Fig. 1
illustrates the architecture of the proposed methodology.

Proposed Methodology
In this study, an XAI_PCNN structure for multi-

channel EEG recordings-based stress identification is
developed. Signals that exhibit non-linearity or non-
stationarity are broken down into distinct frequency
bands using the DWT. While PCNN is used for
automatic feature extraction, PSD is utilized for feature
extraction. By using a DBiL_SA, stress prediction is
accomplished. Prediction accuracy is improved with the
PCNN-DBiL_SA model and integrated PSD. By using
SHAP and LIME to make the model's decisions more
understandable, explainability is achieved. Fig. 1 depicts
the general architecture of the proposed methodology.

Preprocessing

Preprocessing is an essential stage in the study of
EEG signals that enhances the dependability and quality
of the data prior to conducting any additional analysis.

High-Pass Filter at 1 Hz to Eliminate Low-
Frequency Noise

A high-pass filter set at 1 Hz removes the low-
frequency noise and baseline points detected for stress.
This filter decreases gradual points and artifacts that
mask stress-related data by removing frequencies lower
than 1 Hz. The refinement sharpens the data toward the
pertinent high-frequency components and hence
improves the quality of the signal, in which stress may
be more accurately identified and analysed.

Fig. 1: Overall architecture of the proposed methodology

Normalization

It is a technique of scaling data into a common range
or format in order to retain uniformity and comparability.
In processing EEG signals, the amplitude in signals is
adjusted to lie in a prescribed range, normally between 0
and 1 or -1 and 1. The difference between recordings and
sessions can then be reduced by comparing the signals as
closely as feasible. Because normalisation standardises
the data, it enhances the data's overall interpretability and
strengthens any subsequent analytical processes.

Discrete Wavelet Transform

It efficiently manages the non-linearity and non-
stationarity characteristics of multi-channel EEG
recordings. In most cases, EEG signals show complex
temporal fluctuations, which make traditional linear
analytical approaches less suitable. Using DWT allows
decomposing the EEG data into distinct frequency bands,
thus performing a more complete and informative
analysis. In a DWT, according to various wavelet
functions, the EEG signal is processed to decompose it
into a set of coefficients representing the signal at
various resolutions or scales. This is produced by passing
the signal through two filters, as part of a multilevel
decomposition process; the first filter yields the detail
coefficients, and the second filter yields the
approximation coefficients. The mathematical
description of the DWT is expressed in Eq. 1:

The original continuous-time signal under analysis is
denoted by x (t). The wavelet function, which is a
translated and scaled version of the mother wavelet, is
represented by . The wavelet function's scale
and translation are determined by the parameters m and
n, respectively. Preprocessing ensures greater quality and
more dependable analysis by successfully cleaning EEG
data by eliminating errors with DWT, filtering out low-
frequency noise, and normalizing signals.

DWT
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Feature Extraction

Feature extraction is the process of converting
unstructured data into a format that highlights significant
patterns and characteristics. This would be crucial for
effective model training or analysis. Enhancement and
convenience of data processing are essential.

Complexity Analysis

3.3.1 Step: High-pass filter at 1 Hz

O(N), where N is the number of data points in the input
signal. This assumes efficient filtering algorithms like
FFT-based filtering.

Step: Normalization

O(N), as it involves computing the mean and variance.

3.3.2 Feature Extraction

Step: PSD (Power Spectral Density)

- Complexity: O(N log N), where N is the number of data
points in the input signal.

Step: DWT (Discrete Wavelet Transform)

- Complexity: O(N), assuming a single-level DWT. For
multi-level decomposition with k levels, complexity
becomes O(N log k).

3.3.3 Feature Learning and Classification

MLPCNN (Multilayer Perceptron-CNN)

- Complexity: O(n_inputs * n_neurons) per layer.

- CNN: Convolution layers.

- Complexity: O(N * k^2 * d), where N is the input size, k
is the kernel size, and d is the number of filters.

DBiL-SA (Dual-Bidirectional LSTM with Self-Attention)

- Complexity: O(T * h^2), where T is the sequence length
and h is the hidden size.

Computes attention scores.

- Complexity: O(T^2 * h), where T is the sequence length
and h is the hidden size.

3.3.4 Clarity of Predictions

SHAP (SHapley Additive exPlanations):

- Complexity: O(2^M * N), where M is the number of
features and N is the number of samples (approximation
methods reduce this).

LIME (Local Interpretable Model-Agnostic
Explanations):

- Complexity: O(K * N), where K is the number of
perturbed samples and N is the number of features.

Power Spectral Density (PSD)

PSD provides the distribution of signal strength over
various frequencies. So, it is a very important feature
extraction technique in the case of signal analysis,
including EEG analysis. The distribution of power across

frequency components helps to identify anomalies and to
recognize patterns. First, filtering of the signal is the first
preprocessing step, followed by segmenting. Next, the
Fourier Transform is applied to transform the signal into
the frequency domain, then square the Fourier
coefficients so as to obtain the power spectrum. Further,
features are extracted based on statistical measures from
specific frequency bands on which a feature vector is
formed and can further be exploited for more additional
analysis. The Expression of the PSD is described in Eq.
2:

 PSD at frequency f, XT represents the Fourier
transform of the signal over the time interval T, and the
expected value is denoted by .

Detailed Feature Learning and Classification

The PCNN architecture, which was created for high-
level feature learning, uses PSD properties to increase
the efficiency of learning. It makes use of a Dual
BiLSTM with a self-attention layer (DBiL_SA), which
significantly improves classification performance by
enhancing feature representation and model consistency
through complex sequence processing.

Fig. 2 shows the MLPCNN architecture used for
tasks such as sequence modeling. Its multi-sophistication
component architecture leverages the Conv1 to Conv5
layers as feature extractors at progressively higher levels
of abstraction, reflecting significant recent improvements
in learning long-range dependencies. Each convolutional
layer is succeeded by a ReLU activation function, while
many of them make use of max pooling for the down-
sampling of feature maps. This decreases computational
complexity and offers small translations invariance. The
network's attention mechanisms are positioned so that
the most important portions of an input can be given
priority. This ensures important features are given high
priority, which significantly increases the model's ability
to process tasks with long-range dependencies. This is
followed by further reduction in the dimensionality of
the feature maps by the Global Average Pool (GAP)
layers; these layers get fixed-size vectors that still
manage to maintain information critical to the global
input. The BiLSTM layers can then model dependencies
in both directions and enhance the input with ever-higher
context information because they are bidirectional. The
skip connections, permit the flow of features from
various other layers to combine with the one in
regression and, hold the integrity of the pertinent data
across the network. These are advantageous because they
can learn both high-level and low-level features, learn
from data over time, and focus on the most relevant
parts. This strategy leads to the final deep learning
probability classification; such a fully connected layer
computes the SoftMax.
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Fig. 2: Architecture of the MLPCNN

Enhancing feature presentation with the addition of a
self-attention layer to the Dual BiLSTM architecture
adds significantly to classification performance. By
capturing intricate patterns and connection features, the
context would further strengthen a model by taking
advantage of self-attention and bidirectional learning
mechanisms.

The Dual BiLSTM architecture is designed to
perform effectively with sequential data. The algorithm
analyses input sequences using two Long Short-Term
Memory (LSTM) layers, represented as

. The forward LSTM keeps the
dependencies from the start to the end of the sequence,
and the backward keeps them in reverse order. Merging
the outputs of both the Forward and Backward LSTM
layers, the Dual BiLSTM layer takes full advantage of
the contextual information from forward and backward
directions and is therefore able to provide complete

comprehension of the sequence. In addition, the input
sequence, through the attention layer, assigns the weights
to the importance of different elements in the input
sequence so that the model could focus on the most
relevant parts. After this, BiLSTM is further enhanced
using the Normal Distribution function. The general
description of the BiLSTM is expressed in Eq. 3:

where the network's final probability vector is denoted
by . The forward LSTM network's probability vector is
denoted by  and the backward LSTM network's
probability vector is represented by  An improved
weighting mechanism of the normal distribution ( )
is integrated into the Bi-LSTM layers and is expressed in
Eq. 4. The updated self-attention Dual Bi-LSTM
distribution is expressed in Eq. 5 respectively:
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Fig. 3 demonstrates the DBiL_SA process. Prediction
accuracy is improved by integrating PSD characteristics
with the MLPCNN-DBiL_SA model. Explainable
artificial intelligence methods like SHAP and LIME,
which provide insights into and assess the reasoning
behind the predictions, are used to guarantee visibility
and interpretability.

Shapley Additive Explanations (SHAP)
Using Shapley's values from cooperative game

theory, SHAP provides a unifying framework for
evaluating deep learning models. Assigning an additive
linear function to each feature's contribution to a model's
output clarifies predictions. SHAP makes sure
explanations follow rules like consistency, which states
that feature importance does not decrease as a model is
more dependent on a feature, and local accuracy, which
states that the explanation model matches the original
model's prediction. Using linear LIME and Shapley
values, kernel SHAP a model-agnostic technique within
SHAP provides accurate, efficient local explanations
with fewer evaluations.

Fig. 5 shows the stress prediction by SHAP. Input is
fed into the model, which then processes and trains on
the data. Then, the model generates the output.

Fig. 4 displays a SHAP value plot for model
interpretability. It shows how each feature (like AF4, T8,
T7) contributes to the model's output for a specific
instance. Blue bars indicate a negative impact on the
prediction, while red shows a positive impact. The most
influential feature here is 'AF4', which lowers the
prediction value significantly.

Fig. 3: Dual BiLSTM with Self Attention architecture
(DBiL_SA)

Fig. 4: SHAP Value

Fig. 5: Stress prediction using SHAP

Local Interpretable Model-Agnostic Explanations
(LIME)

Complex models are explained by LIME, which uses
simpler, interpretable models to approximate their
predictions locally. It creates perturbed samples around a
specific case and monitors how modifications impact the
predictions of the model. The behavior of the
complicated model in the immediate area of the instance
is then approximated by LIME using a sparse,
interpretable model. The explanation is obtained by

minimizing a loss function that achieves a compromise
between the interpretable model's complexity and
reliability the extent to which the local model accurately
represents the complicated model. Fig. 6 demonstrated
the stress detection value from
https://www.kaggle.com/code/amitvkulkarni/lime-for-
explainability-in-python. Prediction accuracy is
improved by integrating PSD characteristics with the
MLPCNN-DBiL_SA model. By utilizing SHAP and
LIME, the results are assured to be interpreted, offering
clear insights into the model's decision-making process

W
 =N

 

f

 

e
σ

 

2π
1

 

2σ2
− N

 

−μ( f )2

Np
 =t W

 

p
 + p

 

Nf ⨂( t
f

t
b)

http://192.168.1.15/data/12838/fig3.jpeg
http://192.168.1.15/data/12838/fig3.jpeg
http://192.168.1.15/data/12838/fig4.png
http://192.168.1.15/data/12838/fig4.png
http://192.168.1.15/data/12838/fig5.png
http://192.168.1.15/data/12838/fig5.png
https://www.kaggle.com/code/amitvkulkarni/lime-for-explainability-in-python
https://www.kaggle.com/code/amitvkulkarni/lime-for-explainability-in-python
https://www.kaggle.com/code/amitvkulkarni/lime-for-explainability-in-python
https://www.kaggle.com/code/amitvkulkarni/lime-for-explainability-in-python


Fateh Bahadur Kunwar et al. / Journal of Computer Science 2025, 21 (5): 1156.1167
DOI: 10.3844/jcssp.2025.1156.1167

1162

and enhancing general comprehension and confidence in
the predictions.

Fig. 6: Stress detection using LIME

Performance Evaluation

Dataset Description

The OpenNeuro dataset focuses on stress research
with brain and behavioural data. It involves
neuroimaging and other metrics obtained during stress
trials in order to assess responses to diverse stressors.
This dataset is useful for investigating neural correlates
of stress and evaluating models such as XAI-based
frameworks for stress detection. The OpenNeuro dataset
for stress research has extensive data for exploring stress
reactions. It contains neuroimaging data, including fMRI
scans, as well as behavioral and physiological variables
including heart rate variability, skin conductance, and
cortisol levels. These data were acquired during
experimental stress trials involving a variety of stressors,
such as cognitive demands and social problems, and
provide a detailed understanding of stress reactivity. This
dataset is an excellent resource for creating and assessing

explainable AI (XAI)-based frameworks since it allows
for the investigation of brain and behavioral patterns
under stress. Researchers can use its multidimensional
data to verify models for various stressor kinds and
populations, resulting in robust and generalizable stress
detection systems.

Results and Discussion
The implementation is done by the python platform.

Execution of the recommended method is assessed using
a variety of metrics, including Accuracy, Specificity,
Sensitivity, F1-Measure, Precision, Matthew's correlation
coefficient (MCC), Negative Predicted Value (NPV),
False Positive Rate (FPR), and False Negative Rate
(FNR). The recently constructed framework is evaluated
in terms of how much its performance has increased by
comparing it with other models, such as Proposed, SVM,
DT, RF, KNN, and LR. Table 1 uses a 70/30 data split to
evaluate performance metrics among various. With the
best accuracy (0.98542), precision (0.98908), and
specificity (0.99025), the proposed model performs
better than the others, demonstrating its improved
capacity to accurately categorize both positive and
negative cases. Additionally, it achieves the greatest F-
measure (0.98896), demonstrating a robust equilibrium
between sensitivity and precision (0.97248). The
robustness of the model's categorization is demonstrated
by its 0.98349 MCC. Furthermore, with a 0.98634 NPV
which is the highest, it ensures accurate predictions of
real negatives. Along with its superior error
minimization, the proposed model has the lowest FPR of
0.02518 and FNR (0.01847).

Table 1: Comparative analysis of the performance metrics for data split 70/30

Model Proposed SVM RF KNN DT LR
Accuracy 0.98542 0.93287 0.93861 0.94377 0.95913 0.95729
Precision 0.98908 0.94268 0.93993 0.95583 0.94838 0.96413
Sensitivity 0.97248 0.93907 0.94521 0.95891 0.95384 0.95907
F-measure 0.98896 0.94937 0.95937 0.95683 0.95976 0.96019
Specificity 0.99025 0.94568 0.95082 0.95602 0.96037 0.96114
MCC 0.98349 0.94684 0.95183 0.95891 0.96854 0.96872
NPV 0.98634 0.94166 0.94837 0.94682 0.95543 0.96533
FPR 0.02518 0.06642 0.05896 0.04863 0.04608 0.03961
FNR 0.01847 0.05567 0.04057 0.04186 0.03986 0.03197

Table 2: Comparative analysis of the performance metrics for data split 80/20

Model Proposed SVM RF KNN DT LR
Accuracy 0.99583 0.94496 0.94382 0.95093 0.96831 0.96082
Precision 0.99273 0.95683 0.94682 0.95983 0.95083 0.96869
Sensitivity 0.97986 0.94168 0.95068 0.96195 0.96492 0.96061
F-measure 0.9896 0.95063 0.96381 0.96319 0.96082 0.96952
Specificity 0.99368 0.95193 0.96226 0.95867 0.96659 0.96961
MCC 0.98969 0.95068 0.96682 0.96091 0.97039 0.97093
NPV 0.98986 0.95093 0.95193 0.95096 0.96692 0.96837
FPR 0.01186 0.05293 0.04952 0.03931 0.03894 0.03138
FNR 0.00826 0.04391 0.03951 0.03109 0.02263 0.02093

http://192.168.1.15/data/12838/fig6.png
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Fig. 7: Graphical representation of the data splits of 70/30 and 80/20 for the various performance metrics
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Using an 80/20 data split, Table 2 offers a
comparative examination of several machine learning
models based on performance indicators. At 0.99583, the
suggested model outperforms SVM (0.94496), RF
(0.94382), KNN (0.95093), DT (0.96831), and LR
(0.96082) in terms of accuracy. The proposed model's
precision, at 0.99273, is also the highest, demonstrating
its strong ability to recognize positive situations. While
DT (0.96492) and LR (0.96061) also exhibit strong
performance in identifying true positives, the proposed
model's sensitivity of 0.97986 demonstrates exceptional
performance in this area. The proposed approach
successfully achieves a balance between sensitivity and
precision, maintaining the maximum F-measure
(0.9896). The proposed model's specificity, which stands
at 0.99368, shows how well it can identify negative
cases. The robustness of the model is highlighted by its
MCC of 0.98969. To further demonstrate its overall
efficiency in this analysis, the proposed model has the
lowest FPR (0.01186) and FNR (0.00826),
demonstrating its outstanding efficiency in minimizing
mistakes.

Fig. 7 demonstrates the comparative analysis of the
Graphical Representation of performance matrices of the
existing works with the proposed method by data splits
70/30 and 80/20 respectively. Performance metrics like
Accuracy, Specificity, Sensitivity, F1-Measure,
Precision, MCC, NPV, FPR, and FNR are compared with
different methods like Proposed, SVM, DT, RF, KNN,
and LR.

With a 70/30 data split, Table 3 shows that the
proposed model performs much better than the other
models across a range of performance parameters. Its
overall excellent performance is demonstrated by the
best accuracy (0.98542), precision (0.98908), sensitivity
(0.97248), specificity (0.98896), F-measure (0.99025),
NPV (0.98349), and MCC (0.98634). Its efficiency in
reducing false positives and false negatives is further
evidenced by the lowest FPR (0.02518) and FNR
(0.01847). Table 4 demonstrates that the Proposed model
performs remarkably well across most criteria when the
data is split 80/20. It exhibits the lowest false positive
rate (0.01186) and false negative rate (0.00826) in
addition to achieving high accuracy (0.99583), precision
(0.99273), and specificity (0.9896). The F-measure
(0.99368) and sensitivity (0.97986) of the proposed
model show strong performance, albeit somewhat below
the top values of CNN-DWT.

Fig. 8 demonstrates the comparative analysis of the
Graphical Representation of performance matrices for
the different methods with the proposed method by data
splits 70/30 and 80/20 respectively. Performance metrics
like Accuracy, Specificity, Sensitivity, F1-Measure,
Precision, MCC, NPV, FPR, and FNR are compared with
different methods like Proposed, CNN-DWT and PSD,
LSTM-DWT and PSD, BI-LSTM-DWT and PSD, RNN-
DWT and PSD, and GRU-DWT AND PSD.

Table 3: Comparative analysis of the performance metrics for the different methods by the data split 70/30

Model CNN-DWT LSTM-DWT BI-LSTM-DWT RNN-DWT GRU-DWT Proposed
Accuracy 0.95229 0.95593 0.96921 0.95861 0.96998 0.98542
Precision 0.95972 0.96612 0.95392 0.95591 0.96927 0.98908
Sensitivity 0.95248 0.96954 0.95943 0.95997 0.95591 0.97248
Specificity 0.95153 0.95594 0.95582 0.95947 0.95691 0.98896
F-measure 0.95228 0.94843 0.95922 0.95483 0.96773 0.99025
NPV 0.95896 0.95598 0.96671 0.95165 0.96872 0.98349
MCC 0.95752 0.95834 0.95943 0.95843 0.96742 0.98634
FPR 0.04384 0.05943 0.05412 0.04591 0.04025 0.02518
FNR 0.03796 0.05567 0.04873 0.04889 0.03397 0.01847

Table 4: Comparative analysis of the performance metrics for the different methods by the data split 80/20

Model CNN-DWT LSTM-DWT BI-LSTM-DWT RNN-DWT GRU-DWT Proposed
Accuracy 0.99823 0.96827 0.97083 0.96942 0.97233 0.99583
Precision 0.99023 0.97731 0.96684 0.96542 0.97912 0.99273
Sensitivity 0.99559 0.97086 0.96417 0.96825 0.96628 0.97986
Specificity 0.98469 0.96682 0.96258 0.96256 0.97952 0.9896
F-measure 0.99709 0.95963 0.96089 0.96852 0.97852 0.99368
NPV 0.99082 0.96183 0.97183 0.96815 0.97471 0.98969
MCC 0.99083 0.96084 0.96943 0.96058 0.97972 0.98986
FPR 0.01448 0.04814 0.04912 0.04012 0.03884 0.01186
FNR 0.01189 0.04321 0.04109 0.03951 0.03972 0.00826
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Fig. 8: Graphical representation of the data splits of 70/30 and 80/20 for the various performance metrics
by the different comparison methods

http://192.168.1.15/data/12838/fig8.jpg
http://192.168.1.15/data/12838/fig8.jpg
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Conclusion
The XAI_MLPCNN system, which combines

advanced deep learning models with explainable AI
methodologies, marks a substantial advance in stress
prediction. The framework efficiently reduces non-
linearity and non-stationarity by preprocessing multi-
channel EEG recordings using DWT. This allows for
more precise feature extraction using PSD and
MLPCNN. To further improve prediction performance,
DBiL_SA is used. Most importantly, accessibility is
provided by the integration of SHAP and LIME
approaches, enabling practitioners and patients to
comprehend and have confidence in the AI system's
predictions. This approach leads to more dependable and
understandable stress detection solutions in clinical
settings by increasing prediction accuracy and
strengthening trust in AI-driven mental health
applications.

A novel explainable AI-based deep learning
architecture for stress detection has various drawbacks
that must be addressed for effective application. One key
problem is the scarcity and quality of labeled data, which
frequently lacks diversity and may contain biases,
resulting in poor generalizability across groups.
Furthermore, the physiological signals and textual inputs
employed for stress detection are susceptible to noise,
which might impair the model's accuracy. There is also a
trade-off between model complexity and interpretability,
as simplifying models to increase explainability may
result in lower predictive performance. Furthermore,
using explainable AI algorithms may raise processing
overhead, thereby slowing down real-time stress
detection. Finally, models trained in controlled contexts
may struggle to generalize effectively to dynamic, real-
world scenarios, limiting their practical utility.

The suggested framework, XAI_MLPCNN, has
various constraints that should be considered. One major
problem is relying on the dataset's quality and variety;
insufficient or biased data can result in erroneous stress
detection, especially for underrepresented populations.
Furthermore, the framework's capacity to generalize
across varied groups, cultures, and stressors is limited by
differences in stress reactions and measuring
methodologies. While deep learning decreases the need
for manual feature engineering, finding the right balance
between automated learning and domain-specific insights
remains challenging. The combination of MLP and CNN
designs, while strong, increases computational
complexity, which may impede real-time applications in
resource-constrained situations, such as wearables. The
suggested XAI_MLPCNN framework's ability to
generalize successfully across varied populations is an
important feature. Stress reactions can vary greatly
depending on demographic parameters such as age,
gender, ethnicity, and cultural background. These
variances are frequently impacted by physiological,

psychological, and environmental variables distinct to
each group. If the training data lacks representation from
varied populations, the model may be biased, resulting in
incorrect predictions or explanations for certain groups.
To overcome this, it is critical to investigate techniques
for improving generalizability, such as developing
datasets that include a diverse variety of stressors and
demographic characteristics. Furthermore, transfer
learning techniques may be used to adapt the model to
different populations with little retraining.

Future research should concentrate on using datasets
such as Open Neuro to create multimodal explainable AI
frameworks that include neuroimaging, physiological,
and behavioral data for stress detection. Expanding the
dataset to include more diverse populations and stressor
types can improve model generalizability. Furthermore,
combining real-time data collecting and investigating
advanced techniques such as transfer learning and
domain adaptation might help models adapt. The
emphasis on explainability ensures that the models are
interpretable, which fosters trust and facilitates their
incorporation into healthcare and workplace stress
management systems.
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