

© 2026 Nisha C. M. and N. Thangarasu. This open-access article is distributed under a Creative Commons Attribution

(CC-BY) 4.0 license.

Journal of Computer Science

Research Article

Enhancing Dam Safety and Management: Long Short-Term

Memory Based Predictive Models for Accurate Alert

Forecasting

Nisha C. M and N. Thangarasu

Department of Computer Science, Karpagam Academy of Higher Education, Coimbatore-21, India

Article history

Received: 31-05-2025

Revised: 27-07-2025

Accepted: 16-08-2025

Corresponding Author:
Nisha C. M
Department of Computer science,
Karpagam academy of higher
education, Coimbatore-21, India

Email: nishacm2008@gmail.com

Abstract: Dam management and early alert systems are critical for

effective water resource management. Accurate prediction of dam alert

signals facilitates proactive decision-making, thereby aiding in the

effective management and reduction of potential risks linked to dam

operations. Within this research, Long Short-Term Memory (LSTM)

networks are utilized to forecast dam alert signals issued from the dam by

leveraging daily parameters, including temperature, dew point, humidity,

and other pertinent factors. The study utilizes a dataset of the Malampuzha

Dam spanning 10 years, comprising various inputs and the corresponding
alert levels. Our objective is to demonstrate the effectiveness of LSTM

models in accurately predicting multi-level alert classifications. This is the

first application of LSTM for multi-tiered dam alert classification in the

Indian context. The LSTM model was trained using optimizers such as

Adam, RMSProp, Stochastic Gradient Descent, Adagrad, and Nadam,

using learning rates of 0.01, 0.001, and 0.0001, as well as epochs of 50,

100, and 500, and gradient clipping values of 0.5 and 1.0. Evaluation

metrics including RMSE (Root mean square error), NSE (Nash-sutcliffe

Efficiency), R-squared, and accuracy are employed to assess the model's

performance. The LSTM model using the Nadam optimizer achieved high

accuracy (99.13%). It was also observed that as the learning rate decreased,

the model's accuracy decreased. An appropriate gradient clipping value is
found to be 0.5 for the LSTM model.

Keywords: Alert Prediction, Dam Management, Long Short-Term

Memory, Nadam Optimizer, Classification Report, Confusion Matrix

Introduction

There are various disasters such as earthquakes,

landslides, droughts, floods, and tsunamis, which are

unavoidable but cause havoc to human life and property.

However, several disasters can be predicted in advance and

the severity of destruction can be reduced. Flooding is a

significant natural disaster with severe impacts, making

long-term flood forecasting crucial for risk management

and early warning (Khairudin et al., 2022). Advancing deep

learning in water management requires addressing

challenges like data privacy, algorithm development, and

trustworthiness, with the goal of achieving highly

intelligent and autonomous urban water systems (Fu et al.,

2022). Dams play a pivotal role in controlling floods and

droughts, and effective dam management helps the

authorities make better decisions. Dams serve various

purposes, including flood control, agricultural use,

hydropower generation, water storage for drinking and

industrial purposes, and drought mitigation. The

application of machine learning and deep learning models

has been instrumental in tackling a diverse range of

challenges associated with dams, including Reservoir

inflow prediction (Banihabib et al., 2020), Reservoir

capacity prediction (Dai et al., 2022), Reservoir scheduling

problem in hydropower generation (Tang et al., 2022a),

streamflow forecasting over reservoir catchment (Liu et al.,

2022) and Seepage prediction (Ishfaque et al., 2022).
Issuing dam alerts, even a day or just hours in advance,

will undoubtedly assist authorities in taking proactive
measures to safeguard the public and prevent disasters

when dams are opened. Human-assisted decision-making

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

148

in issuing alert signals to the public based on various
meteorological parameters may not always be accurate. If

adequate warning is not provided prior to the sudden
opening of the dam, it could pose a threat to public safety.

Also, the wrongful issuance of alerts when opening the
dam may cause inconvenience to the public as well and

property. We have reviewed several studies and it was
found that no papers discussed the issue of alert signals

generated from the dams in adverse situations.

Related literature like alerts generation in river

embankments is studied. The safe operation of water

conservation projects and the early detection of any

hazards depend on the efficient monitoring of seepage in

river embankments and the timely issuance of intelligent

alerts as discussed by Shao et al. (2024). A levee seepage

intelligent alarm system built on a Bidirectional Long

Short-Term Memory (BILSTM) network model was

created and put into place to improve the intelligence of

seepage alerts and levee safety monitoring. The study

conducted at Occidental Mindoro, Philippines by Adrian

et al. (2024) discusses the generation of warning alerts

based on water levels. A long-range, global system for

mobile communication module, an Arduino Uno

microcontroller, water level sensors, and temperature-

humidity sensors make up the designed flood alarm

system. Upon activation and detection of the water level,

the sensors will transmit an alert message to the Global

System for Mobile communications module, which will

then transmit flood alarm messages to the receiver. The

response time for these messages should not exceed ten

seconds. But the alert generated only gives instantaneous

warning and the people does not get enough time to take

precautionary measures and artificial intelligence means

is not applied in it. Various hardware components like

water flow sensor, pressure sensor, ultrasonic sensor,

temperature sensor and software like Ardino IDE were

implemented by Thirumarai Selvi et al. (2024) for

analyzing flood monitoring system. This is more of a

hardware-oriented system.

The focus of this research paper is on predicting dam

alert levels by utilizing Long Short-Term Memory

(LSTM) models, incorporating meteorological and dam-

related parameters. Meteorological parameters like

rainfall, temperature, humidity, atmospheric pressure,

wind speed can cause heavy floods when the levels of the

parameters go beyond a certain limit and directly affect

the dam operations. Furthermore, dam-related parameters,

such as a dam's storage capacity, rainfall in the dam's

catchment area, cumulative previous-day rainfall, and

water outflow for purposes like irrigation, drinking, and

power generation, play a crucial role in determining

whether to open the dam's shutters or issue alerts to the

public. This paper is an attempt to study the use of one

deep learning model, namely LSTM in generating

accurate alert signals from the dam by training, and dam

related parameters. Different aspects of the LSTM model

are studied in the research to find the best optimal solution

in the forecasting of the alert signals from the dam. This

study presents the first application of LSTM for multi-tier

dam alert classification in the Indian context.

Optimizers are used to minimize the discrepancy

between the intended output and the existing output; this

discrepancy serves as a response indication that

determines how much the optimizer should adapt as

discussed by Jain et al. (2023). By updating weights

appropriately for each input, the network contributes to a

reduction in loss. This process continues when the

training loop and iteration are repeated (also known as

epochs), and each epoch produces an updated weight

value that is correct and helps to minimize the loss. The

goal is to minimize it to almost zero. LSTM's various

hyper parameters are discussed by Kwon et al. (2023) like

batch size, dropout rate, learning rate, number of epochs,

number of nodes, number of hidden layers, and sequence

length. The length of the sequence dictates how much

time is spent for learning data at any given moment; a

node is crucial in differentiating the features of input

patterns; and the dropout rate stops over fitting by

arbitrarily removing some of the complete nodes during

learning. The amount to be learned at once is determined

by the learning rate, the batch size is the amount of data at

a time, and an epoch is one complete pass through the

entire training dataset. In this paper, we train the model

using different optimizers such as Adam, Adagrad,

RMSprop, Stochastic Gradient Descent, and Nadam, with

the hyper parameters being the learning rate and gradient

clipping value. The main objective of the paper is to dive

deeply into the LSTM model and to find the best

optimizer, learning rate and gradient clipping value so that

the LSTM model contributes the best results in predicting

the alert signals.

The subsequent sections of the research paper are

structured as follows: Literature review section provides

an overview of dam-related research conducted by other

scholars, exploring diverse machine learning and deep

learning models. Materials and method section focuses on

the case study of the Malampuzha dam, detailing the data

collection process, and includes an in-depth discussion on

Long Short-Term Memory (LSTM) and the methodology

implemented in this study. Result section and discussion

section explain the results obtained from the LSTM model

with different epochs, optimizers, learning rates, and

gradient clipping values. Lastly, the conclusion section

elaborates the overall objectives and results.

Literature Review

The effective use of LSTM in various dam-related

studies and flood forecasting system is studied in this

section. An LSTM model was effectively used by Le et al.

(2019) for flood prediction using daily release and

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

149

precipitation at the Hoa Binh station on the Da river

situated in Vietnam. The LSTM model effectively

predicted precise results in testing and validation phases

within the first, second and third days of flood prediction

using daily discharge and rainfall. A real-time flood
forecasting system was constructed with LSTM and it

outperformed conceptual based XAJ model and RNN

model across three catchments in China under moist,

semi-moist and semi-arid conditions (Liu et al., 2020).

Also, the coupled LSTM-KNN model produced better

results than single LSTM model while using the

evaluation matrices RMSE (Root mean square error), R2

(coefficient of determination), NSE (Nash Sutcliffe

Efficiency) coefficient and VE (Volume error). The

success of predicting daily stream flow for the study of

hydroelectric turbine efficiency was demonstrated using
an LSTM recurrent neural network model, as evidenced

in a prior study (Le et al., 2019). The dataset for this

investigation was derived from the flow history of the

Jirau Hydroelectric Power Plant, located on the Madeira

River in Brazil. Nine different architectures were

evaluated in the study and fifty LSTM units were

considered best prediction with best values of RMSE,

MAE and R2.

Flood forecasting based on temperature and rainfall

intensity was studied by Sankaranarayanan et al. (2020)

and the research work was carried out on the dataset from

1990 to 2002.The case study was conducted on data of 10

districts of two Indian states Orissa and Bihar. A deep

neural network was compared with support vector

machine, K-nearest neighbor and naïve Bayes and the

studies showed deep neural network performed with

better accuracy. Decisions of reservoir management and

water pre-release was evaluated in Zarei et al. (2021) with

different algorithms like Support vector machine,

Regression tree, Genetic Programming and Artificial

Neural Network at Dez, Gotvand and Karkheh reservoirs

in Iran. The study showed that Support vector machine

and Regression tree performed with better accuracy on

one month and two months time lag patterns. For

predicting water inflow into Zayandehroud dam situated

in Iran, Artificial neural network and Support vector

machine were used by Babaei et al. (2019) with a variety

of nine different input data patterns. The first seven data

inputs were monthly inflow into the reservoir with

different time lags, the eighth one being time index and

the last one consisting of the rainfall at Ghaleh-Ghahrokh

station to different monthly time lags. The superior

alternative was SVM compared to the ANN model with

better values of RMSE and R-squared at training,

validation and test processes.
Babaei et al. (2020) introduced the Long Short-Term

Memory-Flash Flood framework, designed specifically
for the forecasting of flash floods, demonstrating strong

performance with qualified rates above 82.7% for peak

discharge, 89.3% for peak time, and 84.0% for flood

process at lead times of 1–10 hours. It excels in simulating

large flood events and highlights the importance of small

flood events in model training. The research suggests

potential for further integration of hydrological
knowledge and addressing rainfall forecast uncertainty in

flash flood predictions. A hybrid approach combining the

Unscented Kalman Filter (UKF) and a recurrent neural

network (NARX model) effectively reduces predictive

uncertainty in flood forecasting (Zhou et al., 2020). The

recurrent neural network (NARX model) outperforms the

static neural network (BPNN model) in producing

accurate and stable flood forecasts with reduced time-lag

effects.

Kunverji et al. (2021) addressed the critical need for

an effective flood prediction system in light of the

devastating impact of floods in recent years. In the pursuit

of enhancing prediction accuracy, especially for intricate

datasets, the study compares a Decision Tree Model with

other machine learning algorithms like Random Forest

and Gradient Boost, exploring avenues for improved

performance. The system is designed with Indian

conditions in mind, aiming to provide timely flood

warnings to residents and aid in cost-effective

government response, including evacuation operations.

The study done by Xu et al. (2023) presented a hybrid

flood prediction model integrating a Light GBM (Light

gradient Boosting machine) learning model with a

hydrological-hydraulic model, showing superior

performance in predicting inundation depth. It identifies

tide levels as the dominant variable. The Light GBM

model outperforms other methods and is particularly

efficient, offering potential for decision-making in flood

mitigation.

 The study demonstrates that the developed

LSTM model outperforms the standard LSTM for

predicting Huanggang Reservoir (Fujian, China) capacity,

over 7-day, 14-day, and 30-day periods, with accuracy

depending on parameter settings (Dai et al., 2022). It

highlights the importance of selecting relevant

influencing factors. The paper discusses LSTM and GRU

models to predict water levels at the Hangang Bridge

Station in South Korea, improving accuracy by analyzing

the correlation between water levels and selected

hydrological and meteorological data (Park et al., 2022).

The results showed that GRU outperformed LSTM in

predicting high-water levels, especially when using

multivariate input data. This approach is valuable for

urban rivers with rapid water level fluctuations,

emphasizing the significance of multivariate models for

accurate predictions in such scenarios.
Dam displacement prediction is studied by Zhang et

al. (2019) on Dongjiang arch dam displacement data and

an improved LSTM model was compared with the

conventional LSTM, MLP, MLR, BRT and SVM models.

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

150

However, only two parameters, water level and

temperature, are considered in the study. Wei et al. (2020)

considered a combination of Particle Swarm

Optimization–Support Vector Machine model, SVM

model, and independent regression models for dam
displacement prediction, and the combined model reduces

the prediction error.

From these studies, we can see that various deep

learning models were utilized for general flood

forecasting and dam related researches like water inflow

calculation, water level generation, dam displacement etc.

However, the studies related to the chances of opening the

dam based on multiple weather parameters combined with

dam related parameters, have not been taken into

consideration. The novelty of this research is to check the

suitability of LSTM model in predicting the alert levels

(No alert/Blue alert/Orange alert/Red alert) from the dam

without any human intervention so that people may aware

of the dangerous situation of opening the dam in utmost

situations. The aim of this research paper is not to

compare different machine learning or deep learning

models for forecasting alert signals, but to ponder deep

into the LSTM model to find the suitable hyper

parameters for prediction. This study focuses on

identifying optimal hyper parameter values, such as

different optimizers, learning rates, and gradient clipping

values, suitable for the LSTM model from a different

perspective, so that the model can predict alert generation

with maximum accuracy.

Materials and Methods

Case Study

The dam chosen for research is the Malampuzha dam

as location seen in Figure 1, is the largest reservoir in the

Kerala state in India situated on the foot hills of Western

Ghats. The Malampuzha dam is around 23.13 square

kilometer in area and nearly 10 Km from Palakkad town.

It is a multi-purpose concrete gravity dam built on the

Malampuzha River, a tributary of the Bharathapuzha

River. The Malampuzha dam was constructed in 1955 for

the purpose of catering the needs of agriculture, drinking,

power generation, Industries and fish farming.
Malampuzha is a good case study for time-series

modeling since it has decades' worth of documented

rainfall, inflow, and storage data. For comparable

medium-sized reservoirs, LSTM and other AI models

created with Malampuzha data can be used as prototypes.

The control and operation of the Malampuzha Dam

involve the monitoring and adjustment of several

parameters to ensure efficient water management and

safety. The main aim of the study is to issue alert signals

from the dam, hours or days in advance to the public so

that they can mitigate the flood situation caused by the

dam openings.

Fig. 1: Location of the Malampuzha dam

No Alert and Blue Alert indicate safe conditions;
Orange Alert signals a warning, and Red Alert represents

the most dangerous situation. The dam may be opened at

any moment after a Red Alert is issued. If sensors are

used, the dangerous situation can only be detected when

it occurs. Therefore, the main objective is to issue alerts

at least hours or days in advance, so that the authorities

and the public can take precautionary measures. The

various parameters used for efficient management are

reservoir level, maximum storage capacity of the

reservoir, inflow of water into the reservoir, outflow of

water from the reservoir and giving appropriate alerts (no
alert/blue/orange/red) to the public. First warning alert is

given as a blue alert at 113meters, second alert is given as

an orange alert at 114 meters and third warning is given

as red alert at a dam water level of 114.46 meters. The

dam related data (from 1st January 2010 to 31st December

2020) are collected from the irrigation department of the

Malampuzha division. Various meteorological parameters

like temperature, precipitation, atmospheric pressure, wind

speed, humidity and dew point directly affects the formation

of flood situations and dam management. The daily data for

these parameters in the Palakkad region, for the specified

time period, were collected from tcktcktck.org, a non-profit
organization that provides weather information for over 250.

The first step in creating a model consists of collecting

data of relevant parameters and it was acquired from the

above sources. We combined the meteorological

parameters and dam related parameters into one .csv file.

All data was converted into numerical form so that

processing is done smoothly. We ensured that labels are

correctly represented and do not contain any NaN or

infinite values. The next step after data collection is

loading and pre-processing of data to required format of

the model. Here 14 columns of meteorological and dam
related parameters are taken as input variables and alert

level consisting values of no alert, blue alert, orange alert

and red alert as target label. Loading the dataset included

the features as input variables and the target labels. The

features and labels separated from the dataset are

normalized into a common scale to improve the

convergence and performance of the neural network. The

alert labels are encoded into numerical values (0, 1, 2, 3)

to be used as the target labels for training the model. The

encoded labels represent the four alert levels: 0 for No

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

151

alert, 1 for blue alert, 2 for orange alert, and 3 for red alert

where red alert is the most dangerous one issued. The

height of the Malampuzha dam is 115.06 meters and the

first warning is issued as blue alert at 113 meters water

level of the dam which is considered to be relatively safe.
The second warning is issued as orange alert at a height

of 114 meters which is a situation just before the

dangerous situation. The third and last alert is issued as

the red alert at 114.46 meters height which is a very

dangerous situation and the dam can be opened at any

moment next. Usually, the alert signals are generated from

the dam when the water levels in the dam reach at the

above discussed levels. The main goal of the study is to

predict the possibility of the alert signals by artificial

intelligence means so that the forecasting is accurate and

in advance.

The Long short- term Memory (LSTM)

The Long Short-Term Memory (LSTM) model as

depicted in Figure 2, is a type of Recurrent Neural

Network (RNN) that is particularly well-suited for

processing and making predictions with sequences of

data. The cell state (Ct) represents the retention of the

network and the input gate decides which information to

be stored in it. The forget gate controls what data from the

cell state must be discarded or retained. The hidden state
(Ht) is the output of the LSTM unit which is passed to

next stage and the output gate regulates what information

is shown as the output. The forget gate (ft) employs the

sigmoid function to assess the extent to which it should

discard prior information from the prior cell state (Ct−1)

built on a combination of the former unseen state (ht−1)

and the present input data (xt) (Kwon et al., 2023).

The forget gate is represented by:

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓) (1)

The input gate it, employs a sigmoid function to

regulate the update value:

𝑖𝑡 = 𝜎 (𝑊𝑖 [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖) (2)

Fig. 2: LSTM architecture (Wang et al., 2022)

Subsequently, a hyperbolic tangent (tanh) layer

operates as the second part, generating a vector of new

candidate values. The sigmoid function (σ) adjusts

weights from both the prior hidden state (ht−1) and the

current input data (xt) to calculate its value. Similarly, the
hyperbolic tangent (tanh) is used to create the candidate

cell (C˜t) for updating the new cell, considers adjustments

in the weights of the preceding hidden state (ht−1) and the

current input (xt):

𝐶˜𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑐[ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑐) (3)

The update of the present cell state (Ct) involves a

combination of the prior cell state (Ct−1) and the candidate

cell (C˜t):

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡 − 1 + 𝑖𝑡 ∗ 𝐶˜𝑡 (4)

The sigmoid function, through a weight adjustment of

both the previous hidden state (ht−1) and the current input

data (xt), determines the amount of output to be exported

from the cell in the form of the output gate (Ot):

Ot = σ (Wo [ht − 1, xt] + bo) (5)

By employing the hyperbolic tangent function, the

challenges associated with vanishing and exploding
gradients during the update of a particular point state (ht)

can be resolved:

ht = ot ∗ tanh (Ct) (6)

The LSTM architecture used in this study consists of
a single LSTM layer with 100 units followed by a dense

output layer with 4 units (representing the four alert

classes) and a softmax activation for multi-class

classification. The LSTM layer uses the ReLU activation

function to introduce non-linearity. This simple yet

effective architecture is well-suited for capturing temporal

patterns in the dam’s multivariate time-series data.

Methods

An LSTM model with simple architecture is

experimented with for the prediction of alert levels. Data

pre-processing is the first step to be followed while

creating the proposed LSTM model. For that, the input

data is reshaped into 3D format (samples, time steps,

features) so that it is compatible with the LSTM model

architecture. Here, samples represent the number of

sequences or samples we are providing for training in each

batch and 4014 rows were given to the model. In an

LSTM, we typically provide a sequence of data as input

and the entire dataset is given as one time step to our
model. The number of features is the number of columns

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

152

(variables) in our CSV file, and each feature will be

treated as a separate input to the LSTM. Since fourteen

parameters(temperature in degree Celsius, Dew point in

Degree Celsius, Humidity in percentage, Wind speed in

Kph, atmospheric pressure in Hg, precipitation in mm,
water level of dam in meter, storage of water in dam in

Mm3 ,Rain fall(of that day) in mm, Total rainfall (Up to

that day) in mm, Discharge of water from dam at LBC in

Mm3, Discharge of water from dam at RBC in Mm3,

Discharge of Water from dam at spillway in Mm3, total

discharge of water from dam in Mm3 and inflow of water

to dam in Mm3) are used as input to the model ,the

number of features is taken as 14.The target label taken is

the alert levels issued from the dam. The target labels are

converted from “no alert”, “blue alert”, “orange alert” and

“red alert” to numerical values of 0, 1, 2 and 3
respectively. The formatted data is split for training and

for testing to evaluate its performance on unseen data. The

train test_split function randomly splits the dataset into

two parts, and the parameter test size = 0.2 means that

20% of the dataset is set aside for testing, while 80% is

used for training. The dataset contained 4,014 rows and

17 columns, of which 3,212 rows were used for training

and the remaining 802 rows, were used for testing which

is randomly picked. Figure 3 portrays the different stages

in the LSTM model.

In the LSTM model for alert prediction, several

preprocessing steps are essential to prepare the dataset
effectively. First, the dataset is loaded using pandas, and

the features (such as temperature, humidity, water level,

rainfall, inflow, etc.) are separated from the target labels,

which indicate whether a blue, orange, or red alert was

given. One of the critical preprocessing steps applied is

normalization, where each feature is scaled by subtracting

its mean and dividing by its standard deviation. This

standardization ensures that all input features have a

similar scale, which improves the learning efficiency and

convergence of the LSTM model.

Fig. 3: LSTM Model stages

Missing values can be handled by dropping rows with
missing values or by imputing those using statistical

methods such as mean or median filling. Finally, since
LSTM models expect input data in three dimensions

(samples, timesteps, features), the data must be reshaped
accordingly. In our dataset, since each row represents a

single day's data (i.e., one timestep), an additional
dimension is added to reshape the input to meet the

required format. These preprocessing steps help ensure
the data is clean, scaled appropriately, and structured

correctly for effective sequence modelling ing LSTM.
The LSTM architecture design is the next step after

pre-processing the data. An LSTM layer with 100 units

and ReLU activation function is added. The LSTM

model’s accuracy highly depends on the quantity of

neurons in the hidden layers (Dai et al., 2022). The input

shape is specified based on the reshaped data. A dense

output layer with a softmax activation function is used to

predict one of the four classes of no alert, blue, orange and

red alerts.

Multiple optimizers like Adam, Nadam, RMSprop,
SGD, and Adagrad were used to evaluate how different

gradient descent strategies affect the learning behaviour

of the LSTM model. Adam and Nadam combine

momentum and adaptive learning rates, often performing

well on complex and noisy datasets. RMSprop is effective

in handling non-stationary objectives, common in time-

series data like dam alerts. SGD and Adagrad, though

simpler, serve as useful benchmarks and sometimes

generalize better in certain scenarios, helping to validate

the robustness of the model.

The optimizers are implemented with gradient

clipping to prevent exploding gradients which can lead to
NaN loss. Gradient clipping values of 0.1, 0.5 and 1.0 are

chosen for experimentation along with the optimizers

chosen. The next stage after LSTM model design is,

compilation with suitable loss function. The loss function

used for training the model is sparse categorical cross

entropy which is suitable for multi class classification and

target variables which are mutually exclusive. After

compiling the LSTM model, it is trained with the training

dataset. The model is trained using the encoded alert

labels (y train and y test) as target labels for the training

and testing the dataset. The next step is evaluating the
model using different evaluation metrics which is

discussed in the next section. The results are plotted with

the number of epochs on the X-axis and accuracy

percentage on the y-axis for different optimizers. The

confusion matrix is also generated for LSTM model with

different learning rates. Also, a classification report is

generated for plotting results.

Results

We trained the LSTM model with different optimizers

like Adam, Adagrad, RMSprop, SGD (Stochastic Gradient

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

153

Descent) and Nadam with three different epochs (50 epochs,

100 epochs and 500 epochs). The results of LSTM models

with different optimizers and epochs are shown in the tables

and in the graph, which clearly indicates that the model

improved with increased accuracy as the number of epochs
increased. We evaluated the model using the testing data and

calculated the evaluation metrics (RMSE, NSE, VE). Root-

Mean-Square Error (RMSE) is the ratio of the square

deviation between the observed value and its true value, and

the number of observations (Tang et al., 2022b). A model

with RMSE value approaching 0 is considered to be very

effective in predictions. Nash-Sutcliffe Efficiency (NSE)

gives the extent of model’s ability to predict the variables

dissimilar from the mean and a value nearing to 1 shows that

the model is predicting the results accurately (Liu et al.,

2020). The paper also discusses Volume Error (VE), a key to
calculate the model performance and a value approaching 0

is considered to be very near the observed data.

When evaluating the model, we used the original

labels (y_test) to calculate the evaluation metrics like

RMSE, NSE, R-squared, and VE. The numerical

predictions from the model (y_pred_labels) are then

compared with these original labels for evaluation. The

gradient clipping value is considered here as 0.5 to avoid

exploding gradient value problem for all the optimizers

which can be experimented with different values for better

results.

LSTM With Adam Optimizer

The Adam (Adaptive Moment Estimation) optimizer

is a popular optimization algorithm which combines

techniques from both Adagrad and RMSProp to optimize

the learning process (Soydaner, 2020). Firstly,

initialization take place by maintaining several moving

average estimators of gradients and squared gradients,

which are initialized to zero. The main parameters used

are, model parameters to be optimized(θ), learning rate

which controls the step size in parameter updates(α),
exponential decay rates (β1 & β2) for the moving averages

of gradients and squared gradients, small constant (𝜖) to

prevent division by zero. Moments are initialized with 𝑚𝑡
= 0 (Initial value for the first moment (mean) of gradients)

and vt = 0 (Initial value for the second moment (un

centered variance) of gradients).The update rules are

discussed in Bock and Weis (2019), in which the gradient

are calculated using a mini-batch of training examples:

𝑔𝑡 = 𝛻(𝑓(𝑥; 𝜃), 𝑦) (7)

The first moment estimate are calculated using the

following formula:

1 1 (1 1)mt mt gt     (8)

The second moment estimate are calculated using the

following formula:

2 (1 2) 2vt vt gt    (9)

Correct bias in first and second moments are computed

by:

֘𝑚𝑡 = 𝑚𝑡(1 − 𝛽1𝑡) 𝑣𝑡 = 𝑣𝑡 / (1 − 𝛽2𝑡) (10)

parameters 𝜃 are updated using the corrected

estimates:

֘𝜃𝑡 + 1 = 𝜃𝑡 − 𝛼 ֘𝑚𝑡 / √𝑣𝑡 + 𝜀 (11)

The LSTM model with the adam optimizer is tested and

the results are given in Table 1. To visualize the model’s
performance, graph plots are used as evaluation metrics as in

Figure 4. The graph plot given above visualizes the proposed

LSTM model of Adam optimizer with 50 epochs, 100

epochs and 500 epochs respectively. The accuracy level has

increased in a consistent manner, and the model performed

the prediction of alert levels with an accuracy of 98.63% over

500 epochs.

Table 1: Evaluation metrics of LSTM model with adam

optimizer
 Adam with

50 epochs
Adam with
100 epochs

Adam with
500 epochs

RMSE 0.27 0.16 0.12
NSE 0.93 0.97 0.986
VE 0.073 0.04 0.018
Test Accuracy 95.52 % 97.38% 98.63%

Fig. 4: Graph plots of LSTM model with adam optimizer with

50 epochs, 100 epochs and 500 epochs

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

154

LSTM With Adagrad Optimizer

The adagrad (adaptive gradient algorithm) is an
optimization algorithm that adjusts learning rates for each

parameter based on their historical gradients, providing

smaller updates for parameters with frequent changes and

larger updates for parameters with significant changes in

results. Unlike other optimizers which use a uniform

learning rate for all parameters, Adagrad's adaptive

learning rates are well-suited for dealing with sparse data

by identifying and assigning different rates to essential

parameters, thereby enhancing stochastic gradient descent

efficiency (Halgamuge et al., 2020). The equation of the

Adagrad optimizer is:

1, , / , . ,t i t i n Gt i gt I      (12)

where θt,i is the parameter i at time step 𝑡, 𝜂 is the

learning rate 𝐺𝑡, 𝑖 is the accumulated sum of squared

gradients for parameter 𝑖 up to time step t and ϵ is a small
constant to avoid division by zero. The outcome of the

LSTM model implemented with the Adagrad

optimizer is given in Table 2.

The RMSE values provided (1.11, 1.11, 0.59) suggest

that the model's predictive error decreased significantly

from 1.11 to 0.59 as the number of epochs increased from

50 to 500. The provided NSE values (-0.219, -0.219, 0.66)

suggest that the model initially performed worse than the

mean (negative NSE), but as the number of epochs

increased, the model's performance improved

significantly as in Figure 5, achieving a positive value

(0.66) indicating that it outperformed the mean. The
provided VE values (0.63, 0.63, 0.23) remain relatively

stable across the 50 and 100 epochs, and then slightly

decreases at 500 epochs.

Table 2: Evaluation metrics of LSTM model with adagrad

optimizer

Metrics Adagrad with
50 epochs

Adagrad with
100 epochs

Adagrad
with
500 epochs

RMSE 1.11 1.11 0.59
NSE -0.219 -0.219 0.66
VE 0.63 0.63 0.23
Test
Accuracy

79.32% 79.32% 89.29%

Fig. 5: Graph plots of LSTM model with adagrad optimizer of
50 epochs, 100 epochs and 500 epochs

LSTM With RMSprop Optimizer

RMSProp (Root Mean Square Propagation) is crucial
for effectively training neural networks with distance

measures and Gaussian activation functions, especially

when plain mini-batch gradient descent or momentum

yield slow or no convergence, even for shallow networks

(Kurbiel and Khaleghian, 2017).

The learning rate for each weight is adjusted by

dividing it by this moving average, allowing for more

efficient and stable training. The update equations for the

parameter 𝜃𝑖𝑗 is:

֘v֘ij = γvij + (1 − γ)(gijt)2 (13)

֘θ֘ij = θij − ηvij + ϵ ⋅ gijt (14)

The LSTM model is implemented with RMSprop

optimizer and results obtained are given in Table 3.

Table 3: Evaluation metrics of LSTM model with RMSprop
optimizer

Metrics RMSprop

with

50 epochs

RMSprop

with

100 epochs

RMSprop

with

500 epochs

RMSE 0.28 0.19 0.149

NSE 0.92 0.96 0.978

VE 0.08

0.04

0.03

Test Accuracy 95.02%

96.76%

97.76%

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

155

The decreasing trend in RMSE and VE, along with the

increasing trend in NSE and test accuracy, indicates the

model's refinement in predictive accuracy, as the epochs

increase as shown in Figure 6. This suggests that the

model learned more from the data and improved
efficiency, and classification capabilities with additional

training, its predictive and satisfactory performance

significantly over time.

LSTM With SGD Optimizer

A key optimization technique for training models in

deep learning and machine learning is stochastic gradient

descent (SGD). This variation of gradient descent uses a

smaller random selection of the data (mini-batch) to

compute the gradient in order to update model parameters,
as opposed to computing the gradient of the complete

dataset (batch). By adding randomness to the parameter

updates, this method can increase convergence and

improve escape from local minima.

Fig. 6: Graph plots of LSTM model with RMSprop optimizer of

50 epochs, 100 epochs and 500 epochs

Soydaner (2020) discusses the theoretical working of

the SGD. The initialization of SGD starts with an initial

guess for the model parameters σ. Then the entire dataset

is split into smaller mini-batches containing a subset of

the training examples. Next, iterations are performed over
each mini-batch to compute the gradient of the loss

function with respect to the current mini-batch of

examples, and the model parameters σ are updated using

the computed gradient. The update rule for each parameter

σ is:

֘𝜃 ← 𝜃𝜂𝛻𝜃𝐿(𝑓(𝑥(𝑖); 𝜃), 𝑦(𝑖)) (15)

Where, η (learning rate) controls the step size of the

update. Then the last step is convergence in which the

iterative process is repeated until convergence criteria are

met. The LSTM model trained with the Stochastic

Gradient Descent optimizer shows significant

improvement in classification tasks as the number of
training epoch increases as in Table 4 and Figure 7. The

decreasing trend in RMSE, VE, along with the increasing

trend in NSE, test accuracy, indicates that the model

learned more from the data and improved its performance

significantly through additional training epochs when

using the SGD optimizer in forecasting alert signals.

Table 4: Evaluation metrics of LSTM model with SGD

optimizers

Metrics SGD with
50 epochs

SGD with
100 epochs

SGD with
500 epochs

RMSE 1.039 0.48 0.117
NSE -0.068 0.77 0.99
VE 0.562 0.18 0.018
Test Accuracy 81.2% 90.78% 98.63%

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

156

Fig. 7: Graph plots of LSTM model with SGD optimizer of 50

epochs, 100 epochs and 500 epochs

LSTM With Nadam Optimizer

Nesterov Accelerated Gradient (NAG) is applied to

adam optimizer to generate Nadam (Nesterov accelerated

adaptive moment estimation) optimizer (Wang and Cao,

2017) .The Nadam update equations are:

mt = β₁mₜ₋₁ + (1 − β₁)ₜ (16)

֘v֘t = β₂vₜ₋₁ + (1 − β₂)ₜ² (17)

Where is the gradient at time step 𝑡 with respect to the

parameters, and 𝑣𝑡 are the first and second moment
estimates respectively, 𝛽1 and 𝛽2 are exponential decay

rates and ϵ is a small constant.
The evaluation metrics provided in Table 5 are for an

LSTM (Long Short-Term Memory) model trained using
the Nadam optimizer across different numbers of epochs.

Each metric serves as an indicator of the model's
performance in classification tasks. The Nadam optimizer

with 500 epochs achieved the highest accuracy of 99.13%.
A steady improvement in accuracy can be observed in

Figure 8.

LSTM Model With Different Learning Rates

After finding the best optimizer, the next hyper

parameter chosen is the learning rate. Here, we have
trained and evaluated the LSTM models with three

different learning rates: 0.01, 0.001, and 0.0001. We
selected the Nadam optimizer with 50 epochs and the

evaluation metrics for each learning rate are presented in
the table.

Apart from different types of optimizers, the number
of epochs and the learning rate the LSTM model can be

experimented with by changes in gradient clipping value
of optimizer and types of architecture. The result in Table

6 clearly indicates that as the learning rate decreased the
prediction accuracy of the model also decreased. The

results indicate that the LSTM model accomplished the
best enactment with a learning rate of 0.01, obtaining the

lowest RMSE, MAE, and highest NSE and accuracy.

Table 5: Evaluation metrics of LSTM model with Nadam
optimizer

Metrics Nadam
with 50

epochs

Nadam
with 100

epochs

Nadam
with500

epochs

RMSE 0.271 0.16 0.09
NSE 0.93 0.975 0.99
VE 0.07 0.033 0.012
Test
Accuracy

95.52% 97.51% 99.13%

Table 6: Evaluation metrics of LSTM model with different

learning rates

Learning rate RMSE MAE NSE Accuracy

0.01 0.17 0.029 0.97 97.13%

0.001 0.25 0.05 0.94 95.64%
0.0001 0.48 0.14 0.78 90.66%

Fig. 8: Graph plots of LSTM model witsh Nadam optimizer of

50 epochs, 100 epochs and 500 epochs

The confusion matrices in Table 7 have four rows and
four columns representing the alert levels 0 (No alert), 1

(Blue alert), 2 (Orange alert) and 3 (Red alert)

respectively in each row and column. The diagonal

elements of the confusion matrix depict the true positive

cases for each alert level. The confusion matrix with

learning rate 0.01 shows that 637 instances of No alert, 36

instances of blue alert, 14 instances of orange alert and 93

instances of red alert were predicted correctly. In the case

of blue alerts, 7 instances were wrongly predicted as No

alert and 5 instances were wrongly predicted as orange

alert. Only 5 instances of orange alerts were wrongly

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

157

classified as blue alert and red alerts. We can see that only

1 instance of red alert is wrongly predicted as orange alert.

The matrix of the LSTM model with different learning

rates is given below:

 No alert Blue alert Orange alert Red alert

No alert  637 0 0 0

Blue alert  7 36 5 0

Orange alert  0 5 14 5

Red alert  0 0 1 93

Table 7: Confusion matrix of LSTM model (optimizer =

Nadam, epochs = 50)

Learning rate 0.01 Learning rate 0.001 Learning rate
0.0001

[[637 0 0 0]
 [7 36 5 0]
 [0 5 14 5]
 [0 0 1 93]]

[[636 1 0 0]
 [4 36 3 5]
 [0 10 4 10]
 [0 0 2 92]]

[[631 6 0 0]
 [14 10 0 24]
 [3 7 0 14]
 [1 6 0 87]]

In addition to the confusion matrix, classification

report containing the values of precision, recall, F1- score

and support can be used to determine the accuracy of the

proposed LSTM model as indicated in Tables 8-10

respectively. The first four rows of the classification

report show 0 for No alert, 1 for blue alert, 2 for orange

alert and 3 for red alert. Precision and Recall is specified

in Hinojosa et al. (2024) as described below:

Recall
()

TP

TP FP



 (18)

Precision
()

TP

TP FN



 (19)

Table 8: Classification report (learning rate = 0.01, Nadam

optimizer)

 Precision Recall F1-Score Support

0 0.99 1.00 0.99 637
1 0.88 0.75 0.81 48

2 0.70 0.58 0.64 24
3 0.95 0.99 0.97 94
accuracy 0.97 803
macro avg 0.88 0.83 0.85 803
weighted avg 0.97 0.97 0.97 803

Table 9: Classification report (learning rate = 0.001, Nadam

optimizer)

 Precision Recall F1-Score Support

 0 0.99 1.00 1.00 637
 1 0.77 0.75 0.76 48
 2 0.44 0.17 0.24 24
 3 0.86 0.98 0.92 94
 accuracy 0.96 803
 macro avg 0.77 0.72 0.73 803

weighted avg 0.95 0.96 0.95 803

Table 10: Classification report (learning rate = 0.0001, Nadam
optimizer)

 precision recall f1-score support

0 0.97 0.99 0.98 637

1 0.34 0.21 0.26 48

2 0 0 0 24

3 0.7 0.93 0.79 94

 accuracy 0.91 803

macro avg 0.5 0.53 0.51 803

weighted avg 0.87 0.91 0.89 803

TP represents true positive instances, FN represents

false negative instances, FP represents false positive

instances and TN represents true negative instances. The

F1-score and accuracy are explained in Ahmed et al.

(2021) as given below:

2* Precision * Recall
F1 score

Precision Recall
 


 (20)

 TP TN
Accuracy

TP TN FP FN




  
 (21)

The arithmetic mean of each class-specific assessment

metric is known as the macro average. By accounting for

the proportion of each class-specific sample size in the

overall sample size, the weighted average improves upon

the macro average (Jianan et al., 2024).

The classification reports show that higher learning

rates (especially 0.01) with the Nadam optimizer yield the

best performance, achieving high accuracy (97%) and

strong precision, recall, and F1-scores across all alert

levels, particularly for No alert (0) and red alert (3). At a

moderate learning rate (0.001), performance slightly

drops, especially for orange alerts (2), with recall falling

to 17%. At the lowest learning rate (0.0001), the model

struggles significantly, especially with Blue (1) and

orange alerts (2), indicating under fitting. Thus, 0.01 is the

optimal learning rate in this case for accurately predicting

critical dam alerts.

LSTM Model With Different Gradient Clipping

Value

The LSTM model is implemented using the SGD

optimizer with different gradient clipping values. For 500

epochs, when the gradient clipping value changed from

0.5 to 0.1, the accuracy level reduced to 95.14% from

98.63%. Then the gradient clipping value changed to 1.0

with 500 epochs with SGD optimizer, the accuracy level

was 94.77% which clearly indicates that the best option

for gradient clipping value is 0.5 as shown in Table 11 and

Figure 9.

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

158

Table 11: Evaluation metrics of LSTM model (SGD optimizer
with different gradient clipping values)

 Gradient
clipping

value
0.5

Gradient
clipping

value
0.1

Gradient
clipping

value
1.0

RMSE 0.117 0.28 0.30

NSE 0.99 0.922 0.911

VE 0.018 0.078 0.087

Test Accuracy 98.63% 95.14% 94.77%

Fig. 9: Graph plots of LSTM model with SGD optimizer with

different gradient clipping values

Discussion

The existing literature does not provide details about

issuing alert signals from the dam based on various

weather parameters and dam related parameters. The main

intention of the alert signals is to give prior information

about the chances of opening dam shutters and make them

aware of the severity of dam related floods. This research

employs a decade-long dataset from the Malampuzha

Dam, encompassing multiple input parameters along with

their corresponding alert categories (No Alert, Blue,

Orange, and Red). The primary aim is to illustrate the

capability of LSTM models in precisely forecasting multi-

level alert classifications. To the best of our knowledge,

this represents the first implementation of LSTM for

multi-tier dam alert classification within the Indian

setting. This paper takes data of fourteen parameters for

the consecutive ten years to train and test the LSTM

model as discussed in the methods section. The different

alerts, No Alert, Blue Alert, Orange Alert, and Red Alert,

are predicted using the LSTM model with various

optimizers and hyper parameters. A red alert is a very

dangerous situation, and it is issued just a few hours

before the dam’s release. Therefore, the number of red

alert occurrences is lower compared to other alerts.

 Different evaluation metrics like RMSE, NSE, VE

and test accuracy are employed to find the best optimizer

and hyper parameters. The results section clearly

demonstrates that LSTM model with Nadam optimizer

performs better with an accuracy of 99.13%, lowest

RMSE (0.09), NSE (0.99), VE (0.012) with 500 epochs of

training. When learning rate is taken 0.01, the model

performed with higher accuracy compared to learning

rates of 0.001 and 0.0001 and best gradient clipping value

is 0.5 compared to gradient clipping values of 0.1 and 1.0.

Classification reports and graph plots are effectively

organized for comparative study.

Advance knowledge of dam shutter openings through

alert levels can certainly help government authorities take

effective steps to reduce the severity of flood-related

damage. If the public is informed hours in advance, they

can relocate movable property and household animals.

The study is based on the dataset of the Malampuzha Dam

and can certainly be applied to forecasting alert signals

issued for other dams.

Limitations

One of the limitations of the model is that images or

videos related to weather parameters are not included. It

is relatively impossible to collect image or video data of

meteorological parameters over many years to train the

model. This raises the question of whether we can train

the model and obtain accurate results. Temporal data

leakage risk may happen when building or testing a

temporal model, information from the future can

influence the model’s training phase. Further research

with other deep learning models can be conducted to

identify the most suitable model for alert prediction.

Predictions can be shared with emergency control centers

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

159

via dashboards, mobile alerts, or public warning systems.
If certain thresholds are exceeded, automatic alerts can be

triggered to initiate protocols such as evacuation, public

announcements, or alerts to first responders. The research

can also be extended with IoT integration, enabling

different government departments to take effective steps

for disaster management.

Conclusion

Effective dam management is a crucial task, and

improper management can affect the lives and properties

of thousands of people, as well as the economy of the

country as a whole. Before opening the dam, precautions

are to be given to the public as alerts (no

alert/blue/orange /red) so that people are aware of the

dangerous situation and take preventive steps. We have

constructed an LSTM model with 14 parameters to

accurately predict dam openings by issuing alert signals,

using 10 years of meteorological and dam-related daily

data from the Malampuzha Dam, Palakkad. The main

objective of the article is not to compare different deep

learning models but to dive into the LSTM model to find

the best solution in forecasting the alert signals from the

dam. The LSTM models are implemented with different

optimizers like adam, adagrad, SGD, RMSprop and

Nadam. The LSTM models are also experimented on

with different learning rates and gradient clipping

values. The LSTM model with Nadam optimizer and 500

epochs showed remarkable accuracy over other four

optimizers used. This paper dives deeply into the

workings of the LSTM model, utilizing its architecture,

hyper parameters, loss function, learning rates, and

gradient clipping values to find the best option for

efficient dam management. The results are estimated

using the evaluation metrics RMSE, MSE, VE and test

accuracy. The results are plotted using graph plots for

different epochs. Classification reports are utilized to

determine the accuracy of the models. Overall, the

LSTM model with Nadam optimizer with learning rate

0.01 and gradient clipping value 0.5 is found to be a

suitable choice for alert signal prediction in flood-like

situations.

Acknowledgment

The authors would like to thank the Irrigation

Department, Malampuzha for providing accessible to ten
years dam related data. The authors would also like to

thank tcktcktck.org for providing accessible to
meteorological data.

Funding Information

No funding was received from any organizations to

assist with the preparation of this manuscript.

Author’s Contributions

Nisha C. M: Conceptualization, data curation,

Investigation, methodology, Formal analysis,

interpretation of result and writing -original draft.

N. Thangarasu: Conceptualization, Supervision,

Validation and Writing-Review and edited.

Ethics

Ethical approval was not required for this study as it

used anonymized operational data.

Data Availability Statement

Data cannot be made publicly available; readers

should contact the corresponding author for details.

Conflict of Interest

The authors declare there is no conflict of interests.

References

Adrian, A. P. N., & Enriquez, M. D. (2024). Community-

based flood alert system using long-range technology

for Brgy. San Agustin, San Jose, Occidental

Mindoro. Mindoro Journal of Social Sciences and

Development Studies (MJSSDS). 1(2), 27-34.

https://journal.omsc.edu.ph/index.php/mjssds/article

/view/10

Ahmed, M., Mumtaz, R., & Hassan Zaidi, S. M. (2021).

Analysis of water quality indices and machine

learning techniques for rating water pollution: a case

study of Rawal Dam, Pakistan. Water Supply, 21(6),

3225–3250. https://doi.org/10.2166/ws.2021.082

Babaei, M., Moeini, R., & Ehsanzadeh, E. (2019). Artificial

Neural Network and Support Vector Machine Models

for Inflow Prediction of Dam Reservoir (Case Study:

Zayandehroud Dam Reservoir). Water Resources

Management, 33(6), 2203–2218.

 https://doi.org/10.1007/s11269-019-02252-5

Babaei, M. E., Bandari, R., & Valipour, M. (2020).

Improving Daily Peak Flow Forecasts Using Hybrid

Fourier-Series Autoregressive Integrated Moving

Average and Recurrent Artificial Neural Network

Models. AI, 1(2), 263–275.

 https://doi.org/10.3390/ai1020017

Bock, S., & Weis, M. (2019). A Proof of Local Convergence

for the Adam Optimizer. 2019 International Joint

Conference on Neural Networks (IJCNN, 1–8.

Dai, B., Wang, J., Gu, X., Xu, C., Yu, X., Zhang, H., Yuan,

C., & Nie, W. (2022). Development of Modified LSTM

Model for Reservoir Capacity Prediction in Huanggang

Reservoir, Fujian, China. Geofluids, 2022, 1–14.

https://doi.org/10.1155/2022/2891029

https://journal.omsc.edu.ph/index.php/mjssds/article/view/10
https://journal.omsc.edu.ph/index.php/mjssds/article/view/10
https://doi.org/10.2166/ws.2021.082
https://doi.org/10.1007/s11269-019-02252-5
https://doi.org/10.3390/ai1020017
https://doi.org/10.1155/2022/2891029

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

160

Fu, G., Jin, Y., Sun, S., Yuan, Z., & Butler, D. (2022). The

role of deep learning in urban water management: A

critical review. Water Research, 223, 118973.

https://doi.org/10.1016/j.watres.2022.118973

Halgamuge, M. N., Daminda, E., & Nirmalathas, A.

(2020). Best optimizer selection for predicting

bushfire occurrences using deep learning. Natural

Hazards, 103(1), 845–860.

https://doi.org/10.1007/s11069-020-04015-7

Hinojosa, L., M. C., Braet, J., & Springael, J. (2024).

Performance Metrics for Multilabel Emotion

Classification: Comparing Micro, Macro, and

Weighted F1-Scores. Applied Sciences, 14(21),

9863. https://doi.org/10.3390/app14219863

Ishfaque, M., Dai, Q., Haq, N. ul, Jadoon, K., Shahzad, S.

M., & Janjuhah, H. T. (2022). Use of Recurrent

Neural Network with Long Short-Term Memory for

Seepage Prediction at Tarbela Dam, KP,

Pakistan. Energies, 15(9), 3123.

 https://doi.org/10.3390/en15093123

Jain, A. K., Rao, Dr. P., & Sharma, Dr. K. V. (2023).

Pragmatic Assessment of Optimizers in Deep

Learning. International Journal of Computer Science

and Network Security, 23(10), 115–128.

https://doi.org/10.22937/IJCSNS.2023.23.10.15

Jianan, G., Kehao, R., & Binwei, G. (2024). Deep

learning-based text knowledge classification for whole-

process engineering consulting standards. Journal of

Engineering Research, 12(2), 61–71.

 https://doi.org/10.1016/j.jer.2023.07.011

Kunverji, K., Shah, K., & Shah, N. (2021). A Flood

Prediction System Developed Using Various Machine

Learning Algorithms. SSRN Electronic Journal, 6, 1–

6. https://doi.org/10.2139/ssrn.3866524

Kurbiel, T., & Khaleghian, S. (2017). Training of Deep

Neural Networks based on Distance Measures using

RMSProp. ArXiv, 1–

6. https://doi.org/10.48550/arXiv.1708.01911

Kwon, Y., Cha, Y., Park, Y., & Lee, S. (2023). Assessing

the impacts of dam/weir operation on streamflow

predictions using LSTM across South

Korea. Scientific Reports, 13(1), 9296.

 https://doi.org/10.1038/s41598-023-36439-z

Le, X.-H., Ho, H. V., Lee, G., & Jung, S. (2019).

Application of Long Short-Term Memory (LSTM)

Neural Network for Flood Forecasting. Water, 11(7),

1387.

https://doi.org/10.3390/w11071387

Liu, J., Yuan, X., Zeng, J., Jiao, Y., Li, Y., Zhong, L., &

Yao, L. (2022). Ensemble streamflow forecasting

over a cascade reservoir catchment with integrated

hydrometeorological modeling and machine

learning. Hydrology and Earth System

Sciences, 26(2), 265–278.

 https://doi.org/10.5194/hess-26-265-2022

Liu, M., Huang, Y., Li, Z., Tong, B., Liu, Z., Sun, M.,

Jiang, F., & Zhang, H. (2020). The Applicability of

LSTM-KNN Model for Real-Time Flood Forecasting

in Different Climate Zones in China. Water, 12(2),

440. https://doi.org/10.3390/w12020440

Khairudin M, N., Aris, T. N. M., & Zolkepli, M.

(2022). In-depth review on machine learning models

for long-term flood forecasting. 100(10), 3360–3378.

Park, K., Jung, Y., Seong, Y., & Lee, S. (2022).

Development of Deep Learning Models to Improve the

Accuracy of Water Levels Time Series Prediction

through Multivariate Hydrological Data. Water, 14(3),

469. https://doi.org/10.3390/w14030469

Sankaranarayanan, S., Prabhakar, M., Satish, S., Jain, P.,

Ramprasad, A., & Krishnan, A. (2020). Flood

prediction based on weather parameters using deep

learning. Journal of Water and Climate Change, 11(4),

1766–1783. https://doi.org/10.2166/wcc.2019.321

Shao, Z., Mei, X., Xue, M., Li, J., & Tang, H. (2024).

Intelligent alarm system for river embankment

seepage based on BILSTM. Scientific Reports, 14(1),

23822. https://doi.org/10.1038/s41598-024-75125-6

Soydaner, D. (2020). A Comparison of Optimization

Algorithms for Deep Learning. International Journal of

Pattern Recognition and Artificial Intelligence, 34(13),

2052013. https://doi.org/10.1142/s0218001420520138

Thirumarai Selvi, C., Sankara Subbramanian, R. S.,

Muthu Krishnan, M., & Gnana Priya, P. (2024). IoT-

Enabled Flood Monitoring System for Enhanced

Dam Surveillance and Risk Mitigation. International

Research Journal of Multidisciplinary

Technovation, 6(3), 144–153.

 https://doi.org/10.54392/irjmt24311

Tang, J., Yang, R., Yuan, G., & Mao, Y. (2022). Time-

Series Deep Learning Models for Reservoir

Scheduling Problems Based on LSTM and Wavelet

Transformation. Electronics, 11(19),

3222. https://doi.org/10.3390/electronics11193222

Wang, J., & Cao, Z. (2017). Chinese text sentiment

analysis using LSTM network based on L2 and

Nadam. 1891–1895.

https://doi.org/10.1109/icct.2017.8359958

Wang, S., Yang, B., Chen, H., Fang, W., & Yu, T. (2022).

LSTM-Based Deformation Prediction Model of the

Embankment Dam of the Danjiangkou Hydropower

Station. Water, 14(16), 2464.

 https://doi.org/10.3390/w14162464

Wei, B., Chen, L., Li, H., Yuan, D., & Wang, G. (2020).

Optimized prediction model for concrete dam

displacement based on signal residual

amendment. Applied Mathematical Modelling, 78,

20–36. https://doi.org/10.1016/j.apm.2019.09.046

https://doi.org/10.1016/j.watres.2022.118973
https://doi.org/10.1007/s11069-020-04015-7
https://doi.org/10.3390/app14219863
https://doi.org/10.3390/en15093123
https://doi.org/10.22937/IJCSNS.2023.23.10.15
https://doi.org/10.1016/j.jer.2023.07.011
https://doi.org/10.2139/ssrn.3866524
https://doi.org/10.48550/arXiv.1708.01911
https://doi.org/10.1038/s41598-023-36439-z
https://doi.org/10.3390/w11071387
https://doi.org/10.5194/hess-26-265-2022
https://doi.org/10.3390/w12020440
https://doi.org/10.3390/w14030469
https://doi.org/10.2166/wcc.2019.321
https://doi.org/10.1038/s41598-024-75125-6
https://doi.org/10.1142/s0218001420520138
https://doi.org/10.54392/irjmt24311
https://doi.org/10.3390/electronics11193222
https://doi.org/10.1109/icct.2017.8359958
https://doi.org/10.3390/w14162464
https://doi.org/10.1016/j.apm.2019.09.046

Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

161

Xu, K., Han, Z., Xu, H., & Bin, L. (2023). Rapid

Prediction Model for Urban Floods Based on a Light

Gradient Boosting Machine Approach and

Hydrological–Hydraulic Model. International

Journal of Disaster Risk Science, 14, 79–97.
https://doi.org/10.1007/s13753-023-00465-2

Zarei, M., Bozorg-Haddad, O., Baghban, S., Delpasand,

M., Goharian, E., & Loáiciga, H. A. (2021).

Machine-learning algorithms for forecast-informed

reservoir operation (FIRO) to reduce flood

damages. Scientific Reports, 11(1), 24295.

 https://doi.org/10.1038/s41598-021-03699-6

Zhang, J., Cao, X., Xie, J., & Kou, P. (2019). An

Improved Long Short‐Term Memory Model for Dam

Displacement Prediction. Mathematical Problems in

Engineering, 2019(1). https://doi.org/10.1155/2019/

6792189
Zhou, Y., Guo, S., Xu, C.-Y., Chang, F.-J., & Yin, J.

(2020). Improving the Reliability of Probabilistic

Multi-Step-Ahead Flood Forecasting by Fusing

Unscented Kalman Filter with Recurrent Neural

Network. Water, 12(2),

578. https://doi.org/10.3390/w12020578

https://doi.org/10.1007/s13753-023-00465-2
https://doi.org/10.1038/s41598-021-03699-6
https://doi.org/10.1155/2019/6792189
https://doi.org/10.1155/2019/6792189
https://doi.org/10.3390/w12020578

