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Abstract: Dam management and early alert systems are critical for 

effective water resource management. Accurate prediction of dam alert 

signals facilitates proactive decision-making, thereby aiding in the 

effective management and reduction of potential risks linked to dam 

operations. Within this research, Long Short-Term Memory (LSTM) 

networks are utilized to forecast dam alert signals issued from the dam by 

leveraging daily parameters, including temperature, dew point, humidity, 

and other pertinent factors. The study utilizes a dataset of the Malampuzha 

Dam spanning 10 years, comprising various inputs and the corresponding 
alert levels. Our objective is to demonstrate the effectiveness of LSTM 

models in accurately predicting multi-level alert classifications. This is the 

first application of LSTM for multi-tiered dam alert classification in the 

Indian context. The LSTM model was trained using optimizers such as 

Adam, RMSProp, Stochastic Gradient Descent, Adagrad, and Nadam, 

using learning rates of 0.01, 0.001, and 0.0001, as well as epochs of 50, 

100, and 500, and gradient clipping values of 0.5 and 1.0. Evaluation 

metrics including RMSE (Root mean square error), NSE (Nash-sutcliffe 

Efficiency), R-squared, and accuracy are employed to assess the model's 

performance. The LSTM model using the Nadam optimizer achieved high 

accuracy (99.13%). It was also observed that as the learning rate decreased, 

the model's accuracy decreased. An appropriate gradient clipping value is 
found to be 0.5 for the LSTM model. 

 

Keywords: Alert Prediction, Dam Management, Long Short-Term 
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Introduction  

There are various disasters such as earthquakes, 

landslides, droughts, floods, and tsunamis, which are 

unavoidable but cause havoc to human life and property. 

However, several disasters can be predicted in advance and 

the severity of destruction can be reduced. Flooding is a 

significant natural disaster with severe impacts, making 

long-term flood forecasting crucial for risk management 

and early warning (Khairudin et al., 2022). Advancing deep 

learning in water management requires addressing 

challenges like data privacy, algorithm development, and 

trustworthiness, with the goal of achieving highly 

intelligent and autonomous urban water systems (Fu et al., 

2022). Dams play a pivotal role in controlling floods and 

droughts, and effective dam management helps the 

authorities make better decisions. Dams serve various 

purposes, including flood control, agricultural use, 

hydropower generation, water storage for drinking and 

industrial purposes, and drought mitigation. The 

application of machine learning and deep learning models 

has been instrumental in tackling a diverse range of 

challenges associated with dams, including Reservoir 

inflow prediction (Banihabib et al., 2020), Reservoir 

capacity prediction (Dai et al., 2022), Reservoir scheduling 

problem in hydropower generation (Tang et al., 2022a), 

streamflow forecasting over reservoir catchment (Liu et al., 

2022) and Seepage prediction (Ishfaque et al., 2022).  
Issuing dam alerts, even a day or just hours in advance, 

will undoubtedly assist authorities in taking proactive 
measures to safeguard the public and prevent disasters 

when dams are opened. Human-assisted decision-making 



Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161 

DOI: 10.3844/jcssp.2026.147.161 

 

148 

in issuing alert signals to the public based on various 
meteorological parameters may not always be accurate. If 

adequate warning is not provided prior to the sudden 
opening of the dam, it could pose a threat to public safety. 

Also, the wrongful issuance of alerts when opening the 
dam may cause inconvenience to the public as well and 

property. We have reviewed several studies and it was 
found that no papers discussed the issue of alert signals 

generated from the dams in adverse situations. 

Related literature like alerts generation in river 

embankments is studied. The safe operation of water 

conservation projects and the early detection of any 

hazards depend on the efficient monitoring of seepage in 

river embankments and the timely issuance of intelligent 

alerts as discussed by Shao et al. (2024). A levee seepage 

intelligent alarm system built on a Bidirectional Long 

Short-Term Memory (BILSTM) network model was 

created and put into place to improve the intelligence of 

seepage alerts and levee safety monitoring. The study 

conducted at Occidental Mindoro, Philippines  by Adrian 

et al. (2024) discusses the generation of warning alerts 

based on water levels. A long-range, global system for 

mobile communication module, an Arduino Uno 

microcontroller, water level sensors, and temperature-

humidity sensors make up the designed flood alarm 

system. Upon activation and detection of the water level, 

the sensors will transmit an alert message to the Global 

System for Mobile communications module, which will 

then transmit flood alarm messages to the receiver. The 

response time for these messages should not exceed ten 

seconds. But the alert generated only gives instantaneous 

warning and the people does not get enough time to take 

precautionary measures and artificial intelligence means 

is not applied in it. Various hardware components like 

water flow sensor, pressure sensor, ultrasonic sensor, 

temperature sensor and software like Ardino IDE were 

implemented by Thirumarai Selvi et al. (2024) for 

analyzing flood monitoring system. This is more of a 

hardware-oriented system. 

The focus of this research paper is on predicting dam 

alert levels by utilizing Long Short-Term Memory 

(LSTM) models, incorporating meteorological and dam-

related parameters. Meteorological parameters like 

rainfall, temperature, humidity, atmospheric pressure, 

wind speed can cause heavy floods when the levels of the 

parameters go beyond a certain limit and directly affect 

the dam operations. Furthermore, dam-related parameters, 

such as a dam's storage capacity, rainfall in the dam's 

catchment area, cumulative previous-day rainfall, and 

water outflow for purposes like irrigation, drinking, and 

power generation, play a crucial role in determining 

whether to open the dam's shutters or issue alerts to the 

public. This paper is an attempt to study the use of one 

deep learning model, namely LSTM in generating 

accurate alert signals from the dam by training, and dam 

related parameters. Different aspects of the LSTM model 

are studied in the research to find the best optimal solution 

in the forecasting of the alert signals from the dam. This 

study presents the first application of LSTM for multi-tier 

dam alert classification in the Indian context. 

Optimizers are used to minimize the discrepancy 

between the intended output and the existing output; this 

discrepancy serves as a response indication that 

determines how much the optimizer should adapt as 

discussed by Jain et al. (2023). By updating weights 

appropriately for each input, the network contributes to a 

reduction in loss. This process continues when the 

training loop and iteration are repeated (also known as 

epochs), and each epoch produces an updated weight 

value that is correct and helps to minimize the loss. The 

goal is to minimize it to almost zero. LSTM's various 

hyper parameters are discussed by Kwon et al. (2023) like 

batch size, dropout rate, learning rate, number of epochs, 

number of nodes, number of hidden layers, and sequence 

length. The length of the sequence dictates how much 

time is spent for learning data at any given moment; a 

node is crucial in differentiating the features of input 

patterns; and the dropout rate stops over fitting by 

arbitrarily removing some of the complete nodes during 

learning. The amount to be learned at once is determined 

by the learning rate, the batch size is the amount of data at 

a time, and an epoch is one complete pass through the 

entire training dataset. In this paper, we train the model 

using different optimizers such as Adam, Adagrad, 

RMSprop, Stochastic Gradient Descent, and Nadam, with 

the hyper parameters being the learning rate and gradient 

clipping value. The main objective of the paper is to dive 

deeply into the LSTM model and to find the best 

optimizer, learning rate and gradient clipping value so that 

the LSTM model contributes the best results in predicting 

the alert signals. 

The subsequent sections of the research paper are 

structured as follows: Literature review section provides 

an overview of dam-related research conducted by other 

scholars, exploring diverse machine learning and deep 

learning models. Materials and method section focuses on 

the case study of the Malampuzha dam, detailing the data 

collection process, and includes an in-depth discussion on 

Long Short-Term Memory (LSTM) and the methodology 

implemented in this study. Result section and discussion 

section explain the results obtained from the LSTM model 

with different epochs, optimizers, learning rates, and 

gradient clipping values. Lastly, the conclusion section 

elaborates the overall objectives and results. 

Literature Review 

The effective use of LSTM in various dam-related 

studies and flood forecasting system is studied in this 

section. An LSTM model was effectively used by Le et al. 

(2019) for flood prediction using daily release and 
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precipitation at the Hoa Binh station on the Da river 

situated in Vietnam. The LSTM model effectively 

predicted precise results in testing and validation phases 

within the first, second and third days of flood prediction 

using daily discharge and rainfall. A real-time flood 
forecasting system was constructed with LSTM and it 

outperformed conceptual based XAJ model and RNN 

model across three catchments in China under moist, 

semi-moist and semi-arid conditions (Liu et al., 2020). 

Also, the coupled LSTM-KNN model produced better 

results than single LSTM model while using the 

evaluation matrices RMSE (Root mean square error), R2 

(coefficient of determination), NSE (Nash Sutcliffe 

Efficiency) coefficient and VE (Volume error). The 

success of predicting daily stream flow for the study of 

hydroelectric turbine efficiency was demonstrated using 
an LSTM recurrent neural network model, as evidenced 

in a prior study (Le et al., 2019). The dataset for this 

investigation was derived from the flow history of the 

Jirau Hydroelectric Power Plant, located on the Madeira 

River in Brazil. Nine different architectures were 

evaluated in the study and fifty LSTM units were 

considered best prediction with best values of RMSE, 

MAE and R2. 

Flood forecasting based on temperature and rainfall 

intensity was studied by Sankaranarayanan et al. (2020) 

and the research work was carried out on the dataset from 

1990 to 2002.The case study was conducted on data of 10 

districts of two Indian states Orissa and Bihar. A deep 

neural network was compared with support vector 

machine, K-nearest neighbor and naïve Bayes and the 

studies showed deep neural network performed with 

better accuracy. Decisions of reservoir management and 

water pre-release was evaluated in Zarei et al. (2021) with 

different algorithms like Support vector machine, 

Regression tree, Genetic Programming and Artificial 

Neural Network at Dez, Gotvand and Karkheh reservoirs 

in Iran. The study showed that Support vector machine 

and Regression tree performed with better accuracy on 

one month and two months time lag patterns. For 

predicting water inflow into Zayandehroud dam situated 

in Iran, Artificial neural network and Support vector 

machine were used by Babaei et al. (2019) with a variety 

of nine different input data patterns. The first seven data 

inputs were monthly inflow into the reservoir with 

different time lags, the eighth one being time index and 

the last one consisting of the rainfall at Ghaleh-Ghahrokh 

station to different monthly time lags. The superior 

alternative was SVM compared to the ANN model with 

better values of RMSE and R-squared at training, 

validation and test processes. 
Babaei et al. (2020) introduced the Long Short-Term 

Memory-Flash Flood framework, designed specifically 
for the forecasting of flash floods, demonstrating strong 

performance with qualified rates above 82.7% for peak 

discharge, 89.3% for peak time, and 84.0% for flood 

process at lead times of 1–10 hours. It excels in simulating 

large flood events and highlights the importance of small 

flood events in model training. The research suggests 

potential for further integration of hydrological 
knowledge and addressing rainfall forecast uncertainty in 

flash flood predictions. A hybrid approach combining the 

Unscented Kalman Filter (UKF) and a recurrent neural 

network (NARX model) effectively reduces predictive 

uncertainty in flood forecasting (Zhou et al., 2020). The 

recurrent neural network (NARX model) outperforms the 

static neural network (BPNN model) in producing 

accurate and stable flood forecasts with reduced time-lag 

effects. 

Kunverji et al. (2021) addressed the critical need for 

an effective flood prediction system in light of the 

devastating impact of floods in recent years. In the pursuit 

of enhancing prediction accuracy, especially for intricate 

datasets, the study compares a Decision Tree Model with 

other machine learning algorithms like Random Forest 

and Gradient Boost, exploring avenues for improved 

performance. The system is designed with Indian 

conditions in mind, aiming to provide timely flood 

warnings to residents and aid in cost-effective 

government response, including evacuation operations. 

The study done by Xu et al. (2023) presented a hybrid 

flood prediction model integrating a Light GBM (Light 

gradient Boosting machine) learning model with a 

hydrological-hydraulic model, showing superior 

performance in predicting inundation depth. It identifies 

tide levels as the dominant variable. The Light GBM 

model outperforms other methods and is particularly 

efficient, offering potential for decision-making in flood 

mitigation. 

 The study demonstrates that the developed 

LSTM model outperforms the standard LSTM for 

predicting Huanggang Reservoir (Fujian, China) capacity, 

over 7-day, 14-day, and 30-day periods, with accuracy 

depending on parameter settings (Dai et al., 2022). It 

highlights the importance of selecting relevant 

influencing factors. The paper discusses LSTM and GRU 

models to predict water levels at the Hangang Bridge 

Station in South Korea, improving accuracy by analyzing 

the correlation between water levels and selected 

hydrological and meteorological data (Park et al., 2022). 

The results showed that GRU outperformed LSTM in 

predicting high-water levels, especially when using 

multivariate input data. This approach is valuable for 

urban rivers with rapid water level fluctuations, 

emphasizing the significance of multivariate models for 

accurate predictions in such scenarios.  
Dam displacement prediction is studied by Zhang et 

al. (2019) on Dongjiang arch dam displacement data and 

an improved LSTM model was compared with the 

conventional LSTM, MLP, MLR, BRT and SVM models. 
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However, only two parameters, water level and 

temperature, are considered in the study. Wei et al. (2020) 

considered a combination of Particle Swarm 

Optimization–Support Vector Machine model, SVM 

model, and independent regression models for dam 
displacement prediction, and the combined model reduces 

the prediction error. 

From these studies, we can see that various deep 

learning models were utilized for general flood 

forecasting and dam related researches like water inflow 

calculation, water level generation, dam displacement etc. 

However, the studies related to the chances of opening the 

dam based on multiple weather parameters combined with 

dam related parameters, have not been taken into 

consideration. The novelty of this research is to check the 

suitability of LSTM model in predicting the alert levels 

(No alert/Blue alert/Orange alert/Red alert) from the dam 

without any human intervention so that people may aware 

of the dangerous situation of opening the dam in utmost 

situations. The aim of this research paper is not to 

compare different machine learning or deep learning 

models for forecasting alert signals, but to ponder deep 

into the LSTM model to find the suitable hyper 

parameters for prediction. This study focuses on 

identifying optimal hyper parameter values, such as 

different optimizers, learning rates, and gradient clipping 

values, suitable for the LSTM model from a different 

perspective, so that the model can predict alert generation 

with maximum accuracy. 

Materials and Methods 

Case Study 

The dam chosen for research is the Malampuzha dam 

as location seen in Figure 1, is the largest reservoir in the 

Kerala state in India situated on the foot hills of Western 

Ghats. The Malampuzha dam is around 23.13 square 

kilometer in area and nearly 10 Km from Palakkad town. 

It is a multi-purpose concrete gravity dam built on the 

Malampuzha River, a tributary of the Bharathapuzha 

River. The Malampuzha dam was constructed in 1955 for 

the purpose of catering the needs of agriculture, drinking, 

power generation, Industries and fish farming. 
Malampuzha is a good case study for time-series 

modeling since it has decades' worth of documented 

rainfall, inflow, and storage data. For comparable 

medium-sized reservoirs, LSTM and other AI models 

created with Malampuzha data can be used as prototypes. 

The control and operation of the Malampuzha Dam 

involve the monitoring and adjustment of several 

parameters to ensure efficient water management and 

safety. The main aim of the study is to issue alert signals 

from the dam, hours or days in advance to the public so 

that they can mitigate the flood situation caused by the 

dam openings. 

 
 
Fig. 1: Location of the Malampuzha dam 
 

No Alert and Blue Alert indicate safe conditions; 
Orange Alert signals a warning, and Red Alert represents 

the most dangerous situation. The dam may be opened at 

any moment after a Red Alert is issued. If sensors are 

used, the dangerous situation can only be detected when 

it occurs. Therefore, the main objective is to issue alerts 

at least hours or days in advance, so that the authorities 

and the public can take precautionary measures. The 

various parameters used for efficient management are 

reservoir level, maximum storage capacity of the 

reservoir, inflow of water into the reservoir, outflow of 

water from the reservoir and giving appropriate alerts (no 
alert/blue/orange/red) to the public. First warning alert is 

given as a blue alert at 113meters, second alert is given as 

an orange alert at 114 meters and third warning is given 

as red alert at a dam water level of 114.46 meters. The 

dam related data (from 1st January 2010 to 31st December 

2020) are collected from the irrigation department of the 

Malampuzha division. Various meteorological parameters 

like temperature, precipitation, atmospheric pressure, wind 

speed, humidity and dew point directly affects the formation 

of flood situations and dam management. The daily data for 

these parameters in the Palakkad region, for the specified 

time period, were collected from tcktcktck.org, a non-profit 
organization that provides weather information for over 250. 

The first step in creating a model consists of collecting 

data of relevant parameters and it was acquired from the 

above sources. We combined the meteorological 

parameters and dam related parameters into one .csv file. 

All data was converted into numerical form so that 

processing is done smoothly. We ensured that labels are 

correctly represented and do not contain any NaN or 

infinite values. The next step after data collection is 

loading and pre-processing of data to required format of 

the model. Here 14 columns of meteorological and dam 
related parameters are taken as input variables and alert 

level consisting values of no alert, blue alert, orange alert 

and red alert as target label. Loading the dataset included 

the features as input variables and the target labels. The 

features and labels separated from the dataset are 

normalized into a common scale to improve the 

convergence and performance of the neural network. The 

alert labels are encoded into numerical values (0, 1, 2, 3) 

to be used as the target labels for training the model. The 

encoded labels represent the four alert levels: 0 for No 
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alert, 1 for blue alert, 2 for orange alert, and 3 for red alert 

where red alert is the most dangerous one issued. The 

height of the Malampuzha dam is 115.06 meters and the 

first warning is issued as blue alert at 113 meters water 

level of the dam which is considered to be relatively safe. 
The second warning is issued as orange alert at a height 

of 114 meters which is a situation just before the 

dangerous situation. The third and last alert is issued as 

the red alert at 114.46 meters height which is a very 

dangerous situation and the dam can be opened at any 

moment next. Usually, the alert signals are generated from 

the dam when the water levels in the dam reach at the 

above discussed levels. The main goal of the study is to 

predict the possibility of the alert signals by artificial 

intelligence means so that the forecasting is accurate and 

in advance.  

The Long short- term Memory (LSTM) 

The Long Short-Term Memory (LSTM) model as 

depicted in Figure 2, is a type of Recurrent Neural 

Network (RNN) that is particularly well-suited for 

processing and making predictions with sequences of 

data. The cell state (Ct) represents the retention of the 

network and the input gate decides which information to 

be stored in it. The forget gate controls what data from the 

cell state must be discarded or retained. The hidden state 
(Ht) is the output of the LSTM unit which is passed to 

next stage and the output gate regulates what information 

is shown as the output. The forget gate (ft) employs the 

sigmoid function to assess the extent to which it should 

discard prior information from the prior cell state (Ct−1) 

built on a combination of the former unseen state (ht−1) 

and the present input data (xt) (Kwon et al., 2023). 

The forget gate is represented by: 
 

𝑓𝑡 =  𝜎 (𝑊𝑓[ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑓) (1) 
 

The input gate it, employs a sigmoid function to 

regulate the update value: 
 
𝑖𝑡 =  𝜎 (𝑊𝑖 [ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑖)  (2) 

 

 
 
Fig. 2: LSTM architecture (Wang et al., 2022) 

Subsequently, a hyperbolic tangent (tanh) layer 

operates as the second part, generating a vector of new 

candidate values. The sigmoid function (σ) adjusts 

weights from both the prior hidden state (ht−1) and the 

current input data (xt) to calculate its value. Similarly, the 
hyperbolic tangent (tanh) is used to create the candidate 

cell (C˜t) for updating the new cell, considers adjustments 

in the weights of the preceding hidden state (ht−1) and the 

current input (xt): 

 
𝐶˜𝑡 =  𝑡𝑎𝑛 ℎ(𝑊𝑐[ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑐)  (3) 

 

The update of the present cell state (Ct) involves a 

combination of the prior cell state (Ct−1) and the candidate 

cell (C˜t): 

 
𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡 − 1 +  𝑖𝑡 ∗  𝐶˜𝑡  (4) 

 

The sigmoid function, through a weight adjustment of 

both the previous hidden state (ht−1) and the current input 

data (xt), determines the amount of output to be exported 

from the cell in the form of the output gate (Ot): 

 
Ot =  σ (Wo [ht − 1, xt]  +  bo)  (5) 

 

By employing the hyperbolic tangent function, the 

challenges associated with vanishing and exploding 
gradients during the update of a particular point state (ht) 

can be resolved: 

 

ht =  ot ∗  tanh (Ct)  (6) 
 

The LSTM architecture used in this study consists of 
a single LSTM layer with 100 units followed by a dense 

output layer with 4 units (representing the four alert 

classes) and a softmax activation for multi-class 

classification. The LSTM layer uses the ReLU activation 

function to introduce non-linearity. This simple yet 

effective architecture is well-suited for capturing temporal 

patterns in the dam’s multivariate time-series data. 

Methods 

An LSTM model with simple architecture is 

experimented with for the prediction of alert levels. Data 

pre-processing is the first step to be followed while 

creating the proposed LSTM model. For that, the input 

data is reshaped into 3D format (samples, time steps, 

features) so that it is compatible with the LSTM model 

architecture. Here, samples represent the number of 

sequences or samples we are providing for training in each 

batch and 4014 rows were given to the model. In an 

LSTM, we typically provide a sequence of data as input 

and the entire dataset is given as one time step to our 
model. The number of features is the number of columns 
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(variables) in our CSV file, and each feature will be 

treated as a separate input to the LSTM. Since fourteen 

parameters(temperature in degree Celsius, Dew point in 

Degree Celsius, Humidity in percentage, Wind speed in 

Kph, atmospheric pressure in Hg, precipitation in mm, 
water level of dam in meter, storage of water in dam in 

Mm3 ,Rain fall(of that day) in mm, Total rainfall (Up to 

that day) in mm, Discharge of water from dam at LBC in 

Mm3, Discharge of water from dam at RBC in Mm3, 

Discharge of Water from dam at spillway in Mm3, total 

discharge of water from dam in Mm3 and inflow of water 

to dam in Mm3) are used as input to the model ,the 

number of features is taken as 14.The target label taken is 

the alert levels issued from the dam. The target labels are 

converted from “no alert”, “blue alert”, “orange alert” and 

“red alert” to numerical values of 0, 1, 2 and 3 
respectively. The formatted data is split for training and 

for testing to evaluate its performance on unseen data. The 

train test_split function randomly splits the dataset into 

two parts, and the parameter test size = 0.2 means that 

20% of the dataset is set aside for testing, while 80% is 

used for training. The dataset contained 4,014 rows and 

17 columns, of which 3,212 rows were used for training 

and the remaining 802 rows, were used for testing which 

is randomly picked. Figure 3 portrays the different stages 

in the LSTM model. 

In the LSTM model for alert prediction, several 

preprocessing steps are essential to prepare the dataset 
effectively. First, the dataset is loaded using pandas, and 

the features (such as temperature, humidity, water level, 

rainfall, inflow, etc.) are separated from the target labels, 

which indicate whether a blue, orange, or red alert was 

given. One of the critical preprocessing steps applied is 

normalization, where each feature is scaled by subtracting 

its mean and dividing by its standard deviation. This 

standardization ensures that all input features have a 

similar scale, which improves the learning efficiency and 

convergence of the LSTM model. 

 

 

 
Fig. 3: LSTM Model stages 

Missing values can be handled by dropping rows with 
missing values or by imputing those using statistical 

methods such as mean or median filling. Finally, since 
LSTM models expect input data in three dimensions 

(samples, timesteps, features), the data must be reshaped 
accordingly. In our dataset, since each row represents a 

single day's data (i.e., one timestep), an additional 
dimension is added to reshape the input to meet the 

required format. These preprocessing steps help ensure 
the data is clean, scaled appropriately, and structured 

correctly for effective sequence modelling ing LSTM. 
The LSTM architecture design is the next step after 

pre-processing the data. An LSTM layer with 100 units 

and ReLU activation function is added. The LSTM 

model’s accuracy highly depends on the quantity of 

neurons in the hidden layers (Dai et al., 2022). The input 

shape is specified based on the reshaped data. A dense 

output layer with a softmax activation function is used to 

predict one of the four classes of no alert, blue, orange and 

red alerts. 

Multiple optimizers like Adam, Nadam, RMSprop, 
SGD, and Adagrad were used to evaluate how different 

gradient descent strategies affect the learning behaviour 

of the LSTM model. Adam and Nadam combine 

momentum and adaptive learning rates, often performing 

well on complex and noisy datasets. RMSprop is effective 

in handling non-stationary objectives, common in time-

series data like dam alerts. SGD and Adagrad, though 

simpler, serve as useful benchmarks and sometimes 

generalize better in certain scenarios, helping to validate 

the robustness of the model.  

The optimizers are implemented with gradient 

clipping to prevent exploding gradients which can lead to 
NaN loss. Gradient clipping values of 0.1, 0.5 and 1.0 are 

chosen for experimentation along with the optimizers 

chosen. The next stage after LSTM model design is, 

compilation with suitable loss function. The loss function 

used for training the model is sparse categorical cross 

entropy which is suitable for multi class classification and 

target variables which are mutually exclusive. After 

compiling the LSTM model, it is trained with the training 

dataset. The model is trained using the encoded alert 

labels (y train and y test) as target labels for the training 

and testing the dataset. The next step is evaluating the 
model using different evaluation metrics which is 

discussed in the next section. The results are plotted with 

the number of epochs on the X-axis and accuracy 

percentage on the y-axis for different optimizers. The 

confusion matrix is also generated for LSTM model with 

different learning rates. Also, a classification report is 

generated for plotting results. 

Results 

We trained the LSTM model with different optimizers 

like Adam, Adagrad, RMSprop, SGD (Stochastic Gradient 
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Descent) and Nadam with three different epochs (50 epochs, 

100 epochs and 500 epochs). The results of LSTM models 

with different optimizers and epochs are shown in the tables 

and in the graph, which clearly indicates that the model 

improved with increased accuracy as the number of epochs 
increased. We evaluated the model using the testing data and 

calculated the evaluation metrics (RMSE, NSE, VE). Root-

Mean-Square Error (RMSE) is the ratio of the square 

deviation between the observed value and its true value, and 

the number of observations (Tang et al., 2022b). A model 

with RMSE value approaching 0 is considered to be very 

effective in predictions. Nash-Sutcliffe Efficiency (NSE) 

gives the extent of model’s ability to predict the variables 

dissimilar from the mean and a value nearing to 1 shows that 

the model is predicting the results accurately (Liu et al., 

2020). The paper also discusses Volume Error (VE), a key to 
calculate the model performance and a value approaching 0 

is considered to be very near the observed data. 

When evaluating the model, we used the original 

labels (y_test) to calculate the evaluation metrics like 

RMSE, NSE, R-squared, and VE. The numerical 

predictions from the model (y_pred_labels) are then 

compared with these original labels for evaluation. The 

gradient clipping value is considered here as 0.5 to avoid 

exploding gradient value problem for all the optimizers 

which can be experimented with different values for better 

results. 

LSTM With Adam Optimizer 

The Adam (Adaptive Moment Estimation) optimizer 

is a popular optimization algorithm which combines 

techniques from both Adagrad and RMSProp to optimize 

the learning process (Soydaner, 2020). Firstly, 

initialization take place by maintaining several moving 

average estimators of gradients and squared gradients, 

which are initialized to zero. The main parameters used 

are, model parameters to be optimized(θ), learning rate 

which controls the step size in parameter updates(α), 
exponential decay rates (β1 & β2) for the moving averages 

of gradients and squared gradients, small constant (𝜖) to 

prevent division by zero. Moments are initialized with 𝑚𝑡 
= 0 (Initial value for the first moment (mean) of gradients) 

and vt = 0 (Initial value for the second moment (un 

centered variance) of gradients).The update rules are 

discussed in Bock and Weis (2019), in which the gradient 

are calculated using a mini-batch of training examples: 
 
𝑔𝑡 = 𝛻(𝑓(𝑥; 𝜃), 𝑦) (7) 
 

The first moment estimate are calculated using the 

following formula: 

 

1 1 (1 1)mt mt gt      (8) 

 

The second moment estimate are calculated using the 

following formula: 

2 (1 2) 2vt vt gt     (9) 
 

Correct bias in first and second moments are computed 

by: 
 
֘𝑚𝑡 = 𝑚𝑡(1 −  𝛽1𝑡) 𝑣𝑡 =  𝑣𝑡 / (1 −  𝛽2𝑡)  (10) 
 

parameters 𝜃 are updated using the corrected 

estimates: 
 
֘𝜃𝑡 + 1 = 𝜃𝑡 −  𝛼  ֘𝑚𝑡 / √𝑣𝑡 + 𝜀 (11) 
 

The LSTM model with the adam optimizer is tested and 

the results are given in Table 1. To visualize the model’s 
performance, graph plots are used as evaluation metrics as in 

Figure 4. The graph plot given above visualizes the proposed 

LSTM model of Adam optimizer with 50 epochs, 100 

epochs and 500 epochs respectively. The accuracy level has 

increased in a consistent manner, and the model performed 

the prediction of alert levels with an accuracy of 98.63% over 

500 epochs. 
 
Table 1: Evaluation metrics of LSTM model with adam 

optimizer 
 Adam with  

50 epochs 
Adam with 
100 epochs 

Adam with 
500 epochs 

RMSE 0.27 0.16 0.12 
NSE 0.93 0.97 0.986 
VE 0.073 0.04 0.018 
Test Accuracy 95.52 % 97.38% 98.63% 

 

 
 
Fig. 4: Graph plots of LSTM model with adam optimizer with 

50 epochs, 100 epochs and 500 epochs 
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LSTM With Adagrad Optimizer 

The adagrad (adaptive gradient algorithm) is an 
optimization algorithm that adjusts learning rates for each 

parameter based on their historical gradients, providing 

smaller updates for parameters with frequent changes and 

larger updates for parameters with significant changes in 

results. Unlike other optimizers which use a uniform 

learning rate for all parameters, Adagrad's adaptive 

learning rates are well-suited for dealing with sparse data 

by identifying and assigning different rates to essential 

parameters, thereby enhancing stochastic gradient descent 

efficiency (Halgamuge et al., 2020). The equation of the 

Adagrad optimizer is: 

 

1, , / , . ,t i t i n Gt i gt I       (12) 

 

where θt,i is the parameter i at time step 𝑡, 𝜂 is the 

learning rate 𝐺𝑡, 𝑖 is the accumulated sum of squared 

gradients for parameter 𝑖 up to time step t and ϵ is a small 
constant to avoid division by zero. The outcome of the  

LSTM model implemented with the Adagrad 

optimizer is given in Table 2. 

The RMSE values provided (1.11, 1.11, 0.59) suggest 

that the model's predictive error decreased significantly 

from 1.11 to 0.59 as the number of epochs increased from 

50 to 500. The provided NSE values (-0.219, -0.219, 0.66) 

suggest that the model initially performed worse than the 

mean (negative NSE), but as the number of epochs 

increased, the model's performance improved 

significantly as in Figure 5, achieving a positive value 

(0.66) indicating that it outperformed the mean. The 
provided VE values (0.63, 0.63, 0.23) remain relatively 

stable across the 50 and 100 epochs, and then slightly 

decreases at 500 epochs. 

 
Table 2: Evaluation metrics of LSTM model with adagrad 

optimizer 

Metrics Adagrad with  
50 epochs 

Adagrad with 
100 epochs 

Adagrad 
with 
500 epochs 

RMSE 1.11 1.11 0.59 
NSE -0.219 -0.219 0.66 
VE 0.63 0.63 0.23 
Test 
Accuracy 

79.32% 79.32% 89.29% 

 

 

 

Fig. 5: Graph plots of LSTM model with adagrad optimizer of 
50 epochs, 100 epochs and 500 epochs 

 

LSTM With RMSprop Optimizer 

RMSProp (Root Mean Square Propagation) is crucial 
for effectively training neural networks with distance 

measures and Gaussian activation functions, especially 

when plain mini-batch gradient descent or momentum 

yield slow or no convergence, even for shallow networks 

(Kurbiel and Khaleghian, 2017).  

The learning rate for each weight is adjusted by 

dividing it by this moving average, allowing for more 

efficient and stable training. The update equations for the 

parameter 𝜃𝑖𝑗 is: 

 

֘v֘ij = γvij + (1 − γ)(gijt)2 (13) 

 

֘θ֘ij = θij − ηvij + ϵ ⋅ gijt  (14) 

 

The LSTM model is implemented with RMSprop 

optimizer and results obtained are given in Table 3. 

 

Table 3: Evaluation metrics of LSTM model with RMSprop 
optimizer 

Metrics RMSprop 

with  

50 epochs 

RMSprop 

with 

100 epochs 

RMSprop 

with 

500 epochs 

RMSE 0.28 0.19 0.149 

NSE 0.92 0.96 0.978 

VE  0.08   

0.04 

0.03 

Test Accuracy 95.02%      

96.76% 

97.76%  
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The decreasing trend in RMSE and VE, along with the 

increasing trend in NSE and test accuracy, indicates the 

model's refinement in predictive accuracy, as the epochs 

increase as shown in Figure 6. This suggests that the 

model learned more from the data and improved 
efficiency, and classification capabilities with additional 

training, its predictive and satisfactory performance 

significantly over time. 

LSTM With SGD Optimizer 

A key optimization technique for training models in 

deep learning and machine learning is stochastic gradient 

descent (SGD). This variation of gradient descent uses a 

smaller random selection of the data (mini-batch) to 

compute the gradient in order to update model parameters, 
as opposed to computing the gradient of the complete 

dataset (batch). By adding randomness to the parameter 

updates, this method can increase convergence and 

improve escape from local minima. 
 

 
 
Fig. 6: Graph plots of LSTM model with RMSprop optimizer of 

50 epochs, 100 epochs and 500 epochs 

Soydaner (2020) discusses the theoretical working of 

the SGD. The initialization of SGD starts with an initial 

guess for the model parameters σ. Then the entire dataset 

is split into smaller mini-batches containing a subset of 

the training examples. Next, iterations are performed over 
each mini-batch to compute the gradient of the loss 

function with respect to the current mini-batch of 

examples, and the model parameters σ are updated using 

the computed gradient. The update rule for each parameter 

σ is: 
 
֘𝜃 ← 𝜃𝜂𝛻𝜃𝐿(𝑓(𝑥(𝑖); 𝜃), 𝑦(𝑖))  (15) 
 

Where, η (learning rate) controls the step size of the 

update. Then the last step is convergence in which the 

iterative process is repeated until convergence criteria are 

met. The LSTM model trained with the Stochastic 

Gradient Descent optimizer shows significant 

improvement in classification tasks as the number of 
training epoch increases as in Table 4 and Figure 7. The 

decreasing trend in RMSE, VE, along with the increasing 

trend in NSE, test accuracy, indicates that the model 

learned more from the data and improved its performance 

significantly through additional training epochs when 

using the SGD optimizer in forecasting alert signals. 
 
Table 4: Evaluation metrics of LSTM model with SGD 

optimizers 

Metrics SGD with  
50 epochs 

SGD with 
100 epochs 

SGD with 
500 epochs 

RMSE 1.039 0.48 0.117 
NSE -0.068 0.77 0.99 
VE 0.562 0.18 0.018 
Test Accuracy 81.2% 90.78% 98.63% 
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Fig. 7: Graph plots of LSTM model with SGD optimizer of 50 

epochs, 100 epochs and 500 epochs 
 

LSTM With Nadam Optimizer 

Nesterov Accelerated Gradient (NAG) is applied to 

adam optimizer to generate Nadam (Nesterov accelerated 

adaptive moment estimation) optimizer (Wang and Cao, 

2017) .The Nadam update equations are: 
 

mt =  β₁mₜ₋₁ + (1 −  β₁)ₜ (16) 
 
֘v֘t =  β₂vₜ₋₁ + (1 −  β₂)ₜ² (17) 

 

Where is the gradient at time step 𝑡 with respect to the 

parameters, and 𝑣𝑡 are the first and second moment 
estimates respectively, 𝛽1 and 𝛽2 are exponential decay 

rates and ϵ is a small constant. 
The evaluation metrics provided in Table 5 are for an 

LSTM (Long Short-Term Memory) model trained using 
the Nadam optimizer across different numbers of epochs. 

Each metric serves as an indicator of the model's 
performance in classification tasks. The Nadam optimizer 

with 500 epochs achieved the highest accuracy of 99.13%. 
A steady improvement in accuracy can be observed in 

Figure 8.  

LSTM Model With Different Learning Rates 

After finding the best optimizer, the next hyper 

parameter chosen is the learning rate. Here, we have 
trained and evaluated the LSTM models with three 

different learning rates: 0.01, 0.001, and 0.0001. We 
selected the Nadam optimizer with 50 epochs and the 

evaluation metrics for each learning rate are presented in 
the table. 

Apart from different types of optimizers, the number 
of epochs and the learning rate the LSTM model can be 

experimented with by changes in gradient clipping value 
of optimizer and types of architecture. The result in Table 

6 clearly indicates that as the learning rate decreased the 
prediction accuracy of the model also decreased. The 

results indicate that the LSTM model accomplished the 
best enactment with a learning rate of 0.01, obtaining the 

lowest RMSE, MAE, and highest NSE and accuracy. 

Table 5: Evaluation metrics of LSTM model with Nadam 
optimizer 

Metrics Nadam      
with 50 

epochs 

Nadam 
with 100 

epochs 

Nadam 
with500 

epochs 

RMSE 0.271 0.16 0.09 
NSE 0.93 0.975 0.99 
VE 0.07 0.033 0.012 
Test 
Accuracy 

95.52% 97.51% 99.13% 

 
Table 6: Evaluation metrics of LSTM model with different 

learning rates 

Learning rate RMSE MAE NSE Accuracy 

0.01 0.17 0.029 0.97 97.13% 

0.001 0.25 0.05 0.94 95.64% 
0.0001 0.48 0.14 0.78 90.66% 

 
Fig. 8: Graph plots of LSTM model witsh Nadam optimizer of 

50 epochs, 100 epochs and 500 epochs 

 

The confusion matrices in Table 7 have four rows and 
four columns representing the alert levels 0 (No alert), 1 

(Blue alert), 2 (Orange alert) and 3 (Red alert) 

respectively in each row and column. The diagonal 

elements of the confusion matrix depict the true positive 

cases for each alert level. The confusion matrix with 

learning rate 0.01 shows that 637 instances of No alert, 36 

instances of blue alert, 14 instances of orange alert and 93 

instances of red alert were predicted correctly. In the case 

of blue alerts, 7 instances were wrongly predicted as No 

alert and 5 instances were wrongly predicted as orange   

alert. Only 5 instances of orange alerts were wrongly 
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classified as blue alert and red alerts. We can see that only 

1 instance of red alert is wrongly predicted as orange alert. 

The matrix of the LSTM model with different learning 

rates is given below: 

 

                     No alert    Blue alert   Orange alert   Red alert 

       

           

No alert      637         0           0        0       

Blue alert    7 36 5 0      

Orange alert       0        5 14 5 

Red alert    0 0 1 93 
 
Table 7: Confusion matrix of LSTM model (optimizer = 

Nadam, epochs = 50) 

Learning rate 0.01 Learning rate 0.001 Learning rate 
0.0001 

[[637  0  0  0]  
 [7   36  5  0]  
 [ 0   5  14  5] 
 [ 0   0   1 93]] 
 

[[636  1  0  0] 
 [ 4   36  3  5] 
 [ 0  10  4  10] 
 [ 0  0  2  92]] 
 

[[631  6  0  0] 
 [14  10  0  24] 
 [ 3   7  0  14] 
 [ 1   6  0  87]] 

 
In addition to the confusion matrix, classification 

report containing the values of precision, recall, F1- score 

and support can be used to determine the accuracy of the 

proposed LSTM model as indicated in Tables 8-10 

respectively. The first four rows of the classification 

report show 0 for No alert, 1 for blue alert, 2 for orange 

alert and 3 for red alert. Precision and Recall is specified 

in Hinojosa et al. (2024) as described below: 
 

Recall   
( )

TP

TP FP



 (18) 

 

Precision    
( )

TP

TP FN



 (19) 

 
Table 8: Classification report (learning rate = 0.01, Nadam 

optimizer) 

                       Precision      Recall        F1-Score     Support 

0                       0.99             1.00           0.99             637 
1                       0.88             0.75           0.81             48 

2                       0.70             0.58           0.64             24 
3                       0.95             0.99           0.97             94 
accuracy                                                0.97            803 
macro avg        0.88             0.83          0.85            803 
weighted avg    0.97          0.97            0.97            803 

 
Table 9: Classification report (learning rate = 0.001, Nadam 

optimizer) 

                       Precision      Recall      F1-Score      Support 

      0                0.99             1.00          1.00              637 
      1                0.77              0.75         0.76              48 
      2                0.44              0.17         0.24              24 
      3                0.86              0.98         0.92              94 
  accuracy                                             0.96             803 
  macro avg     0.77               0.72        0.73             803 

weighted avg   0.95              0.96        0.95              803 

Table 10: Classification report (learning rate = 0.0001, Nadam 
optimizer) 

          precision   recall   f1-score   support 

0 0.97 0.99 0.98 637 

1 0.34 0.21 0.26 48 

2 0 0 0 24 

3 0.7 0.93 0.79 94 

  accuracy            0.91 803 

macro avg   0.5 0.53 0.51 803 

weighted avg  0.87 0.91 0.89 803 

 

TP represents true positive instances, FN represents 

false negative instances, FP represents false positive 

instances and TN represents true negative instances. The 

F1-score and accuracy are explained in Ahmed et al. 

(2021) as given below: 

 

2* Precision * Recall
F1 score   

Precision  Recall
 


 (20) 

 

             TP TN                      
Accuracy 

TP TN FP FN




  
 (21) 

 

The arithmetic mean of each class-specific assessment 

metric is known as the macro average. By accounting for 

the proportion of each class-specific sample size in the 

overall sample size, the weighted average improves upon 

the macro average (Jianan et al., 2024). 

The classification reports show that higher learning 

rates (especially 0.01) with the Nadam optimizer yield the 

best performance, achieving high accuracy (97%) and 

strong precision, recall, and F1-scores across all alert 

levels, particularly for No alert (0) and red alert (3). At a 

moderate learning rate (0.001), performance slightly 

drops, especially for orange alerts (2), with recall falling 

to 17%. At the lowest learning rate (0.0001), the model 

struggles significantly, especially with Blue (1) and 

orange alerts (2), indicating under fitting. Thus, 0.01 is the 

optimal learning rate in this case for accurately predicting 

critical dam alerts. 

LSTM Model With Different Gradient Clipping 

Value 

The LSTM model is implemented using the SGD 

optimizer with different gradient clipping values. For 500 

epochs, when the gradient clipping value changed from 

0.5 to 0.1, the accuracy level reduced to 95.14% from 

98.63%. Then the gradient clipping value changed to 1.0 

with 500 epochs with SGD optimizer, the accuracy level 

was 94.77% which clearly indicates that the best option 

for gradient clipping value is 0.5 as shown in Table 11 and 

Figure 9.  
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Table 11: Evaluation metrics of LSTM model (SGD optimizer 
with different gradient clipping values) 

 Gradient 
clipping 

value   
0.5 

Gradient 
clipping 

value  
0.1 

Gradient 
clipping 

value 
1.0 

RMSE 0.117  0.28 0.30 

NSE 0.99 0.922 0.911 

VE 0.018 0.078 0.087 

Test Accuracy 98.63% 95.14% 94.77% 

 

 

Fig. 9: Graph plots of LSTM model with SGD optimizer with 

different gradient clipping values 

 

Discussion 

The existing literature does not provide details about 

issuing alert signals from the dam based on various 

weather parameters and dam related parameters. The main 

intention of the alert signals is to give prior information 

about the chances of opening dam shutters and make them 

aware of the severity of dam related floods. This research 

employs a decade-long dataset from the Malampuzha 

Dam, encompassing multiple input parameters along with 

their corresponding alert categories (No Alert, Blue, 

Orange, and Red). The primary aim is to illustrate the 

capability of LSTM models in precisely forecasting multi-

level alert classifications. To the best of our knowledge, 

this represents the first implementation of LSTM for 

multi-tier dam alert classification within the Indian 

setting. This paper takes data of fourteen parameters for 

the consecutive ten years to train and test the LSTM 

model as discussed in the methods section. The different 

alerts, No Alert, Blue Alert, Orange Alert, and Red Alert, 

are predicted using the LSTM model with various 

optimizers and hyper parameters. A red alert is a very 

dangerous situation, and it is issued just a few hours 

before the dam’s release. Therefore, the number of red 

alert occurrences is lower compared to other alerts. 

 Different evaluation metrics like RMSE, NSE, VE 

and test accuracy are employed to find the best optimizer 

and hyper parameters. The results section clearly 

demonstrates that LSTM model with Nadam optimizer 

performs better with an accuracy of 99.13%, lowest 

RMSE (0.09), NSE (0.99), VE (0.012) with 500 epochs of 

training. When learning rate is taken 0.01, the model 

performed with higher accuracy compared to learning 

rates of 0.001 and 0.0001 and best gradient clipping value 

is 0.5 compared to gradient clipping values of 0.1 and 1.0. 

Classification reports and graph plots are effectively 

organized for comparative study.  

Advance knowledge of dam shutter openings through 

alert levels can certainly help government authorities take 

effective steps to reduce the severity of flood-related 

damage. If the public is informed hours in advance, they 

can relocate movable property and household animals. 

The study is based on the dataset of the Malampuzha Dam 

and can certainly be applied to forecasting alert signals 

issued for other dams. 

Limitations 

One of the limitations of the model is that images or 

videos related to weather parameters are not included. It 

is relatively impossible to collect image or video data of 

meteorological parameters over many years to train the 

model. This raises the question of whether we can train 

the model and obtain accurate results. Temporal data 

leakage risk may happen when building or testing a 

temporal model, information from the future can 

influence the model’s training phase. Further research 

with other deep learning models can be conducted to 

identify the most suitable model for alert prediction. 

Predictions can be shared with emergency control centers 
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via dashboards, mobile alerts, or public warning systems. 
If certain thresholds are exceeded, automatic alerts can be 

triggered to initiate protocols such as evacuation, public 

announcements, or alerts to first responders. The research 

can also be extended with IoT integration, enabling 

different government departments to take effective steps 

for disaster management. 

Conclusion 

Effective dam management is a crucial task, and 

improper management can affect the lives and properties 

of thousands of people, as well as the economy of the 

country as a whole. Before opening the dam, precautions 

are to be given to the public as alerts (no 

alert/blue/orange /red) so that people are aware of the 

dangerous situation and take preventive steps. We have 

constructed an LSTM model with 14 parameters to 

accurately predict dam openings by issuing alert signals, 

using 10 years of meteorological and dam-related daily 

data from the Malampuzha Dam, Palakkad. The main 

objective of the article is not to compare different deep 

learning models but to dive into the LSTM model to find 

the best solution in forecasting the alert signals from the 

dam. The LSTM models are implemented with different 

optimizers like adam, adagrad, SGD, RMSprop and 

Nadam. The LSTM models are also experimented on 

with different learning rates and gradient clipping 

values. The LSTM model with Nadam optimizer and 500 

epochs showed remarkable accuracy over other four 

optimizers used. This paper dives deeply into the 

workings of the LSTM model, utilizing its architecture, 

hyper parameters, loss function, learning rates, and 

gradient clipping values to find the best option for 

efficient dam management. The results are estimated 

using the evaluation metrics RMSE, MSE, VE and test 

accuracy. The results are plotted using graph plots for 

different epochs. Classification reports are utilized to 

determine the accuracy of the models. Overall, the 

LSTM model with Nadam optimizer with learning rate 

0.01 and gradient clipping value 0.5 is found to be a 

suitable choice for alert signal prediction in flood-like 

situations.  
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