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Abstract: Companies and investors require accurate market forecasting to
make more informed decisions. Traditional methods for predicting stock
market performance have become less useful considering the dynamic and
volatile nature that characterizes stock markets today. In this paper, we
propose an innovative Dynamic Lifelong Learning Network for stock market
prediction. The model incorporates a hybrid convolutional long short-term
memory with an attention mechanism for spatiotemporal feature extraction.
To address the problem of static batch processing common in most current
machine learning techniques in use, we employ reinforcement learning
through a Deep Q-Network for real-time adaptation. We then integrated
Elastic Weight Consolidation to address the problem of catastrophic
forgetting. The model inputs a comprehensive set of structured features,

Email: talentmawere@gmail.com |}, ding historical OHLCV data, technical indicators, and macroeconomic

variables such as interest rates and the Consumer Price Index. We applied
principal component analysis to optimize dimensionality. The model was
trained and tested on APPL data extracted from Yahoo Finance for the period
2010-2023. Macroeconomic features were extracted from the Federal
Reserve Economic Data for the same period. Ablation studies confirmed the
hypothesis that add-on features such as the attention network and RL-EWC
improve the prediction capacity of our model by at least 12.35%. Comparison
of our model with literature-identified baselines showed that our model
performed much better, with an R2 of 0.967+0.01 and an MAE of 3.22+0.27.
Generalization testing on the SPY ticker, a key representative for the S&P
500 index, shows that the model is robust.

Keywords: Attention Networks, Dynamic Lifelong Learning Network,
Elastic Weight Consolidation, Fisher Information Matrix, Hybrid
Convolutional Long Short-Term Memory, Stock Prediction, Reinforcement
Learning

predicts that Al will boost productivity through
automation, improve decision-making, and create new

Introduction

Modern-day society has thrived even in times of
turmoil thanks to unprecedented levels of technological
advancements. The COVID-19 era bears witness to this as
the world continued to revolve even when restrictions
were in place. If at all, the pandemic era demonstrated that
technological advancement brings more convenience and
better service delivery (Fejerskov, 2017; Hossain et al.,
2021).

Artificial Intelligence (Al) is at the heart of all this. It
has transformed and transcended every part of the
economy, from agriculture to healthcare, and education
(Adesina et al., 2024). The International Monetary fund
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business models that will stimulate economic growth.
These predictions are already being felt across all
industrial sectors, but the greatest effect has been felt on
the finance and investment services sector. Its role in the
investment decision-making process, particularly in
forecasting stock market prices, has been welcomed,
especially by novice investors who regarded the domain
as a preserve for the elite brokers (Bahoo et al., 2024;
Khatwani et al., 2023; Pattnaik et al., 2024). Wang et al.
(2024a-c) argues that accurately predicting stock market
prices can result in more informed investment choices,
thus allowing the optimization of returns while mitigating
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risk. This argument is premised on the fact that any
rational investor will make smart investment decisions if
they know which stocks are likely to do well in the future.
Furthermore, accurate stock prediction facilitates efficient
capital allocation to high-performing entities, thereby
fostering economic growth and innovation.

We therefore forward the notion that through
accurately predicting stock market trends, businesses
and even individual investors can develop more
informed financial strategies, including acquisitions,
mergers, and other corporate actions. The general public
also benefits from correct stock market predictions
because they provide people with the information they
need to make smart investments, which helps spread
wealth more fairly.

It is still very hard to accurately predict stock market
values, a challenge that not only has driven continuous
innovation in both statistical and machine-learning
techniques but also has become a major driver of research
in the fields of computer science, economics, and finance
(Wu et al.,, 2022; Ying et al., 2024), including this
research.

In this study, we make the following contributions:

1)  We develop a novel Dynamic Lifelong Learning
Network (DLLN) specifically designed for real-time
financial forecasting that continuously adapts to
incoming data streams

Integrate a reinforcement learning agent in the
DLLN implemented via the Lifelong Learning
Stock Predictor algorithm to autonomously adjust
the model's parameters in response to evolving
market dynamics

Mitigate catastrophic forgetting in RNN by
integrating Elastic Weight Consolidation, which
allows the model to retain critical knowledge from
previous tasks during continual learning

We add an attention mechanism into our model to
selectively emphasize the most relevant time steps
in the input sequence, which improves both
prediction accuracy and computational efficiency

2)

3)

4)

We propose the following hypotheses:
1)  Adding Elastic Weight Consolidation modules will
improve the predictive performance of the DLLN
The DLLN will outperform its industrial
benchmarks due to its continual learning ability

2)

Literature Review

Statistical Modelling Techniques

Stock market prediction techniques date back to the
17th century, when the first stock market, as we would
recognize it today, emerged. Back then, prediction was
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solely based on subjective methods such as rumors and
insider information. Purely computational techniques did
not emerge until the 19" century, following theories such
as the Dow theories, the random walk theories, and the
efficient market hypothesis theory (Fama, 1970; Malkiel,
1973).

Statistical modeling techniques were among the first
technical methods used for stock predictions. Statistical
modelling techniques are broadly classified under three
groups: time series models like Autoregressive Integrated
Moving Average (ARIMA) and GARCH, regression
analysis models like linear regression and logistic
regression, and stochastic process models like the
Geometric Brownian Motion. A comprehensive literature
review by Ayyildiz and Iskenderoglu (2024) revealed that
models like ARIMA and Markov chains have performed
well in market prediction tasks with average accuracy
rates typically ranging between 60 and 70% i.e., in studies
by Chen et al. (2022).

Existing research has shown, however, that despite
these techniques being based on solid mathematical and
statistical backgrounds, their predictive performance is
average. The extant literature mainly attributes the
oversimplification of complex relationships in data as the
major inhibitor to better performance. Most models in
this category assume that data follows a linear pattern. In
financial markets, however, data is nonlinear and
multidimensional in nature. Deng et al. (2022) raised
skepticism towards these technigques because they rely on
short-term historical data, often neglecting longer-term
trends.

Machine Learning Techniques

After statistical modelling techniques, Al and Machine
Learning (ML) came as the next revolution in stock
prediction and financial forecasting. These algorithms are
built to handle massive amounts of data to make more
informed inferences. Several studies, including Chen et al.
(2022), note the transformational impact of ML on stock
market prediction. Different studies have demonstrated
the superiority of different ML techniques in recent
studies. For example, Zheng et al. (2024) demonstrated
the predictive superiority of Random Forest (RF), while
Kuo and Chiu (2024) proved that the Support Vector
Machine (SVM) was better than others. In recent studies,
models like the K-Nearest Neighbour (Qin, 2024),
Gradient Boost Machine (Liao et al., 2024), and K-means
clustering (Chen et al., 2022), were observed to have
better predictive capacities compared to some baseline
models. The improved predictive capacity of ML models
has been attributed not only to their capacity to handle
nonlinear data but also to their ability to handle large
volumes of data (Ghosh et al., 2024).

However, existing literature also identifies several
deficiencies in ML techniques. Chen et al. (2022)
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elucidates their challenges in managing complex and
high-dimensional data. Ghosh et al. (2024) on the other
hand delineate their stuggle with overfitting. An algorithm
is overfitting when it works well on data it has been
trained on data but poorly on data it has never seen before.
This means that the model can’t apply what it has learnt
to other situations, which makes it less useful for
predictive tasks such as stock market forecasting. ML
techniques have also been criticized for relying too much
on manual feature engineering (Hadizadeh et al., 2025).
In practice, poor or inconsistent feature choices erase
important predictive signals making the model less
accurate and less reliable.

Deep Learning Techniques

Deep learning (DL) techniques are changing the way
people predict the stock market. DL is a type of ML that
uses multi-layer neural networks. DL algorithms are
designed to automatically find and learn important
patterns in data, just like how the human brain works. This
is very important for working with high-dimensional and
unstructured data, which is difficult to do with regular ML
algorithms (Li and Bastos, 2020). In multiple studies, DL
models have outperformed their ML equivalents
(Chatziloizos et al., 2024; Lee et al., 2024; Wei et al.,
2024).

Examples of typical DL algorithms that have been
applied to stock market prediction include Recurrent
Neural Networks (RNNs), Long Short-Term Memory
(LSTM), and Convolutional Neural Networks (CNNS).
Current research indicates enhanced efficacy compared to
ML and Statistical modelling techniques in stock
prediction tasks.

DL techniques have made predictions much more
accurate, but they have some problems that limit their use.
Examples include limited computational efficiency,
catastrophic forgetting and exploding gradients. These
limitations, most notably high computational complexity,
pose significant challenges for the practical deployment
of artificial neural networks in real-time financial
markets. Work in the field currently revolves around the
development of lightweight DL architecture. Continuous
learning integration in market prediction tasks, which can
potentially address some of these limitations, is also an
active research area, one that this research seeks to
contribute towards.

Continuous Learning Integration in DL

One of the biggest problems is that most Al models
can’t keep up with new and changing data trends (De
Lange et al., 2022). The standard approach is to train
models on static datasets. This way of training our models
means that we must train it repeatedly to keep it useful. In
infinite data streams which characterize stock markets
data, this is very impractical and computationally
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expensive. In this paper, we propose a system capable of
lifelong learning. In this system, an agent’s knowledge
evolves dynamically as it learns new data patterns while
preserving critical knowledge. Lifelong learning is
inspired by biological learning systems, where an agent
retains and refines knowledge over time (Kudithipudi
et al., 2022).

Research in continual learning systems is growing but
there are problems like concept drift that need to be
solved. Continual learning systems are also built to
address the problem of catastrophic forgetting. A number
of techniques have been proposed in building such
systems. In this paper we present an adaptive forecasting
framework with lifelong learning capabilities. More
specifically, our study proposes the use of Elastic Weight
Consolidation algorithm as well as a reinforcement
learning technique (Deep Q Network) for continuous
learning capabilities. Our design guarantees that the
model adapts to changing market conditions.

Previous studies, such as Wei et al. (2024), have
presented a Gated Recurrent Unit (GRU) with attention
mechanisms to tackle the challenges of capturing long-
term dependencies. It has been noted that neglecting this
may result in catastrophic forgetting in DL models (Parisi
et al., 2019). The GRU layer’s main job is to keep long-
term dependencies while keeping unnecessary data from
building up. The attention mechanism, on the other hand,
facilitates the model’s capacity to concentrate its
analytical efforts on most important parts of the data
sequence necessary for making predictions. Oguz and
Ertugrul (2023) posits that when working with a lot of
data, GRU networks increase the speed and performance
of LSTM networks. Although GRU-only architectures
have been observed to capture long-term dependencies,
they have been criticized for overlooking rapid intraday
fluctuations. Similarly, Jin (2024) undertook a study to
develop a hybrid model that combines the strengths of
graph neural networks (GNNs) and CNNs for short-term
price trend prediction. The model remarkably
outperformed the traditional CNN-based models and
graph techniques, showing some promise as a viable
candidate for integration into real-world trading systems
as a prediction module. Table 1 summaries some of the
recent literature.

While prior studies have demonstrated promising
advances in stock market prediction using deep learning,
several methodological and conceptual gaps remain
insufficiently addressed. Most notably, existing models
tend to operate under static learning regimes, lacking the
capacity to dynamically recalibrate in response to non-
stationary market behaviour. Furthermore, despite the
proliferation of transformer-based and hybrid neural
models, there is limited exploration of mechanisms to
systematically preserve learned knowledge over time,
particularly in multi-task or longitudinal financial settings.
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Table 1: Summary of literature review

Author Context Method Dataset Key contribution Gaps
Wu et al. Stock price S I LSTM (Att- 5 Chinese A- Combines traditional OHLCV + No real-time adaptation; no
(2022) prediction LSTM + CNN) share stocks, technical indicators + sentiment index.  continual learning; Single-market
(regression) EastMoney.com Sentiment derived via CNN on dataset; Limited ablation study
news/posts financial text.
Sentiment DNN, CNN, RNN Sentiment 140, Conducted a systematic evaluation of No attention mechanisms; only
Dang et Polarity using TF-IDF & IMDB, Twitter DNN, CNN, and RNN across eight tested polarity (not aspect); no
al. (2020) Classification Word Embedding Airline, datasets with 2 input schemes; found multilingual benchmarks; did not
SemEval, Book, CNN + Word Embedding delivered incorporate ensemble or transformer
Music & Movie the best trade-off (accuracy ~90%) vs. models; lacks real-time or continual
Reviews training time; RNN achieved highest learning focus
accuracy but incurred long runtime;
models were tested with k-fold CV
and metrics included accuracy, F1,
AUC, and CPU time
Berti and Stock Price TLOB FI1-2010, Tesla, Proposed TLOB: transformer with No discussion of sentiment signals;
Kasneci Trend (Transformer w/ Intel (LOB data) temporal & spatial attention + bilinear ~ macroeconomic indicators, or
(2025) Prediction Dual Attention), normalization; F1 = 92.81% (FI- transaction profitability backtesting;
MLPLOB 2010); MLPLOB outperforms prior no multilingual datasets
SoTA for shorter horizons
Chauhan Stock Index SenT-In (Informer S&P 500, FTSE, Developed a hybrid model combining No reinforcement learning or
et al. Prediction + CNN-GRU SSE, Nifty 50 financial news sentiment (CNN-GRU)  continual learning; sentiment
(2025) (Regression & Sentiment with time-series market data via limited to structured financial news
Classification) ~ Awareness Model) Informer. Introduced sentiment-aware (no social media); no
fusion mechanism. Outperformed profitability/backtesting analysis;
baselines (LSTM, GRU, CNN, SVM) interpretability not evaluated in
across accuracy, F1, AUC-ROC, PR- depth
AUC. For S&P 500, achieved Acc:
0.8159, F1: 0.8174, AUC-ROC:
0.9331, PR-AUC: 0.9465.
Wang and  Stock Price ARIMAX with Vietnam Stock Proposed a novel feature selection No sentiment integration; relies
Vo (2025)  Prediction Dual Important Index strategy using lag-0 and lag-1 solely on technical indicators;
(Regression) Indicators (VWAP, (VNINDEX) XGBoost to identify 5 “dual important  limited generalization across
WCP, FWMA, 2013-2023; indicators” relevant in both past and different geographic markets;
Decay, ZLMA) Pham & Ta future. Demonstrated superior potential selection bias in dual
(2010-2021); forecasting using ARIMAX, indicator extraction
Do & Trang outperforming LSTM, GALSTM,
(2001-2019) XGBoost, Meta Prophet. Achieved
MAPE =9.05%107'¢ and R*=99.99%
on VNINDEX
Sharma et  Stock Price LSTM-based Netflix stock Developed LSTM-based model Lacks quantitative evaluation
al. (2025)  Prediction Sequential Model data (2010~ trained on 14 years of OHLCV data; metrics (e.g., R%, MAE); no
(Regression on  with feature 2024) from architecture: 2 stacked LSTM layers comparison with benchmarks (e.g.,
NFLX close) correlation analysis ~ Yahoo Finance (128 & 64 units) + Dense layers; ARIMA, Transformer, GRU);
via yfinanc achieved visually reasonable forecasts limited feature diversity (no
for future 100 days of Netflix closing sentiment, macro factors); no real-
prices; performed correlation and time or continual learning
candlestick chart analysis integration
Wang Stock Market CFBSPM Stock data (Feb—  Proposed a novel sigmoid-based deep No incorporation of attention
(2025) Stability (Contradictory- May 2023) for 4 learning model that jointly evaluates mechanisms or memory-based
Prediction Factor-Based companies stock market stability using economic,  layers like LSTM in final model;
Stability Prediction  (Kaggle) + CSI sentiment, and trading factors; limited market diversity (mostly
Model using 300 stability Combines sigmoid layers for CSI300 and Kaggle-listed firms);
Sigmoid & Non- index probabilistic stability classification no sentiment sourced from social
Sigmoid DL layers) with non-sigmoid layers for abrupt media; model lacks
deviation detection; Outperformed interpretability/explainability
baseline models (e.g., SMP-DL, modules (e.g., SHAP)
HDFM, PPO-TLSTM) in accuracy
(96.12%), stability matching
(94.68%), and detection time (0.05s);
Conducted a detailed empirical
analysis using 7 influencing factors
across multiple months.
Oyewole Stock Price Multiple ANN Global literature Conducted a comprehensive review Qualitative meta-review only; lacks
et al. Prediction variants (MLP, (e.g. S&P 500, and synthesis of neural network unified experimental benchmark; no
(2024) (Forecasting, RNN, LSTM, NIFTY 50, NSE, architectures for stock prediction; deep comparative metrics; no real-
Classification) ~ CNN, GAN); NYSE) Highlighted data preprocessing, time testing; interpretability still
Qualitative interpretability challenges, unresolved in most models; no
synthesis architecture-specific strengths, and direct profitability/backtesting

trade-offs (e.g. LSTM vs GAN vs
CNN); Emphasized role of high-
quality/quantity data, ensemble
models, and hybrid designs; Reported

outcomes
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Lee et al. Predict S&P ESG sentiment ESG News:
(2024) 500 index by score via FinBERT; 14,049
integrating Models: Bi-RNN, LexisNexis
ESG sentiment ~ Bi-LSTM; articles (Jan
(from news) Evaluation: MAPE 2016-Jul 2023)
with technical (%); Market Data:
indicators Hyperparameters: S&P 500
using deep Window sizes historical
learning. (3/4/5), batch sizes prices/indicators
(2-8), hidden layers  (investing.com)
(4-8)
Song et Gold Stock BO-LSTM Gold stock price
al. (2024) Price (Bayesian- data (exact
Forecasting Optimized LSTM) period not
(Regression) specified)
Nejad and  Stock Price DRAGAN + 12 U.S. stocks
Ebadzade  Forecasting Feature Matching +  (2010-2020,
h, (2024) (Regression) GRU Generator + Yahoo Finance);
CNN Discriminator  daily OHLCV +
8 technical
indicators
Stock Price LSTM, Random NVIDIA stock
Tan, Prediction Forest, Linear prices (1999—
(2024) (Regression) Regression 2023), focus on
2016-2023
closing prices
Lu and Stock Price TRNN (Time-series  Dow Jones Index
Xu 2024) Forecasting Recurrent Neural (1990-2019),
(Regression) Network) with Chinese stock
extrema markets (9.9M
compression + records)

sliding window
preprocessor

accuracies in cited works exceeding
90% (e.g., ANN = 93% on Indian
stocks; CNN =99% on Iraqi data).
Best Model: Bi-LSTM (window = 3,
batch = 64, hidden = 32/64, layers =
2) MAPE = 3.05%; ESG + technical
indicators outperformed baselines:

- Only price: MAPE = 3.81-4.87%

- Price + technical: MAPE = 3.48-
3.75%

- Full model (ESG + technical +
price): MAPE = 3.05-3.55%; Ablation
tests confirmed ESG causality with
S&P 500.

Proposed a novel LSTM model
optimized via Bayesian networks for
hyperparameter tuning (e.g., learning
rate, hidden layers). Achieved
improved prediction accuracy,
robustness, and noise resistance over
baseline LSTM. Empirical results
show reductions in RMSE (e.g., 13.88
vs 17.50) with visual forecast
alignment.

Proposed a stabilized GAN framework
(DRAGAN) with windowing and
conditioning to capture temporal and
feature correlations. Integrated feature
matching to mitigate mode collapse.
Outperformed baseline models
(LSTM, Basic GANs, WGAN-GP)
across RMSE, MAE, and R? (e.g.,
Apple RMSE =0.92, R>=0.98; avg
RMSE across stocks ~ 1.105).
Supported many-to-many mappings
and demonstrated high distributional
fidelity between predicted and real
prices.

Compared three models, LSTM, RF,
and LR, on predicting NVIDIA
closing prices using historical data. RF
outperformed others: MSE = 10.6,
RMSE = 3.3, MAE = 1.0, R?=0.997.
LSTM followed (R? = 0.984), with LR
performing worst (R =0.731).
Provided visual plots and quantitative
analysis across all methods.

Proposed an RNN-based model
enhanced with two-dimensional price-
volume encoding and a trend-based
extrema compression algorithm.
Achieved faster convergence and
better accuracy than RNN, ARIMA,
and GARCH,; performed nearly as
well as LSTM with significantly less
training time (e.g., error = 9.23% vs.
LSTM’s 14.4%—16%). Ablation
studies confirmed strongest gains
came from the price-volume
dimensionality upgrade.

S&P 500 focus limits
generalizability; Reliance on news
data only for ESG sentiment;
Industry-specific ESG impacts not
explored

Focused solely on gold stocks; lacks
broader market generalization; no
integration of sentiment or
macroeconomic factors; no
benchmark against transformer-
based or ensemble models;
explainability and interpretability
not explored in depth

No sentiment integration; lacks
macroeconomic variables; limited
interpretability methods; some
training instability remains; not
evaluated in live trading or
profitability context

Focused solely on univariate close
prices; no technical indicators,
sentiment, or macroeconomic
variables; lacked advanced model
tuning or explainability tools; no
live trading or economic implication
testing

Did not incorporate attention
mechanisms, macroeconomic
features, or sentiment; LSTM still
outperformed TRNN at higher
iteration counts; no live trading
simulation or interpretability
methods used

To simultaneously capture rapid intraday swings and
enduring trends, we propose employing a hybrid CNN-
LSTM-Attention architecture, where convolutional
layers extract high-frequency, localized patterns, LSTMs
encode longer-term dependencies, and an attention
module focuses on the most informative time steps.
Inspired by Zhang et al. (2023)’s ConvBiLSTM, our
streamlined hybrid CNN-LSTM-Attention pipeline
delivers end-to-end spatio-temporal forecasting, and we
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further advance it by integrating reinforcement-learning-
driven online adaptation plus Elastic Weight
Consolidation (EWC) to prevent catastrophic forgetting.
To prove its robustness, we validate the model on an
entirely different market than Zhang et al. (2023) used.
Table 1 synthesizes leading DL approaches to stock
market forecasting, highlights their principal limitations,
and shows precisely how our proposed framework
overcomes each of those gaps.
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Materials and Methods

The model development will be implemented in
phases following sequential steps as guided by the
framework in Figure 1. The process begins by loading
a dataset into a python environment and normalising it
so that all input sources are consistent. Then comes a
full feature extraction phase, which adds both technical
indicators and macroeconomic variables to the input
space. Model training uses a mix of optimisation
methods, including EWC to stop catastrophic
forgetting and reinforcement learning methods to help
the model learn in a flexible way. Hyperparameter
tuning is done by combining Bayesian optimisation and
grid search to get the best predictive performance. The
last step in the evaluation process uses quantitative
metrics like Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) as well as feature
importance analysis to see how well the model works
and how easy it is to understand when it comes to
predicting the future of finance.

DATA PREPROCESSING

« Data Collection
« Data Normalizzation

J

FEATURE ENGINEERING

« Technical Indicators
» Macroeconomic Variables

|

TRAINING STRATEGY

» Elastic Weight Consolidation
» (EWC) Reinforcement Learning

|

HYPERPARAMETER TUNING

« Bayesian Optimization
« Grid Search

|

MODEL EVALUATION

« RMSE (Root Mean Square Error)
» SHAP-based Feature Importance

«

ld

y

Fig. 1: Model Development Framework

DLLN Model Implementation Algorithm

The Lifelong Learning Stock Predictor (LLSP)
algorithm is employed in the implementation of the
DLLN model. The pseudocode for LLSP is presented
below, accompanied by a concise description of its
functionality.
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Algorithm: Lifelong Learning Stock Predictor (LLSP)

Beginning the LLSP
Input:  Historical
hyperparameters H
Output: Trained DLLN model M

Step 1. Initialize the model

1. Initialize the model M with hyperparameter H

Step 2. Data Preprocessing

2. Preprocess stock market data

2.1 Normalize and scale data to ensure consistency
2.2 Handling missing values using interpolation
Step 3. Feature Engineering

3. Enhance feature set F to improve predictive power

3.1 Extracting technical indicators (RSI, MACD)
3.2 Add macroeconomic variables (i.e., Interest
rates, inflation, CPI)

Step 4. Data Splitting

4. Split data D into training set T and validation set V
Step 5. Model training

5. Train the DLLN model M on training set T:

data D, Feature set F, and

5.1 For each epoch do:

5.1.1  Update weights via the Adam optimizer

5.1.2  Evaluate performance on the validation set V
using MAE

Step 6. Forgetting mitigation via Elastic Weight
Consolidation (EWC)

6. Apply EWC to prevent catastrophic forgetting

6.1 Estimate parameter importance using the Fisher
Information Matrix

6.2 Regularize updates by minimizing the modified
loss function

Step 7. Hyperparameter Tuning

7. Fine-tuning hyperparameters H via grid search to
optimize performance

Step 8. Reinforcement Learning Integration

8. Enhance adaptability by integrating reinforcement
learning (RL)

8.1 Initializing RL agent A
8.2 Training RL agent A via Deep Q-Learning
8.3 Combining RL agent A with the DLLN model M

to dynamically adjust learning rates and attention
threshold.

Step 9. Return Final Model

9. Return trained DLLN model M

End LLSP

Data Preprocessing

To train and test our model we used a comprehensive
set of features. These include historical Open, High, Low,
Closing and Volume (OHLCV) wvalues, and
Macroeconomic indicators like the Gross Domestic
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Product (GDP), unemployment rate, real interest rates,
and the Consumer Price Index (CPI). Finally, we also
computed and incorporated two technical features,
Relative Strength Index (RSI), and Moving Average
Convergence Divergence (MACD). The MACD is lagged
at three-time steps to increase the feature space.

Linear interpolation was applied to handle missing
data where the gaps are small. For filling bigger gaps, we
used forward and backward filling. We handled outliers
by applying Winsorization technique. Min-Max scaling
was used for normalization enabling the input
distributions to remain balanced and the learning
dynamics of the DLLN model to remain steady.

Hyperparameter Optimization

We use a dual-strategy technique that combines grid
search with Bayesian optimization to improve
hyperparameters systematically. Grid search enables the
full testing of specified parameter grids, including
ConvLSTM-specific settings such as (32, 64, 128), kernel
size (1, 1), and activation functions (ReLU, Tanh). The
same goes for dense layer units (25, 50, 100), batch sizes
(16, 32, 64), and look-back windows (30, 60). We used
the Bayesian optimisation to identify the best
configurations faster. The Adam optimizer and Mean
Absolute Error (MAE) is used for model training. These
optimization methods work together to make dynamic
financial forecasting settings more stable and accurate.

Integrating Attention Mechanism
To find the attention weights alpha_t, we applied the
following equation:

a, = softmax(v” tanh(W - h, + b))

o))

Where v is a learnable context vector. W is the
weight matrix. h, is the hidden state at time t and b is the
bias term.

Elastic Weight
Mitigation

Consolidation for Forgetting

To handle catastrophic forgetting we will use Elastic
Weight Consolidation (EWC) algorithm based on the
Equation 2. EWC makes it difficult to change important
weights for old tasks while allowing less important
weights to change freely to learn the new task. If the
calculated weight is greater than one, then the previous
weight is discarded gracefully. If its less than one, the
current weight is maintained:

Lot = Lnew(@) + g (Z?jzpzmms(Fi(ei - QZ,z) 2 (2)

Where L) represents the standard loss for the
new task. y is a hyperparameter that controls how
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important it is to remember the old task vs learning the
new one. ¥ goes over all the weights i to N in the
network. 6; represent the current value of weight i. 8, ;
represents the optimal value of weight i after learning
Task A and F; is the Fisher information weight i.

The Fisher Information is a calculated value that
measures the importance of the weight i of the previous
task. It’s based on Equation 3:

2
a *
Fy = E{Gey)~ Daapr} [(a—eilogp(y |x,0 )) ] (3)

Where 6* represents the parameters optimized on the
AAPL task, and F; quantifies how much a small change in
0; would affect the log-likelihood on that task.

EWC keeps AAPL-specific patterns by "locking"
weights with large F; values. This helps avoid
catastrophic forgetting while allowing the model to learn
from new data.

Adding Reinforcement Learning

Reinforcement learning is one of the important drivers
of continual learning systems allowing an agent to adjust
its strategy in non-stationary environments. We applied
the Deep Q Network (DQN) in our framework to meta-
learn optimal adaptation policies. The DQN agent works
by observing a state representation such as the recent
OHLCYV values and the model’s prediction error which
serve as a proxy for market stability. Based on the
observed state, the agent then select an appropriate set of
actions from a discrete set, such as increasing the learning
rate for rapid adaptation. Alternatively, the model could
increase the attention thresholds to allow for focus on
important features during volatile periods. This makes the
model more sensitive to changing patterns by lowering the
prediction loss function during times of high volatility
through context aware hyperparameters. The Bellman
equation (Equation 4) is used to update the Q-value. The
agent gradually improves its approach over time by using
experience replay and Q-learning to make sure that the
best parameter changes are made:

Q(spar) = Q(spa) + @ [rt + ymax Q(s{t+1}'a) -
Q(strat)] (4)

Where Q(s;, a,) is the predicted reward for doing
action a, in state s,. a is the learning rate. y is the
discount factor, and r; is the reward right now.

Proposed DLLN Architecture

The final architecture of the proposed DLLN
framework is shown in Figure 2. Several layers, including
CNN, LSTM, and attention layers are systematically
synthesized to predict future market price of a given asset.
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Fig. 2: Proposed Model architecture
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‘us_GDP',

a) APPL features
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‘us_GDP', 'us CPI', 'us Unemployment Rate', 'us Real Interest Rate',
'Daily Change AAPL', 'SMA_S_AAPL', 'SMA_20 _AAPL', 'RSI_14_AAPL'],
dtype="object")

b) SPY features

of X train: (7575, 3@, 13)

of y train: (7575,)

of X _test spy: (7575, 30, 13)
of y test spy: (7575,)

Shape
Shape
Shape
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Fig. 3: Features ingested into the model

Trained on the AAPL dataset extracted from Yahoo
Finance API, our model ingests various other data steams
to make sure that the features are as comprehensive as
possible. These features include the OHLCV values,
macroeconomic indicators, and technical indicators as
shown in Figure 3. The period of the data from 2002 to
2022 is selected to ensure that lived realities such as the
2008 global financial crisis and the COVID-19 pandemic
era are modelled. The specific macroeconomic features
extracted include unemployment rate, consumer price
index, real interest rate, and gross domestic product
extracted from the FRED API. We also add technical
indicators like the Relative Strength Index and lagged
aspects of moving averages at three-time steps that were
calculated directly from the time-series data.
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The model is further validated on the SPY ETF, a
diversified proxy for the S&P 500 index. Both datasets are
extracted from the US stock market. SPY dataset was
specifically selected as it gives access to a wider and more
varied selection of sectors and volatility profiles than the
AAPL ticker. This cross-market validation provided
critical insights into the model’s adaptability to varied
financial landscapes.

Evaluation Metrics

Several evaluation metrics, including the R-squared
(R?), Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and mean absolute percentage error
(MAPE), are used. These evaluation metrics are described
below.

The MAE equation measures the average magnitude
of the errors in a set of predictions without considering
their direction. It is the average over the test sample, of
the absolute differences between the prediction and actual
observations where all individual differences have equal
weights. The model with the lowest MAE is the better
model:

MAE = ~¥7%, | x;—x | (5)
Where:

n = The total number of data points

Xi = Predicted value

X = True value

The RMSE measures the square root of the average of
the squared differences between the prediction and actual
observations. This metric gives relatively high weight to
large errors. The model with an RMSE closest to zero is
considered to perform better:

(xi—x)?
RMSE = , ;Ll——;——

Where:

n = The number of observed values
x; = Predicted value

x = Observed value

(6)

The MAPE measures the average magnitude of the
errors as a percentage of the true values, providing a scale-
independent measure:

1 i—
MAPE = -3, | = @
Where:
n = Number of observed values

x; = Predicted value
x = Observed value
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The MAPE value can be expressed as a percentage by
multiplying the result by 100% with values that are closer
to 0%, indicating greater accuracy of the model (De
Myttenaere et al., 2016).

R?is a measure of the proportion of the variance in the
dependent variable that is predictable from the
independent variable (s) (feature (s)) via the regression
model. The R? values range from 0 to 1, where 0 indicates
that the model does not explain any of the variance in the
target variable and 1 indicates that the model explains all
the variance in the target variable. R? can be expressed as
a percentage by multiplying by 100%:

2 _ 1 _ Z0i=9)?
R =1= 500 ®)
Where:
y; = Actual value
¥; = Predicted value
y; = Mean value of y

The DLLN model is also compared to several baseline
deep learning architectures identified in literature. These
are the LSTM, CNN, BIiLSTM, and GRU-BILSTM. An
ablation study is done to see how each part of the hybrid
structure improves the overall performance of the model.

The study employs a diverse array of Python packages
to facilitate data preparation, model training, evaluation,
and visualization. Libraries used include Pandas, NumPy,
Scikit-learn, Scikeras, Matplotlib, and Plotly. PyTorch, is
used to create the EWC and RL components.

Results and Discussion

We implemented our model using Python in the
Google Colab environment as shown in Figure 4. The
model takes input sequences that are in the shape (30, 13).
This means that each sample has 30-time steps and 13
characteristics. There is only one 1D CNN layer in the
design, which has 64 filters and a kernel size of 3. This
layer captures local temporal patterns in the input data. A
ReLU activation function adds nonlinearity to make the
model more expressive, and a 30% dropout rate is used to
keep it from overfitting.

The BILSTM layer with 256 units follows the CNN
layer. It is set up with return_sequences=True so that the
whole sequence output may be used for attention
processing later on. A dropout of 30% is again used to
make training more regular. Then, a custom attention
mechanism is used on the output of the BiLSTM. This
layer gives learnt weights to distinct time steps. This
property improves the model’s ability to focus on salient
segments of the input sequence. The mechanism has
trainable weight parameters (W, b), and a tanh activation
function that gives alignment scores and a SoftMax
function that gives the normalised attention weights (o).
The resulting weighted context vector summarizes the
sequence for final prediction.

The output layer is a dense layer of 5 units,
corresponding to the forecast horizon
(FORECAST_LENGTH) of 5 steps. The model is trained
with the Adam optimizer, chosen for its adaptive learning
capability and the MAE loss function to ensure precise
regression performance.

Figure 5 shows the resultant Loss and MAE plot run
over 50 epochs. As depicted in the plot, both the MAE
curve and the combined loss shows a gradual descent with
an increase in epochs. This indicates improved predictive
accuracy as training progresses and effective model
optimization. The convergence of both metrics
demonstrates that the model balances learning stability
with adaptability thereby mitigating catastrophic
forgetting while benefiting from dynamic reward-guided
fine-tuning.

Model: "functional"

Layer (type) Output Shape Param # | Connected to

input_layer ( , 30, 13) 0

(InputLayer)

convld (ConviD) ( , 30, 64) 2,560 | input layer[6][6]

Istm (LSTM) (None, 30, 64) 33,024 | convid[0][0]

Istm 1 (LSTM) (None, 3@, 32) 12,416 | lstm[0][0]

attention ( , 30, 32) 0 | lstm_1[0][e],

(Attention) lstm_1[0][0]

add (Add) (None, 30, 32) 0 | lstm 1[0][0],
attention[0][0]

global average poo.. | ( , 32) 0 | add[@e][e]

(GlobalAveragePool..

dense (Dense) ( , 32) 1,056 | global average p..

dense 1 (Dense) ( , 1) 33 | dense[0][0]

Total params: 49,089 (191.75 KB)
Trainable params: 49,089 (191.75 KB)
Non-trainable params: 0 (0.00 B)

Fig. 4: Baseline model architecture overview
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Fig. 5: DLLN loss function plot
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Table 2 summarizes the hyperparameter tuning results.
The optimal setup used a convolutional filter size of 32,
32 units in the first LSTM layer, 16 units in the second
LSTM layer, a learning rate of 0.01, and a batch size of
64. This configuration has the lowest validation loss of
0.005 and the lowest MAE of 0.047. It also showed the
most efficient training profile, taking only 132.1 seconds
to compute. Given these results, this best setup was made
the default for all benchmark models so that they would
be consistent and easy to compare.

Model Generalizability and Robustness

To explore the benefits of each additional module in our
model, an ablation study was conducted. Here, the model
was tested in three configurations, utilizing SPY dataset. The
basic setup used the ConvLSTM-Attention architecture. In
the second setup, EWC was included to stop catastrophic
forgetting. Finally, a reinforcement learning module was
included. We compared the performance measures Loss,
MAE, RMSE, and R-squared for all three variations and
included them in Table 3. Adding the EWC part improved
performance by 7.72% and adding the RL part improved it
by 4.63% more. All in all, both components led to a 12.35%
improvement in performance. These findings confirm our
earlier hypothesis that adding both EWC and RL modules
improves the model's predictive performance, its stability
and generalization capabilities.

A good predictive model’s trend line should follow that
of the actual prize as closely as possible even when exposed
to a different dataset other than the one it was trained on. To
further assert our claims of the contributions of each
additional component of our model, we plotted the closing
against predicted price over our test dataset as shown in
Figure 6. The figure shows normalized values of the closing
price (y-axis) over a 20-year period (x-axis) running against
three variations of our model. The DLLN model’s EWC and

Table 2: Grid search results for Hyperparameter settings

RL modules facilitated the model to perform well and to
adaptively learn from evolving patterns as evidenced in
Figure 6. The figure, especially (c), with all the components
added demonstrates strong alignment between predicted and
actual SPY closing prices as most key trend structures and
turning points were captured. Of note is the ability of the
model to capture the 2008 recession precisely as can be
observed between time steps 2000 to 3000.

However, despite its earlier robust performance, the
model exhibited limitations during the COVID-19 period
(time steps 5000 to 7000) where extreme volatility was
experienced. This means that the model was unable to
respond to this particular black swarm event. Our assumption
on what might have contributed to this shortcoming is that
the response by the market to the COVID-19 pandemic had
nothing to do with the structured data which we used to train
our model. Given that COVID-19 triggered unprecedented
panic and uncertainty, largely communicated through news
outlets and social media, the model’s purely quantitative
design lacked access to timely psychological signals that
often precede market movements. Without real-time
sentiment input we observe that the DLLN failed to fully
recognize the severity and timing of the downturn.

To test the significance of our initial hypothesis that
adding additional components such as the EWC and RL
leads to a better performing model, we applied two statistical
tests, the Diebold-Mariano test and the paired t-test. The DM
test evaluates whether the forecast error distributions of two
models differ significantly. Negative values indicate superior
predictive accuracy from the second model. The paired t-test
on the other hand assesses whether the mean difference in
prediction errors is statistically distinguishable from zero.
Results of the two tests are shown in Table 4. Both tests
confirm that the additional EWC and RL modules
significantly improved the model’s predictive performance.

Conv filter LSTMunitl LSTMunit2 Learning rate Batch size Value loss ValueMAE Time
32 32 16 0.010 32 0.037 0.142 1844
32 32 16 0.010 32 0.005 0.045 286.9
32 32 16 0.010 64 0.005 0.047 132.1
32 32 16 0.010 32 0.045 0.163 173.6
32 32 16 0.001 32 0.018 0.098 188.8
Table 3: Performance Comparison on SPY Test Set
Metric Baseline model EWC model RL-EWC Model
1 Loss (MSE) 0.1085+0.0064 0.0837+0.0049 0.0635+0.0038
2 MAE 0.1758+0.0112 0.1279+0.0076 0.1021+0.0060
3 R-Squared 0.6618+0.0215 0.7390+0.0173 0.7853+0.0147
4 RMSE 0.3285+0.0099 0.2886+0.0082 0.2241+0.0069
Table 4: Statistical Significance Testing
Diebold-Mariano test Paired t-test
DM statistic P Value T-Statistic P value
Baseline vs EWC -2.15 0.032* 2.47 0.019*
Baseline vs RL -2.78 0.007** 2.93 0.005**
EWC vs RL-EWC -1.95 0.051* 211 0.042*

*P<0.05; **P<0.01
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Table 5: Performance evaluation of comparable models over the Apple ticker
MAE RMSE R2 MAPE

LSTM 3.98+0.31 5.07+0.43 0.919+0.10 13.79+0.88
CNN 8.23+0.50 9.92+0.72 0.788+0.12 20.69+1.31
Bi-LSTM 12.48+0.66 13.64+0.81 0.600+0.21 21.54+1.48
GRU-BILSTM 13.71+0.58 14.52+0.69 0.547+0.31 22.02+1.52
DLLN 3.22+0.27 3.95+0.32 0.967+0.01 22.55x1.74

Performance Evaluation of the DLLN Against
Comparative Models

In our second hypothesis, we claimed that our model
significantly outperforms other benchmarks identified in
literature. We present the findings of the DLLN against
several benchmark architectures identified in literature
such as LSTM (Lu and Xu, 2024), CNN (Oyewole et al.,
2024), Bi-LSTM (Lee et al., 2024) and the GRU-LSTM
(Shaban et al., 2024) in Table 5. We evaluated the
performance of these models based on our earlier
described evaluation framework including MAE,
RMSE, R-squared, and MAPE. As illustrated in Table 5,
the DLLN model consistently outperformed its
counterparts across most metrics. The model achieved a
notably high R? value of 0.967 and a very low MAE of
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3.22 when applied to the Apple ticker dataset. These
findings confirm that the DLLN model’s predictive
capacity is superior to the other baselines.

It is common practice to measure performance of a
model against time complexity (Zhou et al., 2021). This
metric is often evaluated based on the time it takes to
execute the model. In terms of this measure, the DLLN
proved to be efficient, requiring only 45.56 seconds to
train, making it comparable only to the smaller CNN
model. In a domain that requires quick data processing for
decision making, such as financial markets prediction, the
DLLN has shown to be suitable due to its efficiency and
effectiveness. This is achieved through the model’s ability
to learn continuously enabling it to adapt to sudden
changes in trends.
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Figure 7 shows the relationship between actual stock
prices and outputs from five forecasting models: CNN,
LSTM, BIiLSTM, Bidirectional GRU, and the proposed
DLLN architecture. To ensure a fair comparison,
optimum hyperparameter for each model are first scanned
using the grid search and Bayesian search optimization
algorithms. The y axis represents the price, and the x-axis
represents the time steps over a 20-year period. The
training vs testing dataset was split on a 60:40 ratio. We
used the Apple dataset extracted from Yahoo Finance as
articulated in our methodology. Among these, the DLLN
model, shown in brown, consistently follows the actual
stock price path (blue) more accurately than the others,
especially during times of high volatility.

The trend line for the DLLN model shows closer
depiction to the actual prices even capturing quick spikes
and declines that other models smooth out. This confirms
that the model is efficient in adapting to rapid market
changes. These results further support our second
hypothesis that our model outperforms other industrial
standards identified in literature. This ability is important
for making accurate financial predictions in the real
world. The architecture of the DLLN, which combines
CNN, LSTM, Attention network, EWC and RL allows the
model to be aware of short-term changes while
maintaining an understanding of larger trend patterns. The
model shows a clear ability to track near trend inflexion
points, exhibiting their real-time reliability.

Stack Price Prediction Comparison

— Actual Stock Price.

1000 2000

Fig. 7: Training and testing models over the Apple ticker

Conclusion and Future Study

In this paper, we introduced the dynamic lifelong
learning network for stock market price forecasting. The
neural network is built by combining a convolutional
neural network with a long short-term memory network.
An attention mechanism is also integrated to assist the
model to focus on more critical time steps in the input
sequence thereby improving accuracy and computational
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efficiency. Lifelong learning capability was specifically
implemented to avoid expensive model retraining in
changing data trends unlike the standard batch training
approach used in most machine learning models. This
flexibility is achieved by using a reinforcement learning
(Deep Q Network) implemented through our novel LLSP
algorithm. The capability is further enhanced by
implementing Elastic Weight Consolidation which facilitates
the model to retain vital knowledge from past tasks. This
strategy reduces the risk of catastrophic forgetting a major
problem in DL. The novel hybrid architecture outperformed
several baselines identified from literature.

While our model performed quite well there remain
some limitations that future research should address. For
a start, our model was based on purely structured data like
OHLCV values. The model could be enhanced by
integrating even unstructured data like news and social
media sentiments. Using NLP techniques could improve
the model’s understanding of context, though it needs
careful adjustment of specific sentiment models to
prevent misclassification or bias.

The other limitation is the reliance of the model on
data extracted from the same market. A cross-market
study, exploring the financial markets from different
regions than the S&P 500 could possibly assist in
verifying the generalizability of the model to different
market regimes. Ultimately, the results underscore the
value of continual, context-sensitive learning in financial
modelling. This offers a blueprint for systems that evolve
in sync with volatile markets.
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