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Abstract: Companies and investors require accurate market forecasting to 

make more informed decisions.  Traditional methods for predicting stock 

market performance have become less useful considering the dynamic and 
volatile nature that characterizes stock markets today. In this paper, we 

propose an innovative Dynamic Lifelong Learning Network for stock market 

prediction. The model incorporates a hybrid convolutional long short-term 

memory with an attention mechanism for spatiotemporal feature extraction. 

To address the problem of static batch processing common in most current 

machine learning techniques in use, we employ reinforcement learning 

through a Deep Q-Network for real-time adaptation. We then integrated 

Elastic Weight Consolidation to address the problem of catastrophic 

forgetting. The model inputs a comprehensive set of structured features, 

including historical OHLCV data, technical indicators, and macroeconomic 

variables such as interest rates and the Consumer Price Index. We applied 
principal component analysis to optimize dimensionality. The model was 

trained and tested on APPL data extracted from Yahoo Finance for the period 

2010-2023. Macroeconomic features were extracted from the Federal 

Reserve Economic Data for the same period. Ablation studies confirmed the 

hypothesis that add-on features such as the attention network and RL-EWC 

improve the prediction capacity of our model by at least 12.35%. Comparison 

of our model with literature-identified baselines showed that our model 

performed much better, with an R² of 0.967±0.01 and an MAE of 3.22±0.27.  

Generalization testing on the SPY ticker, a key representative for the S&P 

500 index, shows that the model is robust. 

 

Keywords: Attention Networks, Dynamic Lifelong Learning Network, 

Elastic Weight Consolidation, Fisher Information Matrix, Hybrid 

Convolutional Long Short-Term Memory, Stock Prediction, Reinforcement 

Learning 
 

Introduction  

Modern-day society has thrived even in times of 

turmoil thanks to unprecedented levels of technological 

advancements. The COVID-19 era bears witness to this as 

the world continued to revolve even when restrictions 

were in place. If at all, the pandemic era demonstrated that 

technological advancement brings more convenience and 

better service delivery (Fejerskov, 2017; Hossain et al., 

2021).  
Artificial Intelligence (AI) is at the heart of all this. It 

has transformed and transcended every part of the 

economy, from agriculture to healthcare, and education 

(Adesina et al., 2024). The International Monetary fund 

predicts that AI will boost productivity through 

automation, improve decision-making, and create new 

business models that will stimulate economic growth.  

These predictions are already being felt across all 

industrial sectors, but the greatest effect has been felt on 

the finance and investment services sector. Its role in the 

investment decision-making process, particularly in 

forecasting stock market prices, has been welcomed, 

especially by novice investors who regarded the domain 

as a preserve for the elite brokers (Bahoo et al., 2024; 
Khatwani et al., 2023; Pattnaik et al., 2024). Wang et al. 

(2024a-c) argues that accurately predicting stock market 

prices can result in more informed investment choices, 

thus allowing the optimization of returns while mitigating 
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risk. This argument is premised on the fact that any 

rational investor will make smart investment decisions if 

they know which stocks are likely to do well in the future. 

Furthermore, accurate stock prediction facilitates efficient 

capital allocation to high-performing entities, thereby 
fostering economic growth and innovation.  

We therefore forward the notion that through 

accurately predicting stock market trends, businesses 

and even individual investors can develop more 

informed financial strategies, including acquisitions, 

mergers, and other corporate actions. The general public 

also benefits from correct stock market predictions 

because they provide people with the information they 

need to make smart investments, which helps spread 

wealth more fairly. 

It is still very hard to accurately predict stock market 
values, a challenge that not only has driven continuous 

innovation in both statistical and machine-learning 

techniques but also has become a major driver of research 

in the fields of computer science, economics, and finance 

(Wu et al., 2022; Ying et al., 2024), including this 

research.  

In this study, we make the following contributions: 

 

1) We develop a novel Dynamic Lifelong Learning 

Network (DLLN) specifically designed for real-time 

financial forecasting that continuously adapts to 

incoming data streams 
2) Integrate a reinforcement learning agent in the 

DLLN implemented via the Lifelong Learning 

Stock Predictor algorithm to autonomously adjust 

the model's parameters in response to evolving 

market dynamics 

3) Mitigate catastrophic forgetting in RNN by 

integrating Elastic Weight Consolidation, which 

allows the model to retain critical knowledge from 

previous tasks during continual learning 

4) We add an attention mechanism into our model to 

selectively emphasize the most relevant time steps 
in the input sequence, which improves both 

prediction accuracy and computational efficiency 

 

We propose the following hypotheses: 

 

1) Adding Elastic Weight Consolidation modules will 

improve the predictive performance of the DLLN 

2) The DLLN will outperform its industrial 

benchmarks due to its continual learning ability 

 

Literature Review  

Statistical Modelling Techniques 

Stock market prediction techniques date back to the 

17th century, when the first stock market, as we would 

recognize it today, emerged. Back then, prediction was 

solely based on subjective methods such as rumors and 

insider information. Purely computational techniques did 

not emerge until the 19th century, following theories such 

as the Dow theories, the random walk theories, and the 

efficient market hypothesis theory (Fama, 1970; Malkiel, 
1973).  

Statistical modeling techniques were among the first 

technical methods used for stock predictions. Statistical 

modelling techniques are broadly classified under three 

groups: time series models like Autoregressive Integrated 

Moving Average (ARIMA) and GARCH, regression 

analysis models like linear regression and logistic 

regression, and stochastic process models like the 

Geometric Brownian Motion. A comprehensive literature 

review by  Ayyildiz and Iskenderoglu (2024) revealed that 

models like ARIMA and Markov chains have performed 

well in market prediction tasks with average accuracy 

rates typically ranging between 60 and 70% i.e., in studies 

by Chen et al. (2022).  

Existing research has shown, however, that despite 

these techniques being based on solid mathematical and 

statistical backgrounds, their predictive performance is 

average. The extant literature mainly attributes the 

oversimplification of complex relationships in data as the 

major inhibitor to better performance.  Most models in 

this category assume that data follows a linear pattern. In 

financial markets, however, data is nonlinear and 

multidimensional in nature. Deng et al. (2022) raised 

skepticism towards these techniques because they rely on 

short-term historical data, often neglecting longer-term 

trends. 

Machine Learning Techniques 

After statistical modelling techniques, AI and Machine 

Learning (ML) came as the next revolution in stock 

prediction and financial forecasting. These algorithms are 

built to handle massive amounts of data to make more 
informed inferences. Several studies, including Chen et al. 

(2022), note the transformational impact of ML on stock 

market prediction.  Different studies have demonstrated 

the superiority of different ML techniques in recent 

studies. For example, Zheng et al. (2024) demonstrated 

the predictive superiority of Random Forest (RF), while 

Kuo and Chiu (2024) proved that the Support Vector 

Machine (SVM) was better than others. In recent studies, 

models like the K-Nearest Neighbour (Qin, 2024), 

Gradient Boost Machine (Liao et al., 2024), and K-means 

clustering (Chen et al., 2022), were observed to have 
better predictive capacities compared to some baseline 

models.  The improved predictive capacity of ML models 

has been attributed not only to their capacity to handle 

nonlinear data but also to their ability to handle large 

volumes of data (Ghosh et al., 2024).  

However, existing literature also identifies several 

deficiencies in ML techniques. Chen et al. (2022)  

https://thescipub.com/as/report.php?state=0.0&journal=2633
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elucidates their challenges in managing complex and 

high-dimensional data. Ghosh et al. (2024) on the other 

hand delineate their stuggle with overfitting. An algorithm 

is overfitting when it works well on data it has been 

trained on data but poorly on data it has never seen before. 
This means that the model can’t apply what it has learnt 

to other situations, which makes it less useful for 

predictive tasks such as stock market forecasting. ML 

techniques have also been criticized for relying too much 

on manual feature engineering (Hadizadeh et al., 2025). 

In practice, poor or inconsistent feature choices erase 

important predictive signals making the model less 

accurate and less reliable. 

Deep Learning Techniques 

Deep learning (DL) techniques are changing the way 

people predict the stock market. DL is a type of ML that 

uses multi‐layer neural networks. DL algorithms are 

designed to automatically find and learn important 

patterns in data, just like how the human brain works. This 

is very important for working with high-dimensional and 

unstructured data, which is difficult to do with regular ML 

algorithms (Li and Bastos, 2020). In multiple studies, DL 

models have outperformed their ML equivalents 

(Chatziloizos et al., 2024; Lee et al., 2024; Wei et al., 

2024).  
Examples of typical DL algorithms that have been 

applied to stock market prediction include Recurrent 

Neural Networks (RNNs), Long Short-Term Memory 

(LSTM), and Convolutional Neural Networks (CNNs). 

Current research indicates enhanced efficacy compared to 

ML and Statistical modelling techniques in stock 

prediction tasks.  

DL techniques have made predictions much more 

accurate, but they have some problems that limit their use. 

Examples include limited computational efficiency, 

catastrophic forgetting and exploding gradients. These 

limitations, most notably high computational complexity, 
pose significant challenges for the practical deployment 

of artificial neural networks in real-time financial 

markets. Work in the field currently revolves around the 

development of lightweight DL architecture. Continuous 

learning integration in market prediction tasks, which can 

potentially address some of these limitations, is also an 

active research area, one that this research seeks to 

contribute towards. 

Continuous Learning Integration in DL 

One of the biggest problems is that most AI models 

can’t keep up with new and changing data trends (De 

Lange et al., 2022). The standard approach is to train 

models on static datasets. This way of training our models 

means that we must train it repeatedly to keep it useful. In 

infinite data streams which characterize stock markets 

data, this is very impractical and computationally 

expensive. In this paper, we propose a system capable of 

lifelong learning. In this system, an agent’s knowledge 

evolves dynamically as it learns new data patterns while 

preserving critical knowledge. Lifelong learning is 

inspired by biological learning systems, where an agent 
retains and refines knowledge over time (Kudithipudi 

et al., 2022).  

Research in continual learning systems is growing but 

there are problems like concept drift that need to be 

solved. Continual learning systems are also built to 

address the problem of catastrophic forgetting. A number 

of techniques have been proposed in building such 

systems. In this paper we present an adaptive forecasting 

framework with lifelong learning capabilities. More 

specifically, our study proposes the use of Elastic Weight 

Consolidation algorithm as well as a reinforcement 
learning technique (Deep Q Network) for continuous 

learning capabilities.  Our design guarantees that the 

model adapts to changing market conditions. 

Previous studies, such as Wei et al. (2024), have 

presented a Gated Recurrent Unit (GRU) with attention 

mechanisms to tackle the challenges of capturing long-

term dependencies. It has been noted that neglecting this 

may result in catastrophic forgetting in DL models (Parisi 

et al., 2019). The GRU layer’s main job is to keep long-

term dependencies while keeping unnecessary data from 

building up. The attention mechanism, on the other hand, 

facilitates the model’s capacity to concentrate its 
analytical efforts on most important parts of the data 

sequence necessary for making predictions. Oğuz and 

Ertuğrul (2023) posits that when working with a lot of 

data, GRU networks increase the speed and performance 

of LSTM networks. Although GRU-only architectures 

have been observed to capture long-term dependencies, 

they have been criticized for overlooking rapid intraday 

fluctuations. Similarly, Jin (2024) undertook a study to 

develop a hybrid model that combines the strengths of 

graph neural networks (GNNs) and CNNs for short-term 

price trend prediction. The model remarkably 
outperformed the traditional CNN-based models and 

graph techniques, showing some promise as a viable 

candidate for integration into real-world trading systems 

as a prediction module. Table 1 summaries some of the 

recent literature. 

While prior studies have demonstrated promising 

advances in stock market prediction using deep learning, 

several methodological and conceptual gaps remain 

insufficiently addressed. Most notably, existing models 

tend to operate under static learning regimes, lacking the 

capacity to dynamically recalibrate in response to non-

stationary market behaviour. Furthermore, despite the 

proliferation of transformer-based and hybrid neural 

models, there is limited exploration of mechanisms to 

systematically preserve learned knowledge over time, 

particularly in multi-task or longitudinal financial settings.  

https://thescipub.com/as/report.php?state=0.0&journal=2633
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Table 1: Summary of literature review 

Author Context Method Dataset Key contribution Gaps 

Wu et al. 

(2022) 

Stock price 

prediction 

(regression) 

S_I_LSTM (Att-

LSTM + CNN) 

5 Chinese A-

share stocks, 

EastMoney.com 

news/posts 

Combines traditional OHLCV + 

technical indicators + sentiment index. 

Sentiment derived via CNN on 

financial text. 

No real-time adaptation; no 

continual learning; Single-market 

dataset; Limited ablation study 

 

Dang et 

al. (2020) 

Sentiment 

Polarity 

Classification 

DNN, CNN, RNN 

using TF-IDF & 

Word Embedding 

Sentiment140, 

IMDB, Twitter 

Airline, 
SemEval, Book, 

Music & Movie 

Reviews 

Conducted a systematic evaluation of 

DNN, CNN, and RNN across eight 

datasets with 2 input schemes; found 
CNN + Word Embedding delivered 

the best trade-off (accuracy ~90%) vs. 

training time; RNN achieved highest 

accuracy but incurred long runtime; 

models were tested with k-fold CV 

and metrics included accuracy, F1, 

AUC, and CPU time 

No attention mechanisms; only 

tested polarity (not aspect); no 

multilingual benchmarks; did not 
incorporate ensemble or transformer 

models; lacks real-time or continual 

learning focus 

Berti and 

Kasneci 

(2025) 

Stock Price 

Trend 

Prediction 

TLOB 

(Transformer w/ 

Dual Attention), 

MLPLOB 

FI-2010, Tesla, 

Intel (LOB data) 

Proposed TLOB: transformer with 

temporal & spatial attention + bilinear 

normalization; F1 = 92.81% (FI-

2010); MLPLOB outperforms prior 

SoTA for shorter horizons 

No discussion of sentiment signals; 

macroeconomic indicators, or 

transaction profitability backtesting; 

no multilingual datasets 

Chauhan 

et al. 

(2025) 

Stock Index 

Prediction 

(Regression & 
Classification) 

SenT-In (Informer 

+ CNN-GRU 

Sentiment 
Awareness Model) 

 

S&P 500, FTSE, 

SSE, Nifty 50 

Developed a hybrid model combining 

financial news sentiment (CNN-GRU) 

with time-series market data via 
Informer. Introduced sentiment-aware 

fusion mechanism. Outperformed 

baselines (LSTM, GRU, CNN, SVM) 

across accuracy, F1, AUC-ROC, PR-

AUC. For S&P 500, achieved Acc: 

0.8159, F1: 0.8174, AUC-ROC: 

0.9331, PR-AUC: 0.9465. 

No reinforcement learning or 

continual learning; sentiment 

limited to structured financial news 
(no social media); no 

profitability/backtesting analysis; 

interpretability not evaluated in 

depth 

Wang and 

Vo (2025) 

Stock Price 

Prediction 

(Regression) 

ARIMAX with 

Dual Important 

Indicators (VWAP, 

WCP, FWMA, 

Decay, ZLMA) 

Vietnam Stock 

Index 

(VNINDEX) 

2013–2023; 

Pham & Ta 

(2010–2021); 

Do & Trang 

(2001–2019) 
 

Proposed a novel feature selection 

strategy using lag-0 and lag-1 

XGBoost to identify 5 “dual important 

indicators” relevant in both past and 

future. Demonstrated superior 

forecasting using ARIMAX, 

outperforming LSTM, GALSTM, 

XGBoost, Meta Prophet. Achieved 
MAPE = 9.05×10⁻¹⁶ and R² = 99.99% 

on VNINDEX 

No sentiment integration; relies 

solely on technical indicators; 

limited generalization across 

different geographic markets; 

potential selection bias in dual 

indicator extraction 

Sharma et 

al. (2025) 

Stock Price 

Prediction 

(Regression on 

NFLX close) 

LSTM-based 

Sequential Model 

with feature 

correlation analysis 

 

Netflix stock 

data (2010–

2024) from 

Yahoo Finance 

via yfinanc 

Developed LSTM-based model 

trained on 14 years of OHLCV data; 

architecture: 2 stacked LSTM layers 

(128 & 64 units) + Dense layers; 

achieved visually reasonable forecasts 

for future 100 days of Netflix closing 

prices; performed correlation and 

candlestick chart analysis 

Lacks quantitative evaluation 

metrics (e.g., R², MAE); no 

comparison with benchmarks (e.g., 

ARIMA, Transformer, GRU); 

limited feature diversity (no 

sentiment, macro factors); no real-

time or continual learning 

integration 

Wang 

(2025) 

Stock Market 

Stability 

Prediction 

CFBSPM 

(Contradictory-

Factor-Based 

Stability Prediction 

Model using 

Sigmoid & Non-
Sigmoid DL layers) 

 

Stock data (Feb–

May 2023) for 4 

companies 

(Kaggle) + CSI 

300 stability 

index 

Proposed a novel sigmoid-based deep 

learning model that jointly evaluates 

stock market stability using economic, 

sentiment, and trading factors; 

Combines sigmoid layers for 

probabilistic stability classification 
with non-sigmoid layers for abrupt 

deviation detection; Outperformed 

baseline models (e.g., SMP-DL, 

HDFM, PPO-TLSTM) in accuracy 

(96.12%), stability matching 

(94.68%), and detection time (0.05s); 

Conducted a detailed empirical 

analysis using 7 influencing factors 

across multiple months. 

No incorporation of attention 

mechanisms or memory-based 

layers like LSTM in final model; 

limited market diversity (mostly 

CSI 300 and Kaggle-listed firms); 

no sentiment sourced from social 
media; model lacks 

interpretability/explainability 

modules (e.g., SHAP) 

Oyewole 

et al. 

(2024) 

Stock Price 

Prediction 

(Forecasting, 

Classification) 

Multiple ANN 

variants (MLP, 

RNN, LSTM, 

CNN, GAN); 

Qualitative 

synthesis 

Global literature 

(e.g. S&P 500, 

NIFTY 50, NSE, 

NYSE) 

Conducted a comprehensive review 

and synthesis of neural network 

architectures for stock prediction; 

Highlighted data preprocessing, 

interpretability challenges, 

architecture-specific strengths, and 
trade-offs (e.g. LSTM vs GAN vs 

CNN); Emphasized role of high-

quality/quantity data, ensemble 

models, and hybrid designs; Reported 

Qualitative meta-review only; lacks 

unified experimental benchmark; no 

deep comparative metrics; no real-

time testing; interpretability still 

unresolved in most models; no 

direct profitability/backtesting 
outcomes 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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accuracies in cited works exceeding 

90% (e.g., ANN = 93% on Indian 

stocks; CNN = 99% on Iraqi data). 

Lee et al. 

(2024) 

Predict S&P 

500 index by 

integrating 

ESG sentiment 

(from news) 
with technical 

indicators 

using deep 

learning. 

ESG sentiment 

score via FinBERT; 

Models: Bi-RNN, 

Bi-LSTM; 

Evaluation: MAPE 
(%); 

Hyperparameters: 

Window sizes 

(3/4/5), batch sizes 

(2-8), hidden layers 

(4-8) 

ESG News: 

14,049 

LexisNexis 

articles (Jan 

2016–Jul 2023) 
Market Data: 

S&P 500 

historical 

prices/indicators 

(investing.com) 

Best Model: Bi-LSTM (window = 3, 

batch = 64, hidden = 32/64, layers = 

2) MAPE = 3.05%; ESG + technical 

indicators outperformed baselines: 

- Only price: MAPE = 3.81-4.87% 
- Price + technical: MAPE = 3.48-

3.75% 

- Full model (ESG + technical + 

price): MAPE = 3.05-3.55%; Ablation 

tests confirmed ESG causality with 

S&P 500. 

S&P 500 focus limits 

generalizability; Reliance on news 

data only for ESG sentiment;  

Industry-specific ESG impacts not 

explored 

Song et 

al. (2024) 

Gold Stock 

Price 

Forecasting 

(Regression) 

BO-LSTM 

(Bayesian-

Optimized LSTM) 

 

Gold stock price 

data (exact 

period not 

specified) 

 

 

Proposed a novel LSTM model 

optimized via Bayesian networks for 

hyperparameter tuning (e.g., learning 

rate, hidden layers). Achieved 

improved prediction accuracy, 

robustness, and noise resistance over 

baseline LSTM. Empirical results 

show reductions in RMSE (e.g., 13.88 

vs 17.50) with visual forecast 
alignment. 

Focused solely on gold stocks; lacks 

broader market generalization; no 

integration of sentiment or 

macroeconomic factors; no 

benchmark against transformer-

based or ensemble models; 

explainability and interpretability 

not explored in depth 

Nejad and 

Ebadzade

h, (2024) 

Stock Price 

Forecasting 

(Regression) 

DRAGAN + 

Feature Matching + 

GRU Generator + 

CNN Discriminator 

12 U.S. stocks 

(2010–2020, 

Yahoo Finance); 

daily OHLCV + 

8 technical 

indicators 

Proposed a stabilized GAN framework 

(DRAGAN) with windowing and 

conditioning to capture temporal and 

feature correlations. Integrated feature 

matching to mitigate mode collapse. 

Outperformed baseline models 

(LSTM, Basic GANs, WGAN-GP) 

across RMSE, MAE, and R² (e.g., 

Apple RMSE = 0.92, R² = 0.98; avg 

RMSE across stocks ≈ 1.105). 

Supported many-to-many mappings 

and demonstrated high distributional 

fidelity between predicted and real 

prices. 

No sentiment integration; lacks 

macroeconomic variables; limited 

interpretability methods; some 

training instability remains; not 

evaluated in live trading or 

profitability context 

 

Tan, 

(2024) 

Stock Price 

Prediction 

(Regression) 

LSTM, Random 

Forest, Linear 

Regression 

NVIDIA stock 

prices (1999–

2023), focus on 

2016–2023 

closing prices 

Compared three models, LSTM, RF, 

and LR, on predicting NVIDIA 

closing prices using historical data. RF 

outperformed others: MSE = 10.6, 

RMSE = 3.3, MAE = 1.0, R² = 0.997. 

LSTM followed (R² = 0.984), with LR 

performing worst (R² = 0.731). 

Provided visual plots and quantitative 

analysis across all methods. 

Focused solely on univariate close 

prices; no technical indicators, 

sentiment, or macroeconomic 

variables; lacked advanced model 

tuning or explainability tools; no 

live trading or economic implication 

testing 

Lu and 

Xu 2024) 

Stock Price 

Forecasting 

(Regression) 

TRNN (Time-series 

Recurrent Neural 

Network) with 

extrema 

compression + 

sliding window 
preprocessor 

 

Dow Jones Index 

(1990–2019), 

Chinese stock 

markets (9.9M 

records) 

Proposed an RNN-based model 

enhanced with two-dimensional price-

volume encoding and a trend-based 

extrema compression algorithm. 

Achieved faster convergence and 

better accuracy than RNN, ARIMA, 
and GARCH; performed nearly as 

well as LSTM with significantly less 

training time (e.g., error ≈ 9.23% vs. 

LSTM’s 14.4%–16%). Ablation 

studies confirmed strongest gains 

came from the price-volume 

dimensionality upgrade. 

Did not incorporate attention 

mechanisms, macroeconomic 

features, or sentiment; LSTM still 

outperformed TRNN at higher 

iteration counts; no live trading 

simulation or interpretability 
methods used 

 

To simultaneously capture rapid intraday swings and 

enduring trends, we propose employing a hybrid CNN–
LSTM–Attention architecture, where convolutional 

layers extract high-frequency, localized patterns, LSTMs 

encode longer-term dependencies, and an attention 

module focuses on the most informative time steps. 

Inspired by Zhang et al. (2023)’s ConvBiLSTM, our 

streamlined hybrid CNN–LSTM–Attention pipeline 

delivers end-to-end spatio-temporal forecasting, and we 

further advance it by integrating reinforcement-learning-

driven online adaptation plus Elastic Weight 
Consolidation (EWC) to prevent catastrophic forgetting. 

To prove its robustness, we validate the model on an 

entirely different market than Zhang et al. (2023) used. 

Table 1 synthesizes leading DL approaches to stock 

market forecasting, highlights their principal limitations, 

and shows precisely how our proposed framework 

overcomes each of those gaps. 

https://thescipub.com/as/report.php?state=0.0&journal=2633
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Materials and Methods 

The model development will be implemented in 

phases following sequential steps as guided by the 

framework in Figure 1. The process begins by loading 

a dataset into a python environment and normalising it 

so that all input sources are consistent. Then comes a 

full feature extraction phase, which adds both technical 

indicators and macroeconomic variables to the input 

space. Model training uses a mix of optimisation 

methods, including EWC to stop catastrophic 

forgetting and reinforcement learning methods to help 

the model learn in a flexible way. Hyperparameter 

tuning is done by combining Bayesian optimisation and 

grid search to get the best predictive performance. The 

last step in the evaluation process uses quantitative 

metrics like Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) as well as feature 

importance analysis to see how well the model works 

and how easy it is to understand when it comes to 

predicting the future of finance.  

 

 

 
Fig. 1: Model Development Framework 

 

DLLN Model Implementation Algorithm 

The Lifelong Learning Stock Predictor (LLSP) 
algorithm is employed in the implementation of the 

DLLN model. The pseudocode for LLSP is presented 

below, accompanied by a concise description of its 

functionality. 

Algorithm: Lifelong Learning Stock Predictor (LLSP) 

Beginning the LLSP 

Input: Historical data D, Feature set F, and 

hyperparameters H 

Output: Trained DLLN model M 

Step 1. Initialize the model 

1. Initialize the model M with hyperparameter H 

Step 2. Data Preprocessing 

2. Preprocess stock market data 

2.1  Normalize and scale data to ensure consistency 

2.2  Handling missing values using interpolation 

Step 3. Feature Engineering 

3. Enhance feature set F to improve predictive power 

3.1  Extracting technical indicators (RSI, MACD) 

3.2  Add macroeconomic variables (i.e., Interest 

rates, inflation, CPI) 

Step 4. Data Splitting 

4. Split data D into training set T and validation set V 

Step 5. Model training 

5. Train the DLLN model M on training set T: 

5.1  For each epoch do: 

5.1.1  Update weights via the Adam optimizer 

5.1.2  Evaluate performance on the validation set V 

using MAE 

Step 6. Forgetting mitigation via Elastic Weight 

Consolidation (EWC) 

6. Apply EWC to prevent catastrophic forgetting 

6.1  Estimate parameter importance using the Fisher 

Information Matrix  

6.2  Regularize updates by minimizing the modified 

loss function 

Step 7. Hyperparameter Tuning 

7. Fine-tuning hyperparameters H via grid search to 

optimize performance 

Step 8. Reinforcement Learning Integration 

8. Enhance adaptability by integrating reinforcement 

learning (RL) 

8.1  Initializing RL agent A 

8.2  Training RL agent A via Deep Q-Learning 

8.3  Combining RL agent A with the DLLN model M 

to dynamically adjust learning rates and attention 

threshold.  

Step 9. Return Final Model 

9. Return trained DLLN model M 

End LLSP 

 

Data Preprocessing 

To train and test our model we used a comprehensive 

set of features. These include historical Open, High, Low, 

Closing and Volume (OHLCV) values, and 

Macroeconomic indicators like the Gross Domestic 
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Product (GDP), unemployment rate, real interest rates, 

and the Consumer Price Index (CPI). Finally, we also 

computed and incorporated two technical features, 

Relative Strength Index (RSI), and Moving Average 

Convergence Divergence (MACD). The MACD is lagged 
at three-time steps to increase the feature space. 

Linear interpolation was applied to handle missing 

data where the gaps are small.  For filling bigger gaps, we 

used forward and backward filling. We handled outliers 

by applying Winsorization technique. Min-Max scaling 

was used for normalization enabling the input 

distributions to remain balanced and the learning 

dynamics of the DLLN model to remain steady. 

Hyperparameter Optimization 

We use a dual-strategy technique that combines grid 

search with Bayesian optimization to improve 

hyperparameters systematically. Grid search enables the 

full testing of specified parameter grids, including 

ConvLSTM-specific settings such as (32, 64, 128), kernel 

size (1, 1), and activation functions (ReLU, Tanh). The 

same goes for dense layer units (25, 50, 100), batch sizes 

(16, 32, 64), and look-back windows (30, 60). We used 

the Bayesian optimisation to identify the best 

configurations faster. The Adam optimizer and Mean 

Absolute Error (MAE) is used for model training. These 
optimization methods work together to make dynamic 

financial forecasting settings more stable and accurate. 

Integrating Attention Mechanism  

To find the attention weights alpha_t, we applied the 

following equation: 

 

 𝛼𝑡  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑇  𝑡𝑎𝑛ℎ(𝑊 ·  ℎ𝑡  +  𝑏))  (1) 

 
Where  𝑣  is a learnable context vector. 𝑊  is the 

weight matrix.  ℎ𝑡  is the hidden state at time t and 𝑏 is the 

bias term. 

Elastic Weight Consolidation for Forgetting 

Mitigation 

To handle catastrophic forgetting we will use Elastic 

Weight Consolidation (EWC) algorithm based on the 

Equation 2. EWC makes it difficult to change important 

weights for old tasks while allowing less important 

weights to change freely to learn the new task. If the 

calculated weight is greater than one, then the previous 

weight is discarded gracefully. If its less than one, the 

current weight is maintained: 
 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑛𝑒𝑤(𝜃) +
𝛾

2
(∑ (𝐹𝑖(𝜃𝑖 − 𝜃𝐴,𝑖 

∗ ) 2𝑁𝑝𝑎𝑟𝑎𝑚𝑠

𝑖=1
  (2) 

 

Where 𝐿𝑛𝑒𝑤(𝜃)  represents the standard loss for the 

new task. 𝛾  is a hyperparameter that controls how 

important it is to remember the old task vs learning the 

new one. ∑  goes over all the weights 𝑖  to 𝑁  in the 

network. 𝜃𝑖 represent the current value of weight 𝑖. 𝜃𝐴,𝑖
∗  

represents the optimal value of weight 𝑖  after learning 

Task A and 𝐹𝑖 is the Fisher information weight 𝑖. 
The Fisher Information is a calculated value that 

measures the importance of the weight 𝑖 of the previous 

task. It’s based on Equation 3: 

 

𝐹𝑖 =  𝐸{(𝑥,𝑦)∼ 𝐷𝐴𝐴𝑃𝐿}  [ (
𝜕

𝜕𝜃𝑖
𝑙𝑜𝑔 𝑝(𝑦 |𝑥 , 𝜃∗))

2

 ]            (3) 

 
Where θ∗ represents the parameters optimized on the 

AAPL task, and 𝐹i quantifies how much a small change in 

𝜃𝑖 would affect the log-likelihood on that task. 

EWC keeps AAPL-specific patterns by "locking" 

weights with large 𝐹𝑖  values. This helps avoid 

catastrophic forgetting while allowing the model to learn 

from new data. 

Adding Reinforcement Learning  

Reinforcement learning is one of the important drivers 

of continual learning systems allowing an agent to adjust 

its strategy in non-stationary environments. We applied 

the Deep Q Network (DQN) in our framework to meta-

learn optimal adaptation policies. The DQN agent works 

by observing a state representation such as the recent 

OHLCV values and the model’s prediction error which 

serve as a proxy for market stability. Based on the 

observed state, the agent then select an appropriate set of 

actions from a discrete set, such as increasing the learning 
rate for rapid adaptation. Alternatively, the model could 

increase the attention thresholds to allow for focus on 

important features during volatile periods. This makes the 

model more sensitive to changing patterns by lowering the 

prediction loss function during times of high volatility 

through context aware hyperparameters. The Bellman 

equation (Equation 4) is used to update the Q-value. The 

agent gradually improves its approach over time by using 

experience replay and Q-learning to make sure that the 

best parameter changes are made: 

 

 𝑄(𝑠𝑡, 𝑎𝑡) =  𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼 [𝑟𝑡  +  𝛾 𝑚𝑎𝑥 𝑄(𝑠{𝑡+1}, 𝑎) −

 𝑄(𝑠𝑡, 𝑎𝑡)]                (4) 

 
Where 𝑄(𝑠𝑡 , 𝑎𝑡)  is the predicted reward for doing 

action 𝑎𝑡  in state 𝑠𝑡 . 𝛼  is the learning rate.  𝛾  is the 

discount factor, and 𝑟𝑡  is the reward right now.  

Proposed DLLN Architecture 

The final architecture of the proposed DLLN 

framework is shown in Figure 2. Several layers, including 

CNN, LSTM, and attention layers are systematically 

synthesized to predict future market price of a given asset.  
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Fig. 2: Proposed Model architecture 
 

Datasets  
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3: Features ingested into the model 

 

Trained on the AAPL dataset extracted from Yahoo 

Finance API, our model ingests various other data steams 

to make sure that the features are as comprehensive as 

possible. These features include the OHLCV values, 

macroeconomic indicators, and technical indicators as 

shown in Figure 3. The period of the data from 2002 to 

2022 is selected to ensure that lived realities such as the 

2008 global financial crisis and the COVID-19 pandemic 

era are modelled. The specific macroeconomic features 

extracted include unemployment rate, consumer price 
index, real interest rate, and gross domestic product 

extracted from the FRED API. We also add technical 

indicators like the Relative Strength Index and lagged 

aspects of moving averages at three-time steps that were 

calculated directly from the time-series data.  

The model is further validated on the SPY ETF, a 

diversified proxy for the S&P 500 index. Both datasets are 

extracted from the US stock market. SPY dataset was 

specifically selected as it gives access to a wider and more 

varied selection of sectors and volatility profiles than the 
AAPL ticker. This cross-market validation provided 

critical insights into the model’s adaptability to varied 

financial landscapes. 

Evaluation Metrics 

Several evaluation metrics, including the R-squared 

(R2), Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE) and mean absolute percentage error 

(MAPE), are used. These evaluation metrics are described 

below. 
The MAE equation measures the average magnitude 

of the errors in a set of predictions without considering 

their direction. It is the average over the test sample, of 

the absolute differences between the prediction and actual 

observations where all individual differences have equal 

weights. The model with the lowest MAE is the better 

model: 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ ∣ 𝑥𝑖 − 𝑥 ∣𝑛

𝑖=1   (5) 

 

Where: 

n = The total number of data points 

xi = Predicted value 

x = True value 

 

The RMSE measures the square root of the average of 

the squared differences between the prediction and actual 

observations. This metric gives relatively high weight to 

large errors. The model with an RMSE closest to zero is 

considered to perform better: 

 

𝑅𝑀𝑆𝐸 =  √∑
(𝑥𝑖−𝑥)2

𝑛
𝑛
𝑖=1  (6) 

 

Where:  

n = The number of observed values 

𝑥𝑖 = Predicted value 

𝑥 = Observed value 

 

The MAPE measures the average magnitude of the 

errors as a percentage of the true values, providing a scale-

independent measure: 

 

MAPE =  
1

n
∑ ∣

xi−x

xi

n
i=1 ∣  (7) 

 

Where:  

n = Number of observed values 

𝑥𝑖 = Predicted value 

x = Observed value 

 

 

a) APPL features 

 

 

b) SPY features 

 

c) Final tuned datasets 
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The MAPE value can be expressed as a percentage by 

multiplying the result by 100% with values that are closer 

to 0%, indicating greater accuracy of the model (De 

Myttenaere et al., 2016).  

R2 is a measure of the proportion of the variance in the 
dependent variable that is predictable from the 
independent variable (s) (feature (s)) via the regression 
model. The R2 values range from 0 to 1, where 0 indicates 
that the model does not explain any of the variance in the 
target variable and 1 indicates that the model explains all 
the variance in the target variable. R2 can be expressed as 
a percentage by multiplying by 100%: 

 

𝑅2 = 1 −  
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝒚̅𝒊)2 (8) 

 
Where: 

yi = Actual value 

𝑦̂𝑖  = Predicted value 

𝒚̅𝒊 = Mean value of y 
 
The DLLN model is also compared to several baseline 

deep learning architectures identified in literature. These 

are the LSTM, CNN, BiLSTM, and GRU-BiLSTM. An 

ablation study is done to see how each part of the hybrid 

structure improves the overall performance of the model. 

The study employs a diverse array of Python packages 

to facilitate data preparation, model training, evaluation, 

and visualization. Libraries used include Pandas, NumPy, 
Scikit-learn, Scikeras, Matplotlib, and Plotly. PyTorch, is 

used to create the EWC and RL components.  

Results and Discussion 

We implemented our model using Python in the 
Google Colab environment as shown in Figure 4. The 
model takes input sequences that are in the shape (30, 13). 
This means that each sample has 30-time steps and 13 
characteristics. There is only one 1D CNN layer in the 
design, which has 64 filters and a kernel size of 3. This 
layer captures local temporal patterns in the input data. A 
ReLU activation function adds nonlinearity to make the 

model more expressive, and a 30% dropout rate is used to 
keep it from overfitting. 

The BiLSTM layer with 256 units follows the CNN 
layer. It is set up with return_sequences=True so that the 
whole sequence output may be used for attention 
processing later on. A dropout of 30% is again used to 
make training more regular. Then, a custom attention 
mechanism is used on the output of the BiLSTM. This 
layer gives learnt weights to distinct time steps. This 
property improves the model’s ability to focus on salient 
segments of the input sequence. The mechanism has 
trainable weight parameters (W, b), and a tanh activation 

function that gives alignment scores and a SoftMax 
function that gives the normalised attention weights (α). 
The resulting weighted context vector summarizes the 
sequence for final prediction. 

The output layer is a dense layer of 5 units, 

corresponding to the forecast horizon 

(FORECAST_LENGTH) of 5 steps.  The model is trained 

with the Adam optimizer, chosen for its adaptive learning 

capability and the MAE loss function to ensure precise 
regression performance.  

Figure 5 shows the resultant Loss and MAE plot run 

over 50 epochs. As depicted in the plot, both the MAE 

curve and the combined loss shows a gradual descent with 

an increase in epochs. This indicates improved predictive 

accuracy as training progresses and effective model 

optimization. The convergence of both metrics 

demonstrates that the model balances learning stability 

with adaptability thereby mitigating catastrophic 

forgetting while benefiting from dynamic reward-guided 

fine-tuning.  
 

 
 
Fig. 4: Baseline model architecture overview 
 

 
 
Fig. 5: DLLN loss function plot 
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Table 2 summarizes the hyperparameter tuning results. 
The optimal setup used a convolutional filter size of 32, 
32 units in the first LSTM layer, 16 units in the second 
LSTM layer, a learning rate of 0.01, and a batch size of 
64. This configuration has the lowest validation loss of 
0.005 and the lowest MAE of 0.047. It also showed the 
most efficient training profile, taking only 132.1 seconds 
to compute. Given these results, this best setup was made 
the default for all benchmark models so that they would 
be consistent and easy to compare. 

Model Generalizability and Robustness  

To explore the benefits of each additional module in our 

model, an ablation study was conducted. Here, the model 

was tested in three configurations, utilizing SPY dataset. The 

basic setup used the ConvLSTM-Attention architecture. In 

the second setup, EWC was included to stop catastrophic 
forgetting. Finally, a reinforcement learning module was 

included. We compared the performance measures Loss, 

MAE, RMSE, and R-squared for all three variations and 

included them in Table 3. Adding the EWC part improved 

performance by 7.72% and adding the RL part improved it 

by 4.63% more. All in all, both components led to a 12.35% 

improvement in performance. These findings confirm our 

earlier hypothesis that adding both EWC and RL modules 

improves the model's predictive performance, its stability 

and generalization capabilities.  

A good predictive model’s trend line should follow that 

of the actual prize as closely as possible even when exposed 
to a different dataset other than the one it was trained on. To 

further assert our claims of the contributions of each 

additional component of our model, we plotted the closing 

against predicted price over our test dataset as shown in 

Figure 6. The figure shows normalized values of the closing 

price (y-axis) over a 20-year period (x-axis) running against 

three variations of our model. The DLLN model’s EWC and 

RL modules facilitated the model to perform well and to 

adaptively learn from evolving patterns as evidenced in 

Figure 6. The figure, especially (c), with all the components 

added demonstrates strong alignment between predicted and 

actual SPY closing prices as most key trend structures and 
turning points were captured. Of note is the ability of the 

model to capture the 2008 recession precisely as can be 

observed between time steps 2000 to 3000.  

However, despite its earlier robust performance, the 

model exhibited limitations during the COVID-19 period 

(time steps 5000 to 7000) where extreme volatility was 

experienced. This means that the model was unable to 

respond to this particular black swarm event. Our assumption 

on what might have contributed to this shortcoming is that 

the response by the market to the COVID-19 pandemic had 

nothing to do with the structured data which we used to train 

our model.  Given that COVID-19 triggered unprecedented 

panic and uncertainty, largely communicated through news 

outlets and social media, the model’s purely quantitative 

design lacked access to timely psychological signals that 

often precede market movements. Without real-time 

sentiment input we observe that the DLLN failed to fully 

recognize the severity and timing of the downturn. 

To test the significance of our initial hypothesis that 

adding additional components such as the EWC and RL 

leads to a better performing model, we applied two statistical 

tests, the Diebold-Mariano test and the paired t-test. The DM 

test evaluates whether the forecast error distributions of two 

models differ significantly. Negative values indicate superior 

predictive accuracy from the second model. The paired t-test 

on the other hand assesses whether the mean difference in 

prediction errors is statistically distinguishable from zero. 

Results of the two tests are shown in Table 4.  Both tests 

confirm that the additional EWC and RL modules 

significantly improved the model’s predictive performance. 
 
Table 2: Grid search results for Hyperparameter settings 

Conv_filter LSTMunit1 LSTMunit2 Learning rate Batch size Value loss ValueMAE Time 

32 32 16 0.010 32 0.037 0.142 184.4 
32 32 16 0.010 32 0.005 0.045 286.9 

32 32 16 0.010 64 0.005 0.047 132.1 
32 32 16 0.010 32 0.045 0.163 173.6 
32 32 16 0.001 32 0.018 0.098 188.8 

 
Table 3: Performance Comparison on SPY Test Set 

 Metric Baseline model EWC model RL-EWC Model 

1 Loss (MSE) 0.1085±0.0064 0.0837±0.0049 0.0635±0.0038 

2 MAE 0.1758±0.0112 0.1279±0.0076 0.1021±0.0060 
3 R-Squared 0.6618±0.0215 0.7390±0.0173 0.7853±0.0147 
4 RMSE 0.3285±0.0099 0.2886±0.0082 0.2241±0.0069 

 
Table 4: Statistical Significance Testing 

 Diebold-Mariano test Paired t-test 

 DM statistic P Value T-Statistic P value 

Baseline vs EWC -2.15 0.032* 2.47 0.019* 

Baseline vs RL -2.78 0.007** 2.93 0.005** 
EWC vs RL-EWC -1.95 0.051* 2.11 0.042* 

*P<0.05; **P<0.01 
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a) Baseline 

 
b) Baseline with EWC 

 
c) Baseline with RL-EWC (DLLN) 

 
Fig. 6: DLLN Variants Forecasting performance on SPY 

 
Table 5: Performance evaluation of comparable models over the Apple ticker  

MAE RMSE R2 MAPE 

LSTM 3.98±0.31 5.07±0.43 0.919±0.10  13.79±0.88 
CNN 8.23±0.50 9.92±0.72 0.788±0.12  20.69±1.31 
Bi-LSTM 12.48±0.66 13.64±0.81 0.600±0.21  21.54±1.48 
GRU-BILSTM 13.71±0.58 14.52±0.69 0.547±0.31  22.02±1.52 
DLLN 3.22±0.27 3.95±0.32 0.967±0.01  22.55±1.74 

 

Performance Evaluation of the DLLN Against 

Comparative Models 

In our second hypothesis, we claimed that our model 

significantly outperforms other benchmarks identified in 

literature. We present the findings of the DLLN against 

several benchmark architectures identified in literature 

such as LSTM (Lu and Xu, 2024), CNN (Oyewole et al., 

2024), Bi-LSTM (Lee et al., 2024) and the GRU-LSTM 

(Shaban et al., 2024) in Table 5. We evaluated the 

performance of these models based on our earlier 

described evaluation framework including MAE, 

RMSE, R-squared, and MAPE. As illustrated in Table 5, 
the DLLN model consistently outperformed its 

counterparts across most metrics. The model achieved a 

notably high R2 value of 0.967 and a very low MAE of 

3.22 when applied to the Apple ticker dataset. These 

findings confirm that the DLLN model’s predictive 

capacity is superior to the other baselines. 

It is common practice to measure performance of a 

model against time complexity (Zhou et al., 2021). This 

metric is often evaluated based on the time it takes to 

execute the model. In terms of this measure, the DLLN 

proved to be efficient, requiring only 45.56 seconds to 

train, making it comparable only to the smaller CNN 

model. In a domain that requires quick data processing for 

decision making, such as financial markets prediction, the 

DLLN has shown to be suitable due to its efficiency and 

effectiveness. This is achieved through the model’s ability 

to learn continuously enabling it to adapt to sudden 

changes in trends. 
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Figure 7 shows the relationship between actual stock 

prices and outputs from five forecasting models: CNN, 

LSTM, BiLSTM, Bidirectional GRU, and the proposed 

DLLN architecture. To ensure a fair comparison, 

optimum hyperparameter for each model are first scanned 
using the grid search and Bayesian search optimization 

algorithms. The y axis represents the price, and the x-axis 

represents the time steps over a 20-year period. The 

training vs testing dataset was split on a 60:40 ratio. We 

used the Apple dataset extracted from Yahoo Finance as 

articulated in our methodology. Among these, the DLLN 

model, shown in brown, consistently follows the actual 

stock price path (blue) more accurately than the others, 

especially during times of high volatility. 

The trend line for the DLLN model shows closer 

depiction to the actual prices even capturing quick spikes 
and declines that other models smooth out. This confirms 

that the model is efficient in adapting to rapid market 

changes. These results further support our second 

hypothesis that our model outperforms other industrial 

standards identified in literature.  This ability is important 

for making accurate financial predictions in the real 

world. The architecture of the DLLN, which combines 

CNN, LSTM, Attention network, EWC and RL allows the 

model to be aware of short-term changes while 

maintaining an understanding of larger trend patterns. The 

model shows a clear ability to track near trend inflexion 

points, exhibiting their real-time reliability. 
 

 
 
Fig. 7: Training and testing models over the Apple ticker 

 

Conclusion and Future Study 

In this paper, we introduced the dynamic lifelong 

learning network for stock market price forecasting. The 

neural network is built by combining a convolutional 

neural network with a long short-term memory network. 

An attention mechanism is also integrated to assist the 

model to focus on more critical time steps in the input 

sequence thereby improving accuracy and computational 

efficiency. Lifelong learning capability was specifically 

implemented to avoid expensive model retraining in 

changing data trends unlike the standard batch training 

approach used in most machine learning models. This 

flexibility is achieved by using a reinforcement learning 
(Deep Q Network) implemented through our novel LLSP 

algorithm. The capability is further enhanced by 

implementing Elastic Weight Consolidation which facilitates 

the model to retain vital knowledge from past tasks. This 

strategy reduces the risk of catastrophic forgetting a major 

problem in DL.  The novel hybrid architecture outperformed 

several baselines identified from literature. 

While our model performed quite well there remain 

some limitations that future research should address. For 

a start, our model was based on purely structured data like 

OHLCV values. The model could be enhanced by 
integrating even unstructured data like news and social 

media sentiments. Using NLP techniques could improve 

the model’s understanding of context, though it needs 

careful adjustment of specific sentiment models to 

prevent misclassification or bias.  

The other limitation is the reliance of the model on 

data extracted from the same market. A cross-market 

study, exploring the financial markets from different 

regions than the S&P 500 could possibly assist in 

verifying the generalizability of the model to different 

market regimes.  Ultimately, the results underscore the 

value of continual, context-sensitive learning in financial 
modelling. This offers a blueprint for systems that evolve 

in sync with volatile markets. 
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