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effective water resource management. Accurate prediction of dam alert
signals facilitates proactive decision-making, thereby aiding in the
effective management and reduction of potential risks linked to dam
operations. Within this research, Long Short-Term Memory (LSTM)
networks are utilized to forecast dam alert signals issued from the dam by
leveraging daily parameters, including temperature, dew point, humidity,
and other pertinent factors. The study utilizes a dataset of the Malampuzha
Dam spanning 10 years, comprising various inputs and the corresponding
alert levels. Our objective is to demonstrate the effectiveness of LSTM

Email: nishacm2008@gmail.com models in accurately predicting multi-level alert classifications. This is the

first application of LSTM for multi-tiered dam alert classification in the
Indian context. The LSTM model was trained using optimizers such as
Adam, RMSProp, Stochastic Gradient Descent, Adagrad, and Nadam,
using learning rates of 0.01, 0.001, and 0.0001, as well as epochs of 50,
100, and 500, and gradient clipping values of 0.5 and 1.0. Evaluation
metrics including RMSE (Root mean square error), NSE (Nash-sutcliffe
Efficiency), R-squared, and accuracy are employed to assess the model's
performance. The LSTM model using the Nadam optimizer achieved high
accuracy (99.13%). It was also observed that as the learning rate decreased,
the model's accuracy decreased. An appropriate gradient clipping value is
found to be 0.5 for the LSTM model.

Keywords: Alert Prediction, Dam Management, Long Short-Term
Memory, Nadam Optimizer, Classification Report, Confusion Matrix

authorities make better decisions. Dams serve various
purposes, including flood control, agricultural use,

Introduction

There are various disasters such as earthquakes,
landslides, droughts, floods, and tsunamis, which are
unavoidable but cause havoc to human life and property.
However, several disasters can be predicted in advance and
the severity of destruction can be reduced. Flooding is a
significant natural disaster with severe impacts, making
long-term flood forecasting crucial for risk management
and early warning (Khairudin et al., 2022). Advancing deep
learning in water management requires addressing
challenges like data privacy, algorithm development, and
trustworthiness, with the goal of achieving highly
intelligent and autonomous urban water systems (Fu et al.,
2022). Dams play a pivotal role in controlling floods and
droughts, and effective dam management helps the
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hydropower generation, water storage for drinking and
industrial purposes, and drought mitigation. The
application of machine learning and deep learning models
has been instrumental in tackling a diverse range of
challenges associated with dams, including Reservoir
inflow prediction (Banihabib et al., 2020), Reservoir
capacity prediction (Dai et al., 2022), Reservoir scheduling
problem in hydropower generation (Tang et al., 2022a),
streamflow forecasting over reservoir catchment (Liu et al.,
2022) and Seepage prediction (Ishfaque et al., 2022).
Issuing dam alerts, even a day or just hours in advance,
will undoubtedly assist authorities in taking proactive
measures to safeguard the public and prevent disasters
when dams are opened. Human-assisted decision-making
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in issuing alert signals to the public based on various
meteorological parameters may not always be accurate. If
adequate warning is not provided prior to the sudden
opening of the dam, it could pose a threat to public safety.
Also, the wrongful issuance of alerts when opening the
dam may cause inconvenience to the public as well and
property. We have reviewed several studies and it was
found that no papers discussed the issue of alert signals
generated from the dams in adverse situations.

Related literature like alerts generation in river
embankments is studied. The safe operation of water
conservation projects and the early detection of any
hazards depend on the efficient monitoring of seepage in
river embankments and the timely issuance of intelligent
alerts as discussed by Shao et al. (2024). A levee seepage
intelligent alarm system built on a Bidirectional Long
Short-Term Memory (BILSTM) network model was
created and put into place to improve the intelligence of
seepage alerts and levee safety monitoring. The study
conducted at Occidental Mindoro, Philippines by Adrian
et al. (2024) discusses the generation of warning alerts
based on water levels. A long-range, global system for
mobile communication module, an Arduino Uno
microcontroller, water level sensors, and temperature-
humidity sensors make up the designed flood alarm
system. Upon activation and detection of the water level,
the sensors will transmit an alert message to the Global
System for Mobile communications module, which will
then transmit flood alarm messages to the receiver. The
response time for these messages should not exceed ten
seconds. But the alert generated only gives instantaneous
warning and the people does not get enough time to take
precautionary measures and artificial intelligence means
is not applied in it. Various hardware components like
water flow sensor, pressure sensor, ultrasonic sensor,
temperature sensor and software like Ardino IDE were
implemented by Thirumarai Selvi et al. (2024) for
analyzing flood monitoring system. This is more of a
hardware-oriented system.

The focus of this research paper is on predicting dam
alert levels by utilizing Long Short-Term Memory
(LSTM) models, incorporating meteorological and dam-
related parameters. Meteorological parameters like
rainfall, temperature, humidity, atmospheric pressure,
wind speed can cause heavy floods when the levels of the
parameters go beyond a certain limit and directly affect
the dam operations. Furthermore, dam-related parameters,
such as a dam's storage capacity, rainfall in the dam's
catchment area, cumulative previous-day rainfall, and
water outflow for purposes like irrigation, drinking, and
power generation, play a crucial role in determining
whether to open the dam's shutters or issue alerts to the
public. This paper is an attempt to study the use of one
deep learning model, namely LSTM in generating
accurate alert signals from the dam by training, and dam
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related parameters. Different aspects of the LSTM model
are studied in the research to find the best optimal solution
in the forecasting of the alert signals from the dam. This
study presents the first application of LSTM for multi-tier
dam alert classification in the Indian context.

Optimizers are used to minimize the discrepancy
between the intended output and the existing output; this
discrepancy serves as a response indication that
determines how much the optimizer should adapt as
discussed by Jain et al. (2023). By updating weights
appropriately for each input, the network contributes to a
reduction in loss. This process continues when the
training loop and iteration are repeated (also known as
epochs), and each epoch produces an updated weight
value that is correct and helps to minimize the loss. The
goal is to minimize it to almost zero. LSTM's various
hyper parameters are discussed by Kwon et al. (2023) like
batch size, dropout rate, learning rate, number of epochs,
number of nodes, number of hidden layers, and sequence
length. The length of the sequence dictates how much
time is spent for learning data at any given moment; a
node is crucial in differentiating the features of input
patterns; and the dropout rate stops over fitting by
arbitrarily removing some of the complete nodes during
learning. The amount to be learned at once is determined
by the learning rate, the batch size is the amount of data at
a time, and an epoch is one complete pass through the
entire training dataset. In this paper, we train the model
using different optimizers such as Adam, Adagrad,
RMSprop, Stochastic Gradient Descent, and Nadam, with
the hyper parameters being the learning rate and gradient
clipping value. The main objective of the paper is to dive
deeply into the LSTM model and to find the best
optimizer, learning rate and gradient clipping value so that
the LSTM model contributes the best results in predicting
the alert signals.

The subsequent sections of the research paper are
structured as follows: Literature review section provides
an overview of dam-related research conducted by other
scholars, exploring diverse machine learning and deep
learning models. Materials and method section focuses on
the case study of the Malampuzha dam, detailing the data
collection process, and includes an in-depth discussion on
Long Short-Term Memory (LSTM) and the methodology
implemented in this study. Result section and discussion
section explain the results obtained from the LSTM model
with different epochs, optimizers, learning rates, and
gradient clipping values. Lastly, the conclusion section
elaborates the overall objectives and results.

Literature Review

The effective use of LSTM in various dam-related
studies and flood forecasting system is studied in this
section. An LSTM model was effectively used by Le et al.
(2019) for flood prediction using daily release and
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precipitation at the Hoa Binh station on the Da river
situated in Vietnam. The LSTM model effectively
predicted precise results in testing and validation phases
within the first, second and third days of flood prediction
using daily discharge and rainfall. A real-time flood
forecasting system was constructed with LSTM and it
outperformed conceptual based XAJ model and RNN
model across three catchments in China under moist,
semi-moist and semi-arid conditions (Liu et al., 2020).
Also, the coupled LSTM-KNN model produced better
results than single LSTM model while using the
evaluation matrices RMSE (Root mean square error), R?
(coefficient of determination), NSE (Nash Sutcliffe
Efficiency) coefficient and VE (Volume error). The
success of predicting daily stream flow for the study of
hydroelectric turbine efficiency was demonstrated using
an LSTM recurrent neural network model, as evidenced
in a prior study (Le et al., 2019). The dataset for this
investigation was derived from the flow history of the
Jirau Hydroelectric Power Plant, located on the Madeira
River in Brazil. Nine different architectures were
evaluated in the study and fifty LSTM units were
considered best prediction with best values of RMSE,
MAE and R2

Flood forecasting based on temperature and rainfall
intensity was studied by Sankaranarayanan et al. (2020)
and the research work was carried out on the dataset from
1990 to 2002.The case study was conducted on data of 10
districts of two Indian states Orissa and Bihar. A deep
neural network was compared with support vector
machine, K-nearest neighbor and naive Bayes and the
studies showed deep neural network performed with
better accuracy. Decisions of reservoir management and
water pre-release was evaluated in Zarei et al. (2021) with
different algorithms like Support vector machine,
Regression tree, Genetic Programming and Artificial
Neural Network at Dez, Gotvand and Karkheh reservoirs
in Iran. The study showed that Support vector machine
and Regression tree performed with better accuracy on
one month and two months time lag patterns. For
predicting water inflow into Zayandehroud dam situated
in Iran, Artificial neural network and Support vector
machine were used by Babaei et al. (2019) with a variety
of nine different input data patterns. The first seven data
inputs were monthly inflow into the reservoir with
different time lags, the eighth one being time index and
the last one consisting of the rainfall at Ghaleh-Ghahrokh
station to different monthly time lags. The superior
alternative was SVM compared to the ANN model with
better values of RMSE and R-squared at training,
validation and test processes.

Babaei et al. (2020) introduced the Long Short-Term
Memory-Flash Flood framework, designed specifically
for the forecasting of flash floods, demonstrating strong
performance with qualified rates above 82.7% for peak
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discharge, 89.3% for peak time, and 84.0% for flood
process at lead times of 1-10 hours. It excels in simulating
large flood events and highlights the importance of small
flood events in model training. The research suggests
potential for further integration of hydrological
knowledge and addressing rainfall forecast uncertainty in
flash flood predictions. A hybrid approach combining the
Unscented Kalman Filter (UKF) and a recurrent neural
network (NARX model) effectively reduces predictive
uncertainty in flood forecasting (Zhou et al., 2020). The
recurrent neural network (NARX model) outperforms the
static neural network (BPNN model) in producing
accurate and stable flood forecasts with reduced time-lag
effects.

Kunverji et al. (2021) addressed the critical need for
an effective flood prediction system in light of the
devastating impact of floods in recent years. In the pursuit
of enhancing prediction accuracy, especially for intricate
datasets, the study compares a Decision Tree Model with
other machine learning algorithms like Random Forest
and Gradient Boost, exploring avenues for improved
performance. The system is designed with Indian
conditions in mind, aiming to provide timely flood
warnings to residents and aid in cost-effective
government response, including evacuation operations.
The study done by Xu et al. (2023) presented a hybrid
flood prediction model integrating a Light GBM (Light
gradient Boosting machine) learning model with a
hydrological-hydraulic ~ model, showing  superior
performance in predicting inundation depth. It identifies
tide levels as the dominant variable. The Light GBM
model outperforms other methods and is particularly
efficient, offering potential for decision-making in flood
mitigation.

The study demonstrates that the developed
LSTM model outperforms the standard LSTM for
predicting Huanggang Reservoir (Fujian, China) capacity,
over 7-day, 14-day, and 30-day periods, with accuracy
depending on parameter settings (Dai et al., 2022). It
highlights the importance of selecting relevant
influencing factors. The paper discusses LSTM and GRU
models to predict water levels at the Hangang Bridge
Station in South Korea, improving accuracy by analyzing
the correlation between water levels and selected
hydrological and meteorological data (Park et al., 2022).
The results showed that GRU outperformed LSTM in
predicting high-water levels, especially when using
multivariate input data. This approach is valuable for
urban rivers with rapid water level fluctuations,
emphasizing the significance of multivariate models for
accurate predictions in such scenarios.

Dam displacement prediction is studied by Zhang et
al. (2019) on Dongjiang arch dam displacement data and
an improved LSTM model was compared with the
conventional LSTM, MLP, MLR, BRT and SVM models.
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However, only two parameters, water level and
temperature, are considered in the study. Wei et al. (2020)
considered a combination of Particle Swarm
Optimization—Support Vector Machine model, SVM
model, and independent regression models for dam
displacement prediction, and the combined model reduces
the prediction error.

From these studies, we can see that various deep
learning models were utilized for general flood
forecasting and dam related researches like water inflow
calculation, water level generation, dam displacement etc.
However, the studies related to the chances of opening the
dam based on multiple weather parameters combined with
dam related parameters, have not been taken into
consideration. The novelty of this research is to check the
suitability of LSTM model in predicting the alert levels
(No alert/Blue alert/Orange alert/Red alert) from the dam
without any human intervention so that people may aware
of the dangerous situation of opening the dam in utmost
situations. The aim of this research paper is not to
compare different machine learning or deep learning
models for forecasting alert signals, but to ponder deep
into the LSTM model to find the suitable hyper
parameters for prediction. This study focuses on
identifying optimal hyper parameter values, such as
different optimizers, learning rates, and gradient clipping
values, suitable for the LSTM model from a different
perspective, so that the model can predict alert generation
with maximum accuracy.

Materials and Methods
Case Study

The dam chosen for research is the Malampuzha dam
as location seen in Figure 1, is the largest reservoir in the
Kerala state in India situated on the foot hills of Western
Ghats. The Malampuzha dam is around 23.13 square
kilometer in area and nearly 10 Km from Palakkad town.
It is a multi-purpose concrete gravity dam built on the
Malampuzha River, a tributary of the Bharathapuzha
River. The Malampuzha dam was constructed in 1955 for
the purpose of catering the needs of agriculture, drinking,
power generation, Industries and fish farming.
Malampuzha is a good case study for time-series
modeling since it has decades' worth of documented
rainfall, inflow, and storage data. For comparable
medium-sized reservoirs, LSTM and other Al models
created with Malampuzha data can be used as prototypes.

The control and operation of the Malampuzha Dam
involve the monitoring and adjustment of several
parameters to ensure efficient water management and
safety. The main aim of the study is to issue alert signals
from the dam, hours or days in advance to the public so
that they can mitigate the flood situation caused by the
dam openings.
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Fig. 1: Location of the Malampuzha dam

No Alert and Blue Alert indicate safe conditions;
Orange Alert signals a warning, and Red Alert represents
the most dangerous situation. The dam may be opened at
any moment after a Red Alert is issued. If sensors are
used, the dangerous situation can only be detected when
it occurs. Therefore, the main objective is to issue alerts
at least hours or days in advance, so that the authorities
and the public can take precautionary measures. The
various parameters used for efficient management are
reservoir level, maximum storage capacity of the
reservoir, inflow of water into the reservoir, outflow of
water from the reservoir and giving appropriate alerts (no
alert/blue/orange/red) to the public. First warning alert is
given as a blue alert at 113meters, second alert is given as
an orange alert at 114 meters and third warning is given
as red alert at a dam water level of 114.46 meters. The
dam related data (from 1%t January 2010 to 31 December
2020) are collected from the irrigation department of the
Malampuzha division. Various meteorological parameters
like temperature, precipitation, atmospheric pressure, wind
speed, humidity and dew point directly affects the formation
of flood situations and dam management. The daily data for
these parameters in the Palakkad region, for the specified
time period, were collected from tcktcktck.org, a non-profit
organization that provides weather information for over 250.

The first step in creating a model consists of collecting
data of relevant parameters and it was acquired from the
above sources. We combined the meteorological
parameters and dam related parameters into one .csv file.
All data was converted into numerical form so that
processing is done smoothly. We ensured that labels are
correctly represented and do not contain any NaN or
infinite values. The next step after data collection is
loading and pre-processing of data to required format of
the model. Here 14 columns of meteorological and dam
related parameters are taken as input variables and alert
level consisting values of no alert, blue alert, orange alert
and red alert as target label. Loading the dataset included
the features as input variables and the target labels. The
features and labels separated from the dataset are
normalized into a common scale to improve the
convergence and performance of the neural network. The
alert labels are encoded into numerical values (0, 1, 2, 3)
to be used as the target labels for training the model. The
encoded labels represent the four alert levels: 0 for No
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alert, 1 for blue alert, 2 for orange alert, and 3 for red alert
where red alert is the most dangerous one issued. The
height of the Malampuzha dam is 115.06 meters and the
first warning is issued as blue alert at 113 meters water
level of the dam which is considered to be relatively safe.
The second warning is issued as orange alert at a height
of 114 meters which is a situation just before the
dangerous situation. The third and last alert is issued as
the red alert at 114.46 meters height which is a very
dangerous situation and the dam can be opened at any
moment next. Usually, the alert signals are generated from
the dam when the water levels in the dam reach at the
above discussed levels. The main goal of the study is to
predict the possibility of the alert signals by artificial
intelligence means so that the forecasting is accurate and
in advance.

The Long short- term Memory (LSTM)

The Long Short-Term Memory (LSTM) model as
depicted in Figure 2, is a type of Recurrent Neural
Network (RNN) that is particularly well-suited for
processing and making predictions with sequences of
data. The cell state (Ct) represents the retention of the
network and the input gate decides which information to
be stored in it. The forget gate controls what data from the
cell state must be discarded or retained. The hidden state
(Ht) is the output of the LSTM unit which is passed to
next stage and the output gate regulates what information
is shown as the output. The forget gate (f;) employs the
sigmoid function to assess the extent to which it should
discard prior information from the prior cell state (C,-;)
built on a combination of the former unseen state (h.;)
and the present input data (x;) (Kwon et al., 2023).

The forget gate is represented by:

ft = o (Wf[ht —1,xt] + bf) Q)

The input gate it, employs a sigmoid function to

regulate the update value:

it = o (Wilht—1,xt] + bi) @)

Cell state

h,_, h,

Fig. 2: LSTM architecture (Wang et al., 2022)
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Subsequently, a hyperbolic tangent (tanh) layer
operates as the second part, generating a vector of new
candidate values. The sigmoid function (o) adjusts
weights from both the prior hidden state (h—1) and the
current input data (x:) to calculate its value. Similarly, the
hyperbolic tangent (tanh) is used to create the candidate
cell (C) for updating the new cell, considers adjustments
in the weights of the preceding hidden state (h.-1) and the
current input (x):

Ct = tan h(Wc[ht — 1,xt] + bc) 3)

The update of the present cell state (C:) involves a
combination of the prior cell state (Ci-1) and the candidate
cell (C):

Ct =ft+xCt—1+ it *Ct 4)

The sigmoid function, through a weight adjustment of
both the previous hidden state (h:-1) and the current input
data (x;), determines the amount of output to be exported
from the cell in the form of the output gate (Oy):
Ot = ¢ (Wo [ht— 1,xt] + bo) (5)

By employing the hyperbolic tangent function, the
challenges associated with vanishing and exploding

gradients during the update of a particular point state (h)
can be resolved:

ht = ot * tanh (Ct) (6)
The LSTM architecture used in this study consists of
a single LSTM layer with 100 units followed by a dense
output layer with 4 units (representing the four alert
classes) and a softmax activation for multi-class
classification. The LSTM layer uses the ReL.U activation
function to introduce non-linearity. This simple yet
effective architecture is well-suited for capturing temporal
patterns in the dam’s multivariate time-series data.

Methods

An LSTM model with simple architecture is
experimented with for the prediction of alert levels. Data
pre-processing is the first step to be followed while
creating the proposed LSTM model. For that, the input
data is reshaped into 3D format (samples, time steps,
features) so that it is compatible with the LSTM model
architecture. Here, samples represent the number of
sequences or samples we are providing for training in each
batch and 4014 rows were given to the model. In an
LSTM, we typically provide a sequence of data as input
and the entire dataset is given as one time step to our
model. The number of features is the number of columns
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(variables) in our CSV file, and each feature will be
treated as a separate input to the LSTM. Since fourteen
parameters(temperature in degree Celsius, Dew point in
Degree Celsius, Humidity in percentage, Wind speed in
Kph, atmospheric pressure in Hg, precipitation in mm,
water level of dam in meter, storage of water in dam in
Mm3 ,Rain fall(of that day) in mm, Total rainfall (Up to
that day) in mm, Discharge of water from dam at LBC in
Mm3, Discharge of water from dam at RBC in Mm3,
Discharge of Water from dam at spillway in Mm3, total
discharge of water from dam in Mm3 and inflow of water
to dam in Mm3) are used as input to the model ,the
number of features is taken as 14.The target label taken is
the alert levels issued from the dam. The target labels are
converted from “no alert”, “blue alert”, “orange alert” and
“red alert” to numerical values of 0, 1, 2 and 3
respectively. The formatted data is split for training and
for testing to evaluate its performance on unseen data. The
train test_split function randomly splits the dataset into
two parts, and the parameter test size = 0.2 means that
20% of the dataset is set aside for testing, while 80% is
used for training. The dataset contained 4,014 rows and
17 columns, of which 3,212 rows were used for training
and the remaining 802 rows, were used for testing which
is randomly picked. Figure 3 portrays the different stages
in the LSTM model.

In the LSTM model for alert prediction, several
preprocessing steps are essential to prepare the dataset
effectively. First, the dataset is loaded using pandas, and
the features (such as temperature, humidity, water level,
rainfall, inflow, etc.) are separated from the target labels,
which indicate whether a blue, orange, or red alert was
given. One of the critical preprocessing steps applied is
normalization, where each feature is scaled by subtracting
its mean and dividing by its standard deviation. This
standardization ensures that all input features have a
similar scale, which improves the learning efficiency and
convergence of the LSTM model.

[ Meteorologieal data (Temp
atmo

[

3 Loss function ( Categorical
Dam data (Rainfalltorage capadtyswat o b

inflow.discharge through

1. Data Collection

2Data Preprocessing

+Conpiling the model

3Model Design

7 Plotting the alert

o ¢ 6.Evaluating the
prediction results

model

STraining the
model

Fig. 3: LSTM Model stages
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Missing values can be handled by dropping rows with
missing values or by imputing those using statistical
methods such as mean or median filling. Finally, since
LSTM models expect input data in three dimensions
(samples, timesteps, features), the data must be reshaped
accordingly. In our dataset, since each row represents a
single day's data (i.e., one timestep), an additional
dimension is added to reshape the input to meet the
required format. These preprocessing steps help ensure
the data is clean, scaled appropriately, and structured
correctly for effective sequence modelling ing LSTM.

The LSTM architecture design is the next step after
pre-processing the data. An LSTM layer with 100 units
and ReLU activation function is added. The LSTM
model’s accuracy highly depends on the quantity of
neurons in the hidden layers (Dai et al., 2022). The input
shape is specified based on the reshaped data. A dense
output layer with a softmax activation function is used to
predict one of the four classes of no alert, blue, orange and
red alerts.

Multiple optimizers like Adam, Nadam, RMSprop,
SGD, and Adagrad were used to evaluate how different
gradient descent strategies affect the learning behaviour
of the LSTM model. Adam and Nadam combine
momentum and adaptive learning rates, often performing
well on complex and noisy datasets. RMSprop is effective
in handling non-stationary objectives, common in time-
series data like dam alerts. SGD and Adagrad, though
simpler, serve as useful benchmarks and sometimes
generalize better in certain scenarios, helping to validate
the robustness of the model.

The optimizers are implemented with gradient
clipping to prevent exploding gradients which can lead to
NaN loss. Gradient clipping values of 0.1, 0.5 and 1.0 are
chosen for experimentation along with the optimizers
chosen. The next stage after LSTM model design is,
compilation with suitable loss function. The loss function
used for training the model is sparse categorical cross
entropy which is suitable for multi class classification and
target variables which are mutually exclusive. After
compiling the LSTM maodel, it is trained with the training
dataset. The model is trained using the encoded alert
labels (y train and y test) as target labels for the training
and testing the dataset. The next step is evaluating the
model using different evaluation metrics which is
discussed in the next section. The results are plotted with
the number of epochs on the X-axis and accuracy
percentage on the y-axis for different optimizers. The
confusion matrix is also generated for LSTM model with
different learning rates. Also, a classification report is
generated for plotting results.

Results

We trained the LSTM model with different optimizers
like Adam, Adagrad, RMSprop, SGD (Stochastic Gradient
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Descent) and Nadam with three different epochs (50 epochs,
100 epochs and 500 epochs). The results of LSTM models
with different optimizers and epochs are shown in the tables
and in the graph, which clearly indicates that the model
improved with increased accuracy as the number of epochs
increased. We evaluated the model using the testing data and
calculated the evaluation metrics (RMSE, NSE, VE). Root-
Mean-Square Error (RMSE) is the ratio of the square
deviation between the observed value and its true value, and
the number of observations (Tang et al., 2022b). A model
with RMSE value approaching 0 is considered to be very
effective in predictions. Nash-Sutcliffe Efficiency (NSE)
gives the extent of model’s ability to predict the variables
dissimilar from the mean and a value nearing to 1 shows that
the model is predicting the results accurately (Liu et al.,
2020). The paper also discusses VVolume Error (VE), akey to
calculate the model performance and a value approaching 0
is considered to be very near the observed data.

When evaluating the model, we used the original
labels (y_test) to calculate the evaluation metrics like
RMSE, NSE, R-squared, and VE. The numerical
predictions from the model (y_pred labels) are then
compared with these original labels for evaluation. The
gradient clipping value is considered here as 0.5 to avoid
exploding gradient value problem for all the optimizers
which can be experimented with different values for better
results.

LSTM With Adam Optimizer

The Adam (Adaptive Moment Estimation) optimizer
is a popular optimization algorithm which combines
techniques from both Adagrad and RMSProp to optimize
the learning process (Soydaner, 2020). Firstly,
initialization take place by maintaining several moving
average estimators of gradients and squared gradients,
which are initialized to zero. The main parameters used
are, model parameters to be optimized(d), learning rate
which controls the step size in parameter updates(a),
exponential decay rates (51 & 2) for the moving averages
of gradients and squared gradients, small constant (¢) to
prevent division by zero. Moments are initialized with mt
= 0 (Initial value for the first moment (mean) of gradients)
and vt = 0 (Initial value for the second moment (un
centered variance) of gradients).The update rules are
discussed in Bock and Weis (2019), in which the gradient
are calculated using a mini-batch of training examples:

gt =V(f(x6)y) @)
The first moment estimate are calculated using the
following formula:

mt=g1mt -1+ (1- St (®)

The second moment estimate are calculated using the
following formula:
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vi=g2vt—(1— f2) gt2 )

Correct bias in first and second moments are computed
by:

‘mt =mt(1— plt) vt = vt/ (1 — B2t) (10)

parameters 6 are updated using the corrected
estimates:

Bt+1=60t— a'mt/Jvt+e (12)

The LSTM model with the adam optimizer is tested and
the results are given in Table 1. To visualize the model’s
performance, graph plots are used as evaluation metrics as in
Figure 4. The graph plot given above visualizes the proposed
LSTM model of Adam optimizer with 50 epochs, 100
epochs and 500 epachs respectively. The accuracy level has
increased in a consistent manner, and the model performed
the prediction of alert levels with an accuracy of 98.63% over
500 epochs.

Table 1: Evaluation metrics of LSTM model with adam

optimizer
Adam with  Adam with Adam with
50 epochs 100 epochs 500 epochs
RMSE 0.27 0.16 0.12
NSE 0.93 0.97 0.986
VE 0.073 0.04 0.018
Test Accuracy  95.52 % 97.38% 98.63%
J
o]
U ———

T airing ACCuracy

400

Fig. 4: Graph plots of LSTM model with adam optimizer with
50 epochs, 100 epochs and 500 epochs



Nisha C. M. and N. Thangarasual / Journal of Computer Science 2026, 22 (1): 147.161

DOI: 10.3844/jcssp.2026.147.161

LSTM With Adagrad Optimizer

The adagrad (adaptive gradient algorithm) is an
optimization algorithm that adjusts learning rates for each
parameter based on their historical gradients, providing
smaller updates for parameters with frequent changes and
larger updates for parameters with significant changes in
results. Unlike other optimizers which use a uniform
learning rate for all parameters, Adagrad's adaptive
learning rates are well-suited for dealing with sparse data
by identifying and assigning different rates to essential
parameters, thereby enhancing stochastic gradient descent
efficiency (Halgamuge et al., 2020). The equation of the
Adagrad optimizer is:

Ot+1,i=6t,i—n/Gt,i+egt,| 12)

where 0t,i is the parameter i at time step ¢, n is the
learning rate Gt, i is the accumulated sum of squared
gradients for parameter i up to time step t and ¢ is a small
constant to avoid division by zero. The outcome of the

LSTM model implemented with the Adagrad
optimizer is given in Table 2.

The RMSE values provided (1.11, 1.11, 0.59) suggest
that the model's predictive error decreased significantly
from 1.11 to 0.59 as the number of epochs increased from
50 to 500. The provided NSE values (-0.219, -0.219, 0.66)
suggest that the model initially performed worse than the
mean (negative NSE), but as the number of epochs
increased, the model's performance improved
significantly as in Figure 5, achieving a positive value
(0.66) indicating that it outperformed the mean. The
provided VE values (0.63, 0.63, 0.23) remain relatively
stable across the 50 and 100 epochs, and then slightly
decreases at 500 epochs.

Table 2: Evaluation metrics of LSTM model with adagrad

optimizer

Metrics Adagrad with  Adagrad with  Adagrad

50 epochs 100 epochs with

500 epochs

RMSE 111 111 0.59
NSE -0.219 -0.219 0.66
VE 0.63 0.63 0.23
Test 79.32% 79.32% 89.29%
Accuracy

<<<<<<<<
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Fig. 5:Graph plots of LSTM model with adagrad optimizer of
50 epochs, 100 epochs and 500 epochs

LSTM With RMSprop Optimizer

RMSProp (Root Mean Square Propagation) is crucial
for effectively training neural networks with distance
measures and Gaussian activation functions, especially
when plain mini-batch gradient descent or momentum
yield slow or no convergence, even for shallow networks
(Kurbiel and Khaleghian, 2017).

The learning rate for each weight is adjusted by
dividing it by this moving average, allowing for more
efficient and stable training. The update equations for the
parameter 6ij is:

Vij = yvij + (1 — y)(gijt)2 (13)

Bij = 0ij — nvij + € - gijt (14)

The LSTM model is implemented with RMSprop
optimizer and results obtained are given in Table 3.

Table 3: Evaluation metrics of LSTM model with RMSprop

optimizer
Metrics RMSprop  RMSprop RMSprop
with with with
50 epochs 100 epochs 500 epochs
RMSE 0.28 0.19 0.149
NSE 0.92 0.96 0.978
VE 0.08 0.03
0.04
Test Accuracy  95.02% 97.76%
96.76%
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The decreasing trend in RMSE and VE, along with the
increasing trend in NSE and test accuracy, indicates the
model's refinement in predictive accuracy, as the epochs
increase as shown in Figure 6. This suggests that the
model learned more from the data and improved
efficiency, and classification capabilities with additional
training, its predictive and satisfactory performance
significantly over time.

LSTM With SGD Optimizer

A key optimization technique for training models in
deep learning and machine learning is stochastic gradient
descent (SGD). This variation of gradient descent uses a
smaller random selection of the data (mini-batch) to
compute the gradient in order to update model parameters,
as opposed to computing the gradient of the complete
dataset (batch). By adding randomness to the parameter
updates, this method can increase convergence and
improve escape from local minima.

Training Accuracy
a.930 validation Accuracy
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Fig. 6:Graph plots of LSTM model with RMSprop optimizer of
50 epochs, 100 epochs and 500 epochs
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Soydaner (2020) discusses the theoretical working of
the SGD. The initialization of SGD starts with an initial
guess for the model parameters 6. Then the entire dataset
is split into smaller mini-batches containing a subset of
the training examples. Next, iterations are performed over
each mini-batch to compute the gradient of the loss
function with respect to the current mini-batch of
examples, and the model parameters ¢ are updated using
the computed gradient. The update rule for each parameter
o is:

B < OnVOL(f (x(1); 6), y(D) (1)

Where, 5 (learning rate) controls the step size of the
update. Then the last step is convergence in which the
iterative process is repeated until convergence criteria are
met. The LSTM model trained with the Stochastic
Gradient  Descent  optimizer shows  significant
improvement in classification tasks as the number of
training epoch increases as in Table 4 and Figure 7. The
decreasing trend in RMSE, VE, along with the increasing
trend in NSE, test accuracy, indicates that the model
learned more from the data and improved its performance
significantly through additional training epochs when
using the SGD optimizer in forecasting alert signals.

Table 4: Evaluation metrics of LSTM model with SGD

optimizers
Metrics SGD with SGD with SGD with
50 epochs 100 epochs 500 epochs
RMSE 1.039 0.48 0.117
NSE -0.068 0.77 0.99
VE 0.562 0.18 0.018
Test Accuracy  81.2% 90.78% 98.63%
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Fig. 7: Graph plots of LSTM model with SGD optimizer of 50
epochs, 100 epochs and 500 epochs

LSTM With Nadam Optimizer

Nesterov Accelerated Gradient (NAG) is applied to
adam optimizer to generate Nadam (Nesterov accelerated
adaptive moment estimation) optimizer (Wang and Cao,
2017) .The Nadam update equations are:

Bimey + (1 — Boe (16)

Bavier + (1 — B2)

Where is the gradient at time step #with respect to the
parameters, and vt are the first and second moment
estimates respectively, 81 and 82 are exponential decay
rates and e is a small constant.

The evaluation metrics provided in Table 5 are for an
LSTM (Long Short-Term Memory) model trained using
the Nadam optimizer across different numbers of epochs.
Each metric serves as an indicator of the model's
performance in classification tasks. The Nadam optimizer
with 500 epochs achieved the highest accuracy of 99.13%.
A steady improvement in accuracy can be observed in
Figure 8.

LSTM Model With Different Learning Rates

After finding the best optimizer, the next hyper
parameter chosen is the learning rate. Here, we have
trained and evaluated the LSTM models with three
different learning rates: 0.01, 0.001, and 0.0001. We
selected the Nadam optimizer with 50 epochs and the
evaluation metrics for each learning rate are presented in
the table.

Apart from different types of optimizers, the number
of epochs and the learning rate the LSTM model can be
experimented with by changes in gradient clipping value
of optimizer and types of architecture. The result in Table
6 clearly indicates that as the learning rate decreased the
prediction accuracy of the model also decreased. The
results indicate that the LSTM model accomplished the
best enactment with a learning rate of 0.01, obtaining the
lowest RMSE, MAE, and highest NSE and accuracy.

mt

vt @an

Table 5: Evaluation metrics of LSTM model with Nadam

optimizer

Metrics Nadam Nadam Nadam

with 50 with 100 with500

epochs epochs epochs
RMSE 0.271 0.16 0.09
NSE 0.93 0.975 0.99
VE 0.07 0.033 0.012
Test 95.52% 97.51% 99.13%
Accuracy
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Table 6: Evaluation metrics of LSTM model with different

learning rates

Learningrate.  RMSE  MAE NSE Accuracy
0.01 0.17 0.029 0.97 97.13%
0.001 0.25 005 094 95.64%
0.0001 0.48 014 0.78 90.66%

......

Fig. 8: Graph plots of LSTM model witsh Nadam optimizer of
50 epochs, 100 epochs and 500 epochs

The confusion matrices in Table 7 have four rows and
four columns representing the alert levels 0 (No alert), 1
(Blue alert), 2 (Orange alert) and 3 (Red alert)
respectively in each row and column. The diagonal
elements of the confusion matrix depict the true positive
cases for each alert level. The confusion matrix with
learning rate 0.01 shows that 637 instances of No alert, 36
instances of blue alert, 14 instances of orange alert and 93
instances of red alert were predicted correctly. In the case
of blue alerts, 7 instances were wrongly predicted as No
alert and 5 instances were wrongly predicted as orange
alert. Only 5 instances of orange alerts were wrongly
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classified as blue alert and red alerts. We can see that only
1 instance of red alert is wrongly predicted as orange alert.
The matrix of the LSTM model with different learning
rates is given below:

No alert Blue alert Orange alert Red alert

No alert > 637 0 0 0
Blue alert > 7 36 5 0
Orange alert > 0 5 14 5
Red alert > 0 0 1 93

Table 7:  Confusion matrix of LSTM model (optimizer
Nadam, epochs = 50)

Learning rate 0.01 Learningrate 0.001 Learning rate
0.0001

[[637 0 0 0] [[636 1 0 0] [[631 6 0 0]

[7 36 5 0] [4 36 3 5] [14 10 0 24]

[0 5 14 5] [0 10 4 10] [3 70 14]

[0 0 193]] [0 0 2 92]] [1 60 87]]

In addition to the confusion matrix, classification
report containing the values of precision, recall, F1- score
and support can be used to determine the accuracy of the
proposed LSTM model as indicated in Tables 8-10
respectively. The first four rows of the classification
report show 0 for No alert, 1 for blue alert, 2 for orange
alert and 3 for red alert. Precision and Recall is specified
in Hinojosa et al. (2024) as described below:

Recall = _P (18)
(TP + FP)
Precision __TP (129)
(TP+FN)
Table 8: Classification report (learning rate = 0.01, Nadam
optimizer)
Precision  Recall F1-Score  Support
0 0.99 1.00 0.99 637
1 0.88 0.75 0.81 48
2 0.70 0.58 0.64 24
3 0.95 0.99 0.97 94
accuracy 0.97 803
macro avg 0.88 0.83 0.85 803
weighted avg  0.97 0.97 0.97 803

Table 9:Classification report (learning rate = 0.001, Nadam

optimizer)
Precision Recall F1-Score  Support

0 0.99 1.00 1.00 637

1 0.77 0.75 0.76 48

2 0.44 0.17 0.24 24

3 0.86 0.98 0.92 94
accuracy 0.96 803
macroavg 0.77 0.72 0.73 803
weighted avg  0.95 0.96 0.95 803

Table 10: Classification report (learning rate = 0.0001, Nadam

optimizer)
precision  recall fl-score  support

0 0.97 0.99 0.98 637

1 0.34 0.21 0.26 48

2 0 0 0 24

3 0.7 0.93 0.79 94

accuracy 0.91 803
macro avg 0.5 0.53 0.51 803
weighted avg 0.87 0.91 0.89 803
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TP represents true positive instances, FN represents
false negative instances, FP represents false positive
instances and TN represents true negative instances. The
F1-score and accuracy are explained in Ahmed et al.
(2021) as given below:

2* Precision * Recall

F1—score = — (20)
Precision + Recall
Accuracy = TP+ TN (21)
TP+TN+FP+FN

The arithmetic mean of each class-specific assessment
metric is known as the macro average. By accounting for
the proportion of each class-specific sample size in the
overall sample size, the weighted average improves upon
the macro average (Jianan et al., 2024).

The classification reports show that higher learning
rates (especially 0.01) with the Nadam optimizer yield the
best performance, achieving high accuracy (97%) and
strong precision, recall, and Fl-scores across all alert
levels, particularly for No alert (0) and red alert (3). At a
moderate learning rate (0.001), performance slightly
drops, especially for orange alerts (2), with recall falling
to 17%. At the lowest learning rate (0.0001), the model
struggles significantly, especially with Blue (1) and
orange alerts (2), indicating under fitting. Thus, 0.01 is the
optimal learning rate in this case for accurately predicting
critical dam alerts.

LSTM Model With Different Gradient Clipping
Value

The LSTM model is implemented using the SGD
optimizer with different gradient clipping values. For 500
epochs, when the gradient clipping value changed from
0.5 to 0.1, the accuracy level reduced to 95.14% from
98.63%. Then the gradient clipping value changed to 1.0
with 500 epochs with SGD optimizer, the accuracy level
was 94.77% which clearly indicates that the best option
for gradient clipping value is 0.5 as shown in Table 11 and
Figure 9.
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Table 11: Evaluation metrics of LSTM model (SGD optimizer
with different gradient clipping values)

Gradient Gradient Gradient
clipping clipping clipping
value value value
0.5 0.1 1.0
RMSE 0.117 0.28 0.30
NSE 0.99 0.922 0.911
VE 0.018 0.078 0.087
Test Accuracy  98.63% 95.14% 94.77%

1.000
B o T vy .~y 77 [T ¥
0,975 s L
0.9%0
0.925%
g o900 F
]
«f O.B75
0.850
0.825
0.800 Training Accuracy
1 Testing Accuracy
v - v . v
o 100 200 300 400 S00
0.9%0 L I =
Testing Accuracy e
=
0925 A
L
0,900 / -
; OBa7TS
0.85%0 |
0825
0.800
I
° 160 200 106 400 560
Epock
0.950 Training Accuracy —
L
Testing Accuracy ‘,,f""'
0.92% P
=T
0.900 -
0.875
-
g
C 0.8%0
«f
|
0.825 |
0.800
0.775
¥ v v v v v
0 100 200 300 400 500

Epoch

Fig. 9: Graph plots of LSTM model with SGD optimizer with
different gradient clipping values
Discussion

The existing literature does not provide details about
issuing alert signals from the dam based on various
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weather parameters and dam related parameters. The main
intention of the alert signals is to give prior information
about the chances of opening dam shutters and make them
aware of the severity of dam related floods. This research
employs a decade-long dataset from the Malampuzha
Dam, encompassing multiple input parameters along with
their corresponding alert categories (No Alert, Blue,
Orange, and Red). The primary aim is to illustrate the
capability of LSTM models in precisely forecasting multi-
level alert classifications. To the best of our knowledge,
this represents the first implementation of LSTM for
multi-tier dam alert classification within the Indian
setting. This paper takes data of fourteen parameters for
the consecutive ten years to train and test the LSTM
model as discussed in the methods section. The different
alerts, No Alert, Blue Alert, Orange Alert, and Red Alert,
are predicted using the LSTM model with various
optimizers and hyper parameters. A red alert is a very
dangerous situation, and it is issued just a few hours
before the dam’s release. Therefore, the number of red
alert occurrences is lower compared to other alerts.

Different evaluation metrics like RMSE, NSE, VE
and test accuracy are employed to find the best optimizer
and hyper parameters. The results section clearly
demonstrates that LSTM model with Nadam optimizer
performs better with an accuracy of 99.13%, lowest
RMSE (0.09), NSE (0.99), VE (0.012) with 500 epochs of
training. When learning rate is taken 0.01, the model
performed with higher accuracy compared to learning
rates of 0.001 and 0.0001 and best gradient clipping value
is 0.5 compared to gradient clipping values of 0.1 and 1.0.
Classification reports and graph plots are effectively
organized for comparative study.

Advance knowledge of dam shutter openings through
alert levels can certainly help government authorities take
effective steps to reduce the severity of flood-related
damage. If the public is informed hours in advance, they
can relocate movable property and household animals.
The study is based on the dataset of the Malampuzha Dam
and can certainly be applied to forecasting alert signals
issued for other dams.

Limitations

One of the limitations of the model is that images or
videos related to weather parameters are not included. It
is relatively impossible to collect image or video data of
meteorological parameters over many years to train the
model. This raises the question of whether we can train
the model and obtain accurate results. Temporal data
leakage risk may happen when building or testing a
temporal model, information from the future can
influence the model’s training phase. Further research
with other deep learning models can be conducted to
identify the most suitable model for alert prediction.
Predictions can be shared with emergency control centers
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via dashboards, mobile alerts, or public warning systems.
If certain thresholds are exceeded, automatic alerts can be
triggered to initiate protocols such as evacuation, public
announcements, or alerts to first responders. The research
can also be extended with 10T integration, enabling
different government departments to take effective steps
for disaster management.

Conclusion

Effective dam management is a crucial task, and
improper management can affect the lives and properties
of thousands of people, as well as the economy of the
country as a whole. Before opening the dam, precautions
are to be given to the public as alerts (no
alert/blue/orange /red) so that people are aware of the
dangerous situation and take preventive steps. We have
constructed an LSTM model with 14 parameters to
accurately predict dam openings by issuing alert signals,
using 10 years of meteorological and dam-related daily
data from the Malampuzha Dam, Palakkad. The main
objective of the article is not to compare different deep
learning models but to dive into the LSTM model to find
the best solution in forecasting the alert signals from the
dam. The LSTM models are implemented with different
optimizers like adam, adagrad, SGD, RMSprop and
Nadam. The LSTM models are also experimented on
with different learning rates and gradient clipping
values. The LSTM model with Nadam optimizer and 500
epochs showed remarkable accuracy over other four
optimizers used. This paper dives deeply into the
workings of the LSTM maodel, utilizing its architecture,
hyper parameters, loss function, learning rates, and
gradient clipping values to find the best option for
efficient dam management. The results are estimated
using the evaluation metrics RMSE, MSE, VE and test
accuracy. The results are plotted using graph plots for
different epochs. Classification reports are utilized to
determine the accuracy of the models. Overall, the
LSTM model with Nadam optimizer with learning rate
0.01 and gradient clipping value 0.5 is found to be a
suitable choice for alert signal prediction in flood-like
situations.
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