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Abstract: This article proposes a methodology for the structural design of 

multi-layered glass beams considering lateral-torsional buckling. The basis 

is the use of two separate effective thicknesses to determine flexural and 

torsional rigidities, based respectively on the Enhanced Effective Thickness 

(EET) and sandwich theory. Analytical formulae are then used to calculate 

the elastic critical bending moment and a design curve is developed based on 

numerical results. The proposed methodology yields reliable results for the 

structural design of glass beams in a wide range of current configurations. 
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Introduction  

The use of glass as a construction material has surged 

in recent years due to its architectural appeal and a better 

understanding of its mechanical behavior. Glass beams 

are becoming more current, both for stiffening façades 

and as a structural element in skylights. In this context, 

the use of laminated glass is now broadly considered the 

best practice for security and redundancy reasons. 

Interlayers used in the fabrication of laminated glass 

are polymers, whose mechanical behavior is viscoelastic 

and depends on temperature. In out-of-plane bending, the 

main function of the interlayer is to transfer shear stresses 

between the glass layers. This transfer is governed by the 

shear modulus of the interlayer, which in turn is 

temperature and time-dependent. The geometry and 

boundary conditions of the panel also play an important 

role in the effectiveness of shear coupling. 

Due to the high slenderness of glass beams, the analysis 

of instability in the form of Lateral-Torsional (LT) buckling 

is critical in determining the resistance in the Ultimate Limit 

State (ULS). Considering the initial imperfection of the beam 

is crucial because it has a major influence on the structural 

behavior of the element. A precise analysis of this behavior 

can be long and unpractical since a fully nonlinear model is 

needed to correctly assess the stresses produced. For a 

laminated glass beam, the multi-layered composition 

complicates it, even more, the analysis. A finite element 

model with solid elements is often employed, but multi-layer 

shell elements are also sometimes used. 

In several standards and codes, a design curve is used 

for this kind of problem. It is the case of Eurocode 3 

(CEN, 2005) for steel columns and beams. Design curves 

provide a framework for simple and reliable design 

practice without the need to make use of more complex 

numerical modeling. 
In the context of the development of a Eurocode for 

structural glass (Feldmann et al., 2014), the definition of 
a design methodology for laminated glass beams is 
important to allow for broader usage of these elements in 
construction projects. 

Some propositions for design curves for monolithic and 
laminated glass with 2 glass layers can be found in the works 
by Luible and Crisinel (2006); Bedon and Amadio (2015). 
The first work uses the Eurocode 3 curve “c” and the latter 
proposes a less conservative curve. However, these curves 
proved to be insufficient when analyzing multi-layered 
laminates, as shown later in this study. 

To tackle this problem and contribute to the development 
of structural analysis of multi-layered glass beams, this 
article proposes a verification procedure that comprehends 
the analytical computation of the critical moment and an 
appropriate design curve. The steps of this procedure, using 
a framework based on the Eurocodes, are shown in Fig. 1. 

Validation of the proposition is provided through 
comparisons with numerical models. The applicability 
and limitations of the methodology are also discussed. 

In the scope of this article, only the case of a laminated 
beam composed of glass layers of equal thickness is 
addressed. Some direct possibilities for the extension of 
the methodology are also indicated. 

Determination of the Elastic Critical 

Bending Moment 

The determination of the elastic critical bending 
moment is the first step in the design process of beams 
subject to LT buckling. Different methods can be found in 
the literature and design codes. 
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Fig. 1: Framework of the methodology to determine the 

resistance to LT buckling 

 

For example, the Italian guide CNR-DT 210 (CNR, 

2013) provides formulas for monolithic and laminated 

glass with 2 glass layers for different types of moment 

distribution: Constant, triangular, parabolic, and bilinear 

(with zero at the mid-point for the latter). However, two 

shortcomings arise. First, the position of the loading is not 

taken into account, which significantly impairs accuracy. 

Also, laminated glass is limited to two glass layers. The 

guide uses the Wölfel-Bennison model (Bennison et al., 

2008) for effective thickness in both bending and torsion, 

which is a source of imprecision. 

The Australian standard AS 1288 (Standards 

Australia, 2008) also covers the problem, presenting a 

more complete set of loading cases and boundary 

conditions, some of which are shown next. However, the 

modeling of laminated glass is overly simplified into 

short- or long-term loads, neglecting several important 

factors such as the mechanical properties of the interlayer, 

temperature, or geometrical configuration. 

The equations shown here are presented in AS 1288 

and Nethercot and Rockey (1973), which have proven 

accurate for monolithic glass beams. But two different 

values of effective thickness are now used: One for lateral 

bending and another one for torsional rigidity. 

Formulae for the Elastic Critical Bending Moment 

The following formula, presented in AS 1288, is used 

to calculate the elastic critical bending moment for a beam 

with no intermediate lateral supports: 
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where: 

C2 and C3 = Constants depending on boundary 

conditions (Table 1) 

Lcr = The distance between lateral restraints 

(EI)y = The lateral flexural rigidity 

(GJ) = The torsional rigidity 

zg = The height above centroid of the point of 

load application 

 

It is important to notice that zg has a sign. A positive zg 

value corresponds to a destabilizing load such as a 

downward load applied on the top of the beam. 

Alternatively, when the position of load application has a 

stabilizing effect (such as a downward load applied at the 

bottom of the beam), zg is negative. 

Shear transmission between glass layers is complex and 

hard to account for analytically. Most importantly, it is 

produced in a very different manner whether laminated glass 

is subject to bending or torsion. Therefore, two effective 

thickness approaches are employed: One for bending and 

one for torsion. For laminated glass, the rigidities are then 

calculated as follows: 
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where: 

hw = The effective thickness in lateral bending 

ht = The effective thickness in torsion 

E = The glass young’s modulus (70.0 GPa) 

G = The glass shear elastic modulus (28.5 GPa 

calculated from a Poisson’s ratio of ν = 0.23) 

b = The height of the beam’s cross-section 

 

Table 1: Constants C2 and C3 for selected boundary conditions 

Moment distribution C2 C3 

Parabolic (distributed load) 3.6 1.4 

Triangular (load at mid-point) 4.2 1.7 
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Equation 3 is an approximation derived by Maddux et al. 

(1969). A simplification can be made by neglecting the 

term in brackets for very slender cross-sections (b ≫ ht). 

Another possible configuration is a beam with 

intermediate lateral supports, for which the elastic critical 

moment can be calculated with Eq. 4, adapted from 

Nethercot and Rockey (1971). The expression considers a 

beam with linearly varying bending moment with lateral 

displacement blocked at both ends. This expression 

should be used with caution, since it does not take into 

account the position of the load application and the 

moment is considered to vary linearly: 
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where: 

β = Defined in Fig. 2 

 

Effective Thickness in Lateral Bending 

For the out-of-plane bending of laminated glass 

beams, Galuppi and Royer-Carfagni (2014) proposed the 

Enhanced Effective Thickness (EET) method, which is 

able to evaluate the flexural behavior of multi-layered 

laminate glass beams with good accuracy. This method is 

also present in CNR-DT 210 for out-of-plane bending. 

Other than the case outlined here (for N glass layers of 

equal thickness), the method has also been developed for 

beams with 2 or 3 layers of any thickness and plates with 2 

glass layers. It can also be promptly extrapolated for plates 

with 3 glass layers or N glass layers of equal thickness. 

The model is based on the hypothesis of small 

deformations and the role of the interlayer is limited to the 

transmission of shear between glass layers. The whole 

kinematics of the problem is described only by the global 

out-of-plane displacement w(x) and the axial (in-plane) 

displacements of each glass layer ui(x). 

 

 

 

Fig. 2: Beam with linearly varying bending moment 

The moment of inertia of the laminated cross-section 

lies between two limit states: 

 

• the monolithic upper limit (where the interlayer is 

perfectly stiff and transmission of shear is total) 

• the lower limit where the interlayer does not transmit 

shear (the total inertia is the sum of the individual 

moments of inertia of each glass layer) 
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where: 

IR = The resulting moment of inertia 

Itot = The moment of inertia for the monolithic upper limit 

Ii = The moment of inertia for each glass layer 

η = The coefficient of shear coupling in bending 

hi = The thickness of the glass layers 

di = The distance between the center of gravity of each 

glass layer to the center of gravity of the laminated 

cross-section 

 

The coefficient η is responsible for defining where the 

flexural stiffness lies between the two limits. When its 

value is zero, the glass layers are free to slide over each 

other; when its equal to 1, the shear coupling is complete. 

Galuppi and Royer-Carfagni (2014) derive this coefficient 

by a variational approach, minimizing the total energy of 

the system for a given shape function g(x). 
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For a laminated beam composed of N glass layers of 

equal thickness h and with an interlayer thickness of t, the 

coefficient of shear coupling in bending is determined as 

follows (CNR, 2013): 
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where: 

Gint = The elastic shear modulus of the interlayer 

Ψ = A coefficient that depends on geometry, loading 

form, and boundary conditions 

 

For the buckling problem, a sinusoidal shape function 

is considered: 
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According to Galuppi and Royer-Carfagni (2014) and 

using this shape function, the coefficient Ψ is then 

calculated as: 
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Finally, the effective thickness in bending is given by: 
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This effective thickness is then used in Eq. 2 to 

determine the lateral flexural rigidity of the laminated 

glass beam. The effective thickness for determining the 

stresses acting on each glass layer is not shown here 

because it does not influence the instability phenomenon. 

Effective Thickness in Torsion 

Costa (2015) presents a method for determining the 

torsional stiffness of a laminated glass beam through the 

following expression: 
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where: 

JR = The resulting torsion constant 

Jtot = The torsion constant for the monolithic upper limit 

Ji = The torsion constant for each glass layer 

ξ = The coefficient of shear coupling in torsion 

 

The coefficient ξ is provided by the author for beams with 

2 layers of any thickness and symmetrical beams with 3, 4, 

or 5 glass layers. The formulation assumes that b ≫ h and the 

development is made through the equilibrium of efforts in 

the cross-section, based on sandwich theory. 

For the special case of equal thickness for all layers, 

the following adapted expression is derived: 
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It is then possible to deduce an effective thickness in 

torsion, that can then be used in Eq. 3: 
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Results and Validation 

Some examples have been constructed to evaluate the 

precision of the elastic critical bending moment calculated 

using Eq. 1, 2, 3, 12, and 16. A beam simply supported at 

each extremity was analyzed for the configurations 

presented in Table 2 (Fig. 3 for the scheme). Lateral 

displacements and torsion are blocked at each extremity. 

The shear modulus of the interlayer (Gint) varies 

from 0.01 MPa up to 1000 MPa, considering the 

present state of commercially available materials. The 

interlayer thickness is always the same, t = 1.52 mm. In 

all the cases the load points downwards and it is applied 

at the top of the beam (zg = + b/2). 

These cases were chosen to encompass the analysis of 

beams with diverse slenderness, cross-section forms, and 

numbers of layers. Also, the influence of the way the load 

is applied can be evaluated. 

For comparison, numerical results were obtained 

through Finite Element Analysis (FEA) using Code Aster 

(Salome-Meca, 2021). The models use solid quadratic 

hexahedral elements to calculate the elastic critical 

bending moment, which corresponds to the first mode 

of elastic instability. One element is used for the 

thickness of each layer of glass and each interlayer. 

Convergence tests were made to ensure that the 

discretization is precise enough. 

The distributed loads (D) were applied as downward 

surface loads on top of the glass layers. For the 

concentrated load case (P), the loads were solely applied 

to the elements at mid-span. Boundary conditions were 

applied as linear displacement restrictions on glass edges 

corresponding to the supports represented in Fig. 3. For 

displacements in the X direction, a single node was fixed 

to ensure static equilibrium. 

 

 
 
Fig. 3: Scheme for the cases studied 
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Table 2: Cases studied 

Case Lcr (mm) b (mm) N h (mm) Load application 

3000 (D) 3000 400 4 10 Uniformly distributed 

3000 (P) 3000 400 4 10 Concentrated at mid-point 

1500 (D) 1500 200 5 12 Uniformly distributed 

5000 (D) 5000 400 3 8 Uniformly distributed 

 

 

 

Fig. 4: Elastic critical bending moment for different case studies compared with numerical results 

 

Table 3: Relative error for elastic critical bending moment in 

comparison with numerical models 

Case Average absolute Minimal Maximal 

3000 (D) 3.5% - 2.4% + 7.5% 

3000 (P) 4.5% - 1.6% + 9.2% 

1500 (D) 4.4% - 4.5% + 11.1% 

5000 (D) 3.1% + 0.8% + 4.5% 

 

The proposal correctly captures the evolution of 

critical bending moments for all configurations. Figure 4 

shows the results obtained and the accuracy for each case 

is evaluated in Table 3. It shows very good precision for 

lower values of Gint and is slightly less accurate for higher 

values of Gint. 

Definition of a Design Curve 

In the real world, structural elements are never 
perfectly straight or aligned. Thus, the importance of 
considering initial imperfections, which play a large role 
in the LT buckling of beams.  

A design curve is constructed based on a given initial 

imperfection. The value of w0 = Lcr/300 is adopted, based 

on the recommendation for fully-tempered glass given in 
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Feldmann et al. (2014). This value is consistent with 

tolerances found in brochures of different glass suppliers. 

Even though annealed, heat-strengthened, and fully-

tempered glass may present different deformations due to 

fabrication, it is preferable to consider a unique value so 

that the design procedure is clearer and more consistent. 

Taking Lcr/300 for all types of glass is on the safe side. 

Numerical Modelling 

Through FEA, incremental non-linear models were 

implemented (Fig. 5), with the hypothesis of large 

displacements and large deformations being applied. The 

same cases presented in Table 2 were used, with an initial 

imperfection corresponding to the shape of the first LT 

buckling mode with a maximal amplitude of w0 = Lcr/300. 

This was achieved by defining the initial geometry of the 

non-linear model as the deformed shape obtained from the 

elastic instability analysis described in the previous 

section. The model was also constructed with solid 

quadratic hexahedral elements and the same boundary 

conditions as before were applied. 

For each case, different values of Gint were considered: 

0.03, 0.3, 3.0, 30, and 300 MPa. The resulting bending 

moment, maximum principal stress, and lateral displacement 

were computed for each load increment. 

Results for case 3000 (D) are shown here for 

illustrative purposes. The critical bending moment was 

also plotted in dashed lines for each value of Gint. It is 

possible to see how the bending moment tends to the 

critical moment as the lateral displacement increases due 

to the applied load (Fig. 6). The role of the interlayer 

stiffness in the resulting stresses can be seen in Fig. 7. 

Similar results were obtained for the other cases – 3000 

(P), 1500 (D) and 5000 (D). 
 

 
 
Fig. 5: Finite element model in Salome-Meca 9.7.0 for the case 

3000 (D) with Gint = 3.0 MPa 

 
 
Fig. 6: Applied bending moment and lateral displacement for 

case 3000 (D) 

 

 

 

Fig. 7: Maximum principal stress and lateral displacement for 

case 3000 (D) 

 

To compute glass resistance, equations based on EN 

16612 (CEN, 2019) are used: 

 

( ),0 ,0mod ,0 bk gkgk

d

MA Mv

f fk f
f

 

−
= +  (17) 

 

( )mod ,0 ,0 ,0k gk bk gkf k f f f= + −  (18) 

 

where: 

fd = The design value of the bending strength 

fk = The characteristic value of the bending strength 

fgk,0 = The instantaneous characteristic value of the 

bending strength for annealed glass (45 MPa) 
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fbk,0 = The instantaneous characteristic value of the 

bending strength for prestressed glass (45 MPa for 

annealed glass, 70 MPa for heat-strengthened 

glass, and 120 MPa for fully-tempered glass) 

kmod = The factor for load duration 

γMA = The partial factor for annealed glass (1.8) 

γMv = The partial factor for surface prestress (1.2) 
 

Coefficients related to edge condition, surface 

treatment, and heat treatment position have been omitted. 

This means that polished edges, surface as produced, and 

horizontal heat treatment were considered. These factors 

do affect the bending strength and must be accounted for 

in design (more complete versions of Eq. 17 and 18 can 

be found on EN 16612). The choice for these edge and 

surface conditions was made since they are better suited 

for use in glass beams. A different design curve may be 

needed if these conditions change. 

The factor kmod has an important role in the 

determination of strength, for it encapsulates the 

subcritical crack propagation that takes place over time 

when glass is submitted to traction stress on the surface 

(Wiederhorn and Bolz, 1970; Charles, 1958). 

Loading duration of 3 sec, 10 min, 3 weeks, and 50 years 

were considered. They correspond, respectively, to kmod 

values of 1.0, 0.74, 0.45, and 0.29 according to EN 16612. 

For glass resistance, the values of fbk,0 for annealed         

(45 MPa), heat-strengthened (70 MPa), and fully-

tempered glass (120 MPa) were considered. Different 

values of characteristic strength were then computed 

using Eq. 18 with these values of kmod and fbk,0. 

From the results of the nonlinear FEA models, a 

resistance value ( ),

FEA

b RkM  was obtained as the applied 

bending moment that corresponds to each value of 

characteristic strength fk at the point of maximum 

principal stress acting on the glass. Some data points were 

discarded because they are not compatible with current 

commercially available materials (kmod = 0.29 was not 

considered when combined with Gint equal or superior to 

3 MPa, and kmod = 0.45 was not combined with                        

Gint = 300 MPa). In the end, 192 data points were 

generated from the finite element models. 

A reduction factor for LT stability was then computed 

for each data point using the numerical value for the 

corresponding elastic critical bending moment ( )FEA

crM . 

The normalized slenderness was also determined from the 

FEA data. The generated points are plotted in Fig. 8. 
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where: 
FEA

LT  = The reduction coefficient computed from 

numerical results 
FEA

LT  = The normalized slenderness computed from 

numerical results 

Wy = The section elastic modulus 

 

Proposed Design Curve 

A design curve in the same formulation as presented 

in Eurocode 3 or CNR-DT 210 is used and the constants 

α0 and α* are chosen to best fit the data points. 
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with: 

α0 = 0.00  

α* = 0.35 

 

These values are a compromise between being on the 

safe side for the majority of the data points and not being 

too penalizing for most current cases. The value of α0 is 

zero since even for low slenderness beams the LT 

buckling phenomenon is present and reduces load-bearing 

capacity. For the 192 data points, 96.4% stay on the safe 

side, and the maximum relative error of the curve in 

comparison with the data points is + 4.5%. 

Luible and Crisinel (2006) made use of the Eurocode 

3 curve “c”, with α0 = 0.20 and α* = 0.49. The guide 

CNR-DT 210 prescribes a less conservative curve, 

described by Bedon and Amadio (2015), with α0 = 0.20 

and α* = 0.26. The curve proposed in this study fits the 

data for multi-layered laminates better than these previous 

references, which were made for monolithic or laminated 

beams with only 2 glass layers. 

Design Methodology 

Following the framework in Fig. 1, the steps in 

proposed the design methodology are: 

 

1. Determine the effective thickness in lateral bending 

hw using Eq. 9, 11 and 12 

2. Determine the effective thickness in torsion ht using 

Eq. 14-16 

3. Calculate the elastic critical bending moment Mcr 

using Eq. 1-3 

4. Use Eq. 23 to determine the normalized slenderness λLT 

5. Find the reduction factor χLT with Eq. 21 and 22 

6. Calculate the design moment resistance to LT 

buckling through Eq. 24 



Gabriel Neves Alves Ferreira / International Journal of Structural Glass and Advanced Materials Research 2022, Volume 6: 23.32 

DOI: 10.3844/sgamrsp.2022.23.32 

 

30 

2

1

6

N

k iy k i
LT

cr cr

f b hW f

M M
 == =

  (23) 
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The values of design strength (fd) and characteristic 

strength (fk) can be calculated according to EN 16612. 

Additional coefficients must be applied to Eq. 17 and 

18 if the edges are not polished or if the heat treatment 

is vertical instead of horizontal to account for the loss 

of material strength. 

Comparison of Resistance with Numerical Models 

To assess the reliability of this procedure, the design 

resistances determined this way were compared with the 

numerical results ( ),

FEA

b RdM . These were obtained from the 

FEA results by finding the applied bending moment that 

corresponds to each value of design strength fd. 

Again, 192 data points were generated in total. Table 4 

shows that the results are in the large majority on the safe 

side (only one simulation yielded a result slightly above 

the corresponding numerical result). 

Applicability and Limitations 

The type of load (concentrated or distributed) did not 

affect the accuracy. This leads to the belief that diverse 

load configurations can be analyzed, provided that the 

global buckling mechanism is similar. The case of a beam 

with intermediate lateral restraints should also be 

applicable (using Eq. 4 to calculate the elastic critical 

bending moment), but further research is needed to 

confirm the validity of the design curve for this case. 

The determination of effective thickness in bending 

and in torsion can also be determined for beams with 2 

different glass layers and symmetrical cross-sections with 

3 glass layers using the EET method (Galuppi and Royer-

Carfagni, 2012 and 2014) and the sandwich formulation 

by Costa (2015). The methodology can be promptly 

adapted to encompass these arrangements. 

For some applications such as consoles or beams with 

continuous lateral support, further research is needed to 

evaluate if the use of this design curve is appropriate. 

However, for the case of beams with continuous lateral 

support, the curve here proposed stays globally on the safe 

side in comparison with the one proposed by Luible and 

Schärer (2016). 

 
Table 4: Comparison of Mb, Rd with numerical results 

Case Maximal relative error  Situations on the safe side 

3000 (D) - 2.2% 100.0% 

3000 (P) - 0.1% 100.0% 

1500 (D) + 1.4% 97.9% 

5000 (D) - 13.1% 100.0%

 

 

 

Fig. 8: Proposed design curve and data points obtained from numerical models 
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Fig. 9: Influence of the imperfection shape for the case 3000 

(D) with Gint = 3.0 MPa 
 

Combined Loads 

Glass beams are often subject to loads with different 

durations and related temperatures. As suggested by Bedon 

and Amadio (2015), the evaluation of a beam subjected to 

various design actions can be accessed via the following 

equation, which seems to be a reasonable and safe approach.  

 

1 ,

1
in
Ed

i
i b Rd

M

M=

  (25) 

 

where: 
i

EdM  = The design bending moment for each action 

,

i

b RdM  = The resistance to LT buckling for each action 

n = The number of actions 

 

For multiple variable loads, combination coefficients 

must be applied according to EN 1990 (CEN, 2003). 

Influence of the Initial Deformed Shape 

It is important to highlight the importance of initial 

geometry. Even for the same value of w0, the nonlinear 

behavior can vary drastically depending on how the model 

is constructed. For the previously presented results, the 

shape of the first mode of elastic instability in lateral-

torsional buckling (LTB) was used. 

Using different shapes of initial deformation would 

lead to significantly different design curves. To illustrate 

this, a comparison was made for the 3000 (D) case with 

Gint = 3.0 MPa between an initial form based on the 

instability form and an arc form. The results of stress 

produced as a function of the bending moment applied are 

shown in Fig. 9. A difference of up to 27% is obtained 

between the two models.  

Conclusion 

The definition of a simple and reliable analysis 

procedure for multi-layered laminated glass beams is an 

important step in the process leading to the establishment 

of a Eurocode for the structural use of glass. This article 

defines a method for determining the elastic critical 

bending moment based on different sources found in the 

current literature on the subject. An appropriate design 

curve is also developed for multi-layered glass beams. 

The proposed methodology is anchored on solid 

research and displayed a consistent and safe performance 

on the examples studied. It is easy to apprehend and 

implement, showing safe results when compared with 

more precise numerical models. It can be applied to a vast 

range of multi-layered laminated glass beams, also 

including beams with one or two glass layers. 

Since the design curve was deduced considering 

polished edges and non-treated surface, it is only 

applicable to these cases. 

Further research is now needed to validate and extend 

its application field to different structural arrangements 

which present different mechanisms of LT buckling, such 

as cantilevers and continuously restrained beams. A 

thorough evaluation of the effects of load combinations 

also constitutes an important research topic to confirm the 

broad validity of Eq. 25, since most design situations 

include multiple load cases acting at the same time. 
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