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Abstract: Anomaly detection is one of the video surveillance applications,
which aims to detect and analyze abnormal behaviors and risky situations in
order to prevent accidents. Various deep learning models have been
previously developed for this purpose, such as CNN, RNN, and Vision
Transformer, each one has its strengths and weaknesses based on the quality
of input data. This paper proposes a novel approach based on the texture
characteristics of input frames. In order to enrich the input data of the vision
transformer model, and enhance feature extraction for the detection of
anomaly, we combine the original image with its texture extracted using
Local Binary Pattern(LBP), and fed them into a fine-tuned pre-trained
Vision Transformer, enabling the automatic classification of video frames
into abnormal and normal categories. The results demonstrate the
effectiveness of our approach in identifying risky situations in video
sequences.
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Introduction
The detection of risky road situations in video

sequences or from surveillance cameras presents a
considerable challenge, due to the inherent ambiguity of
"risky situation". Various factors contribute to the
complexity and diversity of visual features, including the
quality of video sequences, illumination, occlusion,
shadows, and moving cameras. An event is often
considered as anomaly, if it happens rarely or suddenly
(Popoola & Wang, 2012; Sabokrou et al., 2018).

Anomaly detection involves identifying frames
within a sequence that display events that substantially
differ from normal situations, such as stampedes or
traffic accidents (Pang et al., 2020).

The detection of risky situations in public spaces, or
in road traffic, is a vast field of research, and various
approaches have been proposed to address this challenge.
However, they have some limitations, particularly the
reliance on labeled datasets containing normal events
(Pang et al., 2020). This dependency restricts their
applicability because it requires human intervention to
continuously retrain the system.

Recent deep learning algorithms have shown
significant success in the anomaly detection field, They
may be systematically grouped into four main classes:
Error reconstruction algorithms (Zhao et al., 2024),
scoring (Liu et al., 2018), algorithms based on the

prediction of future frames, and classifier-based
detection (Sabokrou et al., 2018).

Approaches Based on Reconstruction Error

Multiple approaches employ a reconstruction error
algorithm for anomaly detection. It uses the assumption
that the normal samples show smaller error, while
abnormal samples demonstrate significantly elevated
error values (Zhao et al., 2024).

Deep learning methods generally train an
autoencoder to reconstruct normal events with a small
similarity error. These approaches use an autoencoder
deep learning model to accurately reconstruct a normal
frame with minimal error.

However, the detection of abnormal events is not
always guaranteed because the reconstruction error value
for abnormal frames is not consistently higher (Liu et al.,
2018).

To overcome this limitation, the authors of (Hasan et
al., 2016), proposed a technique based on standard
spatiotemporal local characteristics, for training
autoencoders to recognize normal patterns.

The authors of paper (Wang & Yang, 2022) present a
Convolutional Recurrent AutoEncoder (CR-AE), that
combines a Convolutional LSTM network with a
Convolutional AutoEncoder. They extract the output
features from each Conv-LSTM layer's hidden state.
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Thereafter, the input and testing video clips with higher
reconstruction errors that were identified as anomalies
were reconstructed using a convolutional decoder.

In order to perform anomaly detection, the paper
(Chirikiri & Seo, 2024) proposes a method that
introduces an autoencoder during preprocessing and uses
the reconstruction error result as an additional input for
the detector, and uses Grad-CAM (Selvaraju et al., 2020)
to focus on regions containing anomalous objects.

The approach in Chen et al. (2022) presents an
anomaly detection system based on pre-trained
transformer networks for feature reconstruction.
However, its computational inefficiency limits real-time
deployment. To enhance Vision Transformer (ViT)
performance, the work in Mishra et al. (2021) introduces
a reconstruction-based model incorporating patch
embedding for improved anomaly detection and
localization.

Score-Based Approaches

The main idea of score-based approaches (Liu et al.,
2018; Xie et al., 2023) is to compute a score to identify
whether a video frame contains anomalies or not.

Sultani et al. (2018) present an effective anomaly
detection approach that uses both abnormal and normal
videos to train their model. Therefore, to reduce the
complexity of labeling abnormal data during training,
they used weakly labeled training videos.

In the proposed approach, the authors develop a
ranking model for anomaly detection that automatically
generates high anomaly scores for abnormal videos,
where videos are considered as instances in Multiple
Instance Learning (MIL) and normal videos as bags.
MIL is a deep learning mechanism that regroups training
data into a bag, which contains a collection of instances.

Pang et al. (2020) address the problem of labelling
data by learning anomaly scores, without explicitly
labeling the video frames. To achieve this, they introduce
an approach utilizing self-trained deep learning for
ordinal regression to identify anomalies in video frames.
It receives a set of unlabeled videos and then conducts an
initial detection step to produce a collection of abnormal
and normal data. These collections serve as a training
dataset for the ResNet-50 model (He et al., 2016) and an
end-to-end fully connected network, where ResNet50 is
a pre-trained model to extract appearance-based
characteristics from images. The network is composed of
a hidden layer of 100 units and an output layer with a
linear unit.

Li et al. (2022) introduce a transformer framework
based on Multi-Scale Learning (MSL) to estimate
anomaly scores at the snippet level and compute
anomaly probabilities at the video level within a weakly
supervised learning setting for video anomaly detection.

Approaches Based on the Prediction of Future
Frames

This approach learns a model capable of predicting
future frames of the video sequence, based on the
assumption that a normal frame is predictable.

The authors in Tang et al. (2020) propose an end-to-
end network to predict future frames and compute
reconstruction error. The prediction of future frames
leads to higher reconstruction errors for abnormal events,
In order to improve the quality of prediction of future
frames from normal data, the proposed model uses two
connected U-Net blocks in the generator for
reconstruction of the output frames generated from the
former block.

And the authors of Jin et al. (2022) apply a
transformer-based approach for anomaly detection in
aerial videos, by employing a transformer encoder to
learn the representations of features from the video
sequence, followed by a decoder that predicts the
subsequent frame.

Classifiers-Based Approaches

The work of Sabokrou et al. (2018) formulated the
detection of anomaly as a classification task and
introduced a method that identifies anomalies in videos
by examining the deep network layers' outputs. They
have used temporal information in Fully Convolutional
Neural Networks (FCNN). The FCN integrates a new
convolutional layer that trains the kernels on the training
video, into a pre-trained CNN using an AlexNet model
(Krizhevsky et al., 2017). The network is defined to
perform two key tasks: Learning feature representation
and identifying anomalies. This approach has yielded a
good accuracy rate, but it still contains several
limitations. It generates false positives in crowd scenes
and when pedestrians are walking in various directions.

Vision Transformer (ViT) (Dosovitskiy et al., 2021)
has recently become a novel architecture in the field of
computer vision. which was firstl applied to analyze and
process Natural Language(NLP) (Vaswani et al., 2017).
Moreover, based on its success, the ViT has been adopted
in various Computer Vision applications such as image
classification (Chen et al., 2022) and object detection
(Carion et al., 2020).

In order to enrich the input data of vision
transformers used in Berroukham et al. (2023) and
improve the anomaly detection quality, this study
proposes a novel approach that combines the original
frame with its texture and feeds them to Vision
Transformer (ViT) models for robust anomaly detection.
The integration leverages the deep learning capabilities
of Vision Transformers and the texture analysis strength
of LBP, offering enhanced detection accuracy and
performance.



Mohammed Lahraichi et al. / Journal of Computer Science 2025, 21 (7): 1613.1620
DOI: 10.3844/jcssp.2025.1613.1620

1615

The empirical results demonstrate that the integration
of the original frame and its texture outperforms
traditional deep learning methods.

This study is structured as follows: We present in
section two an overview of the vision transformer and
the Local binary pattern algorithm, section trois presents
our proposed approach, we give the discussion of the
obtained results in the fourth section and finally, we
present the conclusion.

Vision Transformer Model Based on LBP Algorithm

Previous research has used RNN and LSTM (Sharma
et al., 2021) to detect and localize anomalies. However,
these models have multiple limitations due to their
sequential processing of data, leading to exploding or
vanishing gradients when there are long-term
dependencies between data. As a result, the Transformer
model has largely supplanted LSTM due to its better
performance in sequence-to-sequence tasks (Karita et al.,
2019).

Concepts of Vision Transformers

The theoretical foundations of ViT's architecture
(Dosovitskiy et al., 2021) are based on the concept of
attention mechanisms, which is originally used in
Natural Language Processing (NLP) (Vaswani eta al.,
2017). ViT uses self-attention mechanisms at its core to
process visual data. ViT dynamically analyzes the
relevance of different image areas during the prediction
task. Which means that ViT is excellent at capturing
long-range dependencies, allowing it to consider the
relationships and context between distinct regions in an
image at the same time.

The mechanism of Self-attention enables ViT to
capture the relationships within an image by dynamically
assigning different levels of importance to various
regions during processing. This flexibility is essential to
understand the context and long-range dependencies in
visual data.

Multi-head attention extends this concept by allowing
ViT to perform attention operations multiple times in
parallel, each one concentrating on different parts of the
input images, where each head focuses on a specific
region. This parallelization improves the model to
capture multiple types of information and makes it easier
to understand the different features of an image. This
mechanism makes ViT able to successfully distinguish
pertinent information, model dependencies, and
hierarchical features. Thus, a powerful model for image
understanding and analysis in diverse applications and an
excellent tool for complex computer vision tasks.

Architecture of Vision Transformers

Figure (1) illustrates the original architecture of
Vision Transformers (ViT) (Dosovitskiy et al., 2021),
which marks a revolutionary change from the traditional

Convolutional Neural Networks (CNNs). ViT begins by
splitting an image with a resolution of 224×224 into
patches with fixed sizes 16×16, a total of 196 patches are
created from one image, then it flattens the image
patches, to create linear embeddings. These patch
embeddings are combined with positional encodings to
provide the localization of each patch in the image,
which is considered as the input of the encoder, as you
can see in the Figure (1). The encoder block is a series of
Transformer encoder layers (typically 12), each one is
composed of Multi-Head Self-Attention (MSA), feed
forward neural networks, normalization block and
residual connections.

Fig. 1: Original architecture of ViT

Figure (2) illustrates the internal elements of each
component of the encoder block in detail. The Self-
Attention mechanisms enable ViT to weigh the relevance
of different patches in the image dynamically, capturing
both local and global relationships. The Multi-Head
Attention mechanism parallelizes this process, to process
various input data simultaneously, it has three inputs
which are queries, keys, and values. Skip connections
and layer normalization contribute to stable training, The
skip connection is used at different places in the
Transformer encoder, these connections are mainly to
improve the flow of information to avoid vanishing
gradients. Importantly, the output of the final
Transformer layer is often aggregated and MLP heads
are attached for specific tasks, such as image
classification.

Figure (2) illustrates the internal elements of each
component of the encoder block in detail. The Self-
Attention mechanisms enable ViT to weigh the relevance
of different patches in the image dynamically, capturing
both local and global relationships. The Multi-Head
Attention mechanism parallelizes this process, to process
various input data simultaneously, it has three inputs
which are queries, keys, and values. Skip connections
and layer normalization contribute to stable training, The
skip connection is used at different places in the
Transformer encoder, these connections are mainly to
improve the flow of information to avoid vanishing
gradients. Importantly, the output of the final
Transformer layer is often aggregated and MLP heads
are attached for specific tasks, such as image
classification.

http://192.168.1.15/data/13152/fig1.png
http://192.168.1.15/data/13152/fig1.png
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Fig. 2: The Vision Transformer encoder block

This architectural design empowers ViT to adapt
dynamically to different image contents and captures
complex spatial relationships, making it highly effective
in a wide range of computer vision applications.

Vision Transformer encoder takes a one-dimensional
dataset as input, composed of embedded image patches.
Then, it reshapes the image X∈RH×W×C into a sequence
of flattened 2D patches denoted Xp∈RN×(P⋅P⋅C), where
(H, W) represents the resolution of the frame, C
represents the number of channels, (P, P) the resolution
of each patch and the number of patches is denoted by N
= HW/P2. The ViT maintains a fixed patch embedding
size D within all layers.

Eq. (1), presents the output of the initial patch, where
Xclass is the class token, Xp the patch embedding, and
Epos the position embedding.

There is a Multi-Head Attention layer (MSA) for
every layer, the addition term at the end of Eq. (2) is
equivalent to a residual connection that adds the input to
the output of the MSA block.

The MLP block can be represented by Eq. (3), where
MLP wraps a Normalization Layer (LN) in Eq.(4):

Local Binary Pattern(LBP)

LBP as proposed in Ahonen et al. (2006); Ojala et al.
(2002), is a simple algorithm that encodes the image
pixels to extract texture. LBP calculates the labels of the
pixels by comparing the value of the central pixel with
the value of each neighboring pixel as shown in Figure
(3). The formula below shows how to calculate the LBP
of a pixel :

Fig. 3: Calculation of LPB for an image pixel

Where,  represents the value of the central pixel
and  corresponds to the values of the P

neighboring pixels. The function  is defined as
follows:

The advantage of the LBP operator in real-world
applications is its robustness to the changes of intensity
values caused by lighting variations.

Other important characteristics of LBP are its ability
to extract discriminative features in a simple and easy
manner and also the simplicity of its implementation
(Ahonen et al., 2006), which allows for real-time image
analysis. Figure (4) shows an image texture calculated
using LBP.

Fig. 4: LBP of an image

Materials and Methods

Proposed Model

Concepts of Vision Transformers

We adapt the Vit model, developed in Chen et al.
(2022), and pre-train it to detect anomalous events in
video sequences. The flowchart of our fine-tuned model
is illustrated in Figure (5).
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In Figure (5), the image resulting from integration of
the video frame with its LBP x ∈ RH×W×C is partitioned
into a series of one-dimensional patches, which are
encoded and passed as input to the transformer encoder.
(H, W) denotes the original frame resolution, C is the
number of channels and P = 16 represents the resolution
of each patch.

Each flattened patch x in the sequence is mapped into
a latent vector space with a hidden size of D = 768. A
learnable embedding class ( = Xclass) is then added to
the sequence of embedded patches.

To maintain the order of spatial information,
positional embeddings Epocs  are added to the patch
embeddings before being fed them as input into the
transformer encoder (Eq. 1).

The output model  is normalized to obtain the
frame's feature representation y. This representation is
then fed into a classifier to predict its corresponding
class.

Fig. 5: Flowchart of the proposed model

Experiments Setup

Dataset

To evaluate our approach, we employ the UCSD
anomaly detection dataset (Mahadevan et al., 2010),
which is regrouped into two distinct subsets (Peds1 and
Peds2). The data is split into separate training and testing
sets, each test clip contains at least one anomalous event,
which primarily involves either irregular pedestrian
movements or non-pedestrian objects moving across
pedestrian areas (Figure 6).

The dataset contains various anomalies such as
skaters, cyclists, small vehicles, and pedestrians leaving
designated walkways. The two subsets differ in their
frame dimensions and camera angles.

The frames of the UCSD dataset contain the original
frames and their masks delineating the object presenting
the anomaly. Our approach consists of classifying the
frames as normal and abnormal, so we chose to label the
dataset frames as normal with the label 1 and abnormal
with 0. In this study, we resize all frames to 224×224.

Fig. 6: Sample frames from the UCSD dataset

Evaluation Metrics

We assessed the performance of our approach using
standard classification metrics such as the recall,
precision, accuracy, F1-score, and confusion matrix. The
formula of each metric is illustrated in Table (1). Where
TP represents true positive, TN true negative, FP false
positive, and FN false negative.
Table 1: Evaluation metrics

Criterion Definition
Accuracy

Recall

Precision

F1-Score

Hyper-Parameter Setting

We have trained our model on the UCSD Anomaly
Detection dataset in five epochs, the batch size is 8, The
optimization of the model is assured using Adam
optimizer (Kingma, 2018), the learning rate is fixed to
2×10⁻⁵ and the encoder has L = 12 layers and 30% of
each class in the training set is for validation.

The Vit model was fine-tuned and their weights were
initialized using the pre-trained model based on the
ImageNet-21K dataset (Vaswani et al., 2017). To train,
validate, and test our pretrained model, we use the
PyTorch framework on an NVIDIA Tesla T4 GPU.

Experimentation

The loss and accuracy curves obtained during the
training and validation phases are presented in Figure
(7). The model started with a loss of 0.75 in the first
epoch and reduced it to attain 0.02. The model achieves a
good value of 0.993 for accuracy.

Figure (2) presents the architecture of our Vision
Transformer Encoder, which consists of two
components: A self-attention block and a multilayer
perceptron block, We generate attention maps from the
ViT model to visualize the detected spatial markers.
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As illustrated in Figure (8), we display samples of
several frames combined with LBP, along with their
corresponding attention maps. These attention maps
reveal that the ViT using frame and its LBP, is highly
effective at quickly identifying the key elements in the
frame sequence, which correspond to the anomalous
objects in our work.

Fig. 7: Loss and accuracy curve for both the training and
validation steps

Fig. 8: Original frame+LBP image, attention mask, and
attention map

Results and Discussion
Based on the confusion matrix as shown in Figure

(9), the vit (Berroukham et al., 2023) has correctly
classified 59% of the abnormal frames and 38% of the
normal frames, but it has misclassified 3% of normal
frames, The model achieves an accuracy of 97%. By
comparison, the proposed model based on Vit and LBP,
showed more effectiveness in classifying frames as
normal and abnormal, than the Vit model, as it achieved
an accuracy of 99%.

Table (2) shows the quantitative results of the
proposed and other models, The suggested method
significantly reduces false positives, achieving a high
precision of 0.97, compared to the ViT model's precision
of 0.92. In terms of F1-score and accuracy, the proposed
model demonstrates superior performance in anomaly
detection. This enhanced performance is attributed to the
improvement of the input data by incorporating texture
features into the original frame.

The anomaly detection results are shown in Figure
(10), where the model successfully identifies whether a
frame contains an anomaly or not. Various frames

exhibiting anomalies, such as motorcycles, pedestrian
skis, and cars, have been detected.

Fig. 9: Confusion matrix of Vit and proposed models

Table 2: Evaluation metrics of VIT and VIT-LBP models

Metrics Spatiotemporal
Autoencoder with
Dynamic Map (Feng et
al., 2022)

Vit model
(Berroukham et
al., 2023)

Proposed
model

Precision 0.87 0.92 0.97
Recall 0.97 1 1
F1-score 0.92 0.96 0.98
Accuracy  0.97 0.99

Fig. 10: Results of our pretrained anomaly detection model

Conclusion
This study introduces an approach based on a fine-

tuned Vision transformer model to classify video frames
as either normal or abnormal. As input, the Vision
Transformer model uses the combination of a frame and
its texture extracted using LBP which provides a
powerful technique for anomaly detection. The
experimental results show that the proposed method
outperforms the deep learning-based approaches in
various anomaly detection scenarios.
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